搜档网
当前位置:搜档网 › 浅谈数学建模思想及其步骤

浅谈数学建模思想及其步骤

浅谈数学建模思想及其步骤
浅谈数学建模思想及其步骤

【理工科学】

本文以2010年的美国大学生数学建模竞赛为背景浅讲建模思想及其步骤。原题翻译后如下:

在1981年,彼得萨克利夫被判犯有十三起谋杀罪和一系列的恶意伤害罪。在该案中,一种用来缩小搜索萨克利夫先生所在范围的方法是找到这些犯罪地点发生的“重心”。最后,这个嫌疑犯恰好生活在用这种技术所预测的那个城镇里。从那时起,许多更复杂的技术被发展起来,用来确定系列犯罪的嫌疑人位置的“地理轮廓”。

一个当地的机构要求你的团队开发一种方法来帮助他们调查连环犯罪。你开发的这种方法,应至少使用两种不同的方案来产生一个地理轮廓。你需要发展一种技术,能综合不同方案的结果为执法人员产生一种有用的预测。这种预测应基于过去的系列犯罪现场的时间和地点,提供下次犯罪发生的可能位置。如果在你们的模型中,使用了除时间和地点之外的证据,你必须提供具体的细节,说明你是如何纳入额外信息的。你的方法还应提供,在某一特定情况下方法可靠度的某种形式的估计,包括适当的警告。

该题有很强的开放性,对犯罪“地理特征”的考虑有许多不同的角度,具体采取什么角度入手,题目本身并无明确要求。犯罪过程受到各种因素的影响较多,所以不能期望模型能提供既全面又准确的结果,抓住相对可靠的一些方面就足够了。

在做题前,先分析题目,找出出题者要求参赛队做的事情以及题目明确给出的和暗含的一些条件。譬如:题目要求参赛队至少使用两种不同的方案来产生一个地理轮廓,然后发展一种技术,使其能综合不同方案的结果为执法人员产生一种有用的预测。题目也明确给出做题方向:预测基于过去的系列犯罪现场的时间和地点,提供下次犯罪发生的可能位置。暗含条件为第一段貌似背景说明的语句中:一种用来缩小搜索萨克利夫先生所在范围的方法是找到这些犯罪地点发生的“重心”,最后,这个嫌疑犯恰好生活在用这种技术所预测的那个城镇里。该条件即可说明:为了预测系列犯罪嫌疑人的下次作案目标前,首先需要确定系列犯罪的嫌疑人位置的“地理轮廓”(可以广泛理解为嫌疑人家)。如此,大致地列出题目、已知以及需要求解的问题后,开始数学建模。

首先要研究背景材料。背景材料很重要,只有通过这一步,你才能对整个案件的始终有个了解,方便预测下一次发案地点。再者,题目中也明确指出了,要基于过去的犯罪时间地点。故而关于萨克利夫先生的其人其事都必须了解,并且他的所有犯罪经过以及所有受害者的地点(包括未被杀害但企图谋杀的受害人)。背景材料不能过于泛泛或者过于详细;因为如果太粗略,则在模型的建立过程中可能会遇到条件不足等原因而使得难以继续下去;如果过于详细,则表明在资料的搜集上花费了很多时间,使得建模时间不足,也不利于整个模型建立过程。故而参赛队要注意花在背景资料的搜索上的时间要适当。

其次要分析作案时间、背景以及受害人的相关资料。这是个很繁琐的过程,其中有关的数据资料有:历史作案时间、作案地点等;我们知道,数据资料是数学模型与实际问题相联系的重要途径和手段,在这里而言是人们从实际问题中所收集到的事实观察值和测量值;然而由于实际问题的复杂性,使得我们所得到的数据资料有可能是不精确或者不完善的,但是与数学模型相比,它更直接地来源于现实世界,所以数据资料应该是组建数学模型的重要依据和检验数据模型的重要标准。故而,在建模过程中如何处理好数据资料和数学模型的关系就显得非常重要。对于这题,作案时间可以以第一次作案时间点为零点,作案地点就不妨采用经纬度,通过类似简单方法将抽象的事物数量化。

接下来确定嫌疑犯的家。由于原题没有给出任何地图似的资料,故而参赛队可以使用维基百科、Google Earth等工具将所有犯案点在地图上描出,并且可知每个地点的经纬度。根据上面提到的做法,将抽象事物数据化后,按照一定的选取规则,选出约克郡东北地区的一些城市,对每一个地点求出其为嫌疑犯家的概率,比较概率相对大小,即可得到可能性最大的嫌疑人家所在地,此处可以采用衰减函数,至于衰减函数的选取可不同,只要遵循一定的原理即可。该步可为下一步预测嫌疑人下次犯案地点打下基础。

浅谈数学建模思想及其步骤

南京措

(青海师范大学民族师范学院数学系青海西宁810008)

摘要:以美国数学竞赛题为背景,从问题分析、资料搜集等入手浅谈了建模的初期工作。使用非线性最小二乘拟合等方法建立了模型来解决问题,其中还借助了软件Matlab、维基百科等资源。本文旨在说明建模的思想及步骤。

关键字:数学思想建模步骤

对教师进行现代教育技术培训是很有必要的。然而,培训什么,如何培训,什么时间培训?为了深入了解问题,开展有针对性的培训,特组织本次问卷调查。

一、调查目的

本次调查的主要目的是了解高职教师在多媒体教学和网络课程建设等方面存在的问题,发现教师在教学过程中的实际问题和需求以提供有针对性的培训;确定大多数教师喜欢的培训模式以及大多数教师可接受的培训时间;采纳教师对多媒体教学硬件及软件方面的合理建议以逐步完善学校教学体系,逐步提高教育技术中心等教辅部门的服务质量。

二、调查方法和内容

本次调查主要采用问卷法,并辅以交流和谈话等方法。结合河源职业技术学院的实际情况和初步的培训计划,从以下五个方面展开调查。

1.多媒体教室设备操作规范;

2.网络教学平台使用频度;

3.培训内容;

4.培训模式;

5.培训时间;

6.多媒体教学方面的常见问题。

三、调查结果及分析

1.多媒体教室设备操作规范。

经调查,53%的教师对多媒体教室设备使用的正确操作方法知道一些,而只有47%教师完全清楚其正确操作方法,并且对多媒体教室设备的操作规范与注意事项,82%的教师是通过询问相关工作人员或其他方式(自学、查看说明等)来了解的,只有18%的教师接受培训来掌握操作规范与注意事项。所以,现阶段非常有必要通过系统的培训让所有教师完全掌握多媒体教室设

高职教师现代教育技术培训调查分析

张廷琦,杨文

(河源职业技术学院信息中心广东河源517000)

摘要:运用现代教育技术培训使教师掌握先进的教育教学手段,转变教学观念,促进教学变革,提升自身教书育人能力。以广东河源职业技术学院教师为对象,通过调查问卷分析,对高职院校教师现代教育技术培训内容、模式、时间等方面给出了建议。

关键词:现代教育技术培训模式

【其他综合】

在建立模型阶段要预测下一个攻击点。在对嫌疑人心理、背景(生活经历等)以及历史作案情况的分析的基础上,可以利用M atlab非线性最小二乘拟合得到两个基本模型:N-T函数关系与T-S函数关系。其中N是自然数序列,T是案发时刻,S是案发点与嫌疑犯家的公路距离。可以利用N-T函数关系利用回归拟合技术得到可能的下次犯案时间,然后利用T-S函数关系同样在回归拟合技术的基础上得到可能的下次犯案点与嫌疑犯家的公路距离。以此为基础,再次利用维基百科可以得到符合条件的几个城市(即城市点到嫌疑犯家的距离大约为用上述技术得到的预测值)。这里可以采用蒙特卡洛模拟(计算机模拟技术)计算出这些点收到攻击的概率,以此来得到可能性最大的下一个受害点。当然,这里介绍的是最简单普遍的方法,参赛队也可以采用其他方法去解决该问题。

最后要将得到的模型进行验证即为灵敏度分析。对于该问题,最好的方法非理论分析,而是用实际案例去验证,譬如:已知某连环杀人凶手大卫九次犯案后被抓,可以假设未知其第九次犯案时间地点,用前八次犯案的数据套用模型去“预测”其第九次犯案地点,用此结果与实际情况作对比,如果预测地点在真实地点的预测误差范围内,即可认为模型可用。当然,具体情况要具体分析,有些情况下的灵敏度分析用理论分析来做也不失为一种好的方案。

通过对模型的简单建立,可知,要想成功的建立数学模型,首先要认真审题,好的开始是成功的一半,要将英文版的题目反复琢磨,领会出题者的想法和要求,只有在正确认识问题的基础上,才能做好以后的每一步工作。其次数据的搜索也是建模中很重要的一步,只有在处理恰当的数据的基础上建立的模型,模型的稳定性才会相对高些。至于数据的来源应当在各个高等院校的数据库里寻找,切忌在网上胡乱搜索数据,拿来做题。其中抽象事物的数据化处理也是很基础的一种方法。再次参赛队一定要掌握一定的计算机软件知识,例如M atlab、Lingo等软件的使用,只有在这些软件的基础上,整个建模过程才会高效。最后,想要完成一篇优秀的竞赛论文,必须对全文的阶梯思路相当清晰,尽量做到灵敏度分析,如此才可以验证参赛度模型的使用度。

----------------------------------------------

第二讲数学建模的基本方法和步骤

第二讲 数学建模的基本方法与步骤 数学建模面临的实际问题就是多种多样的,建模的目的不同、分析的方法不同、采用的数学工具不同,所得模型的类型也不同,我们不能指望归纳出若干条准则,适用于一切实际问题的数学建模方法。下面所谓基本方法不就是针对具体问题而就是从方法论的意义上讲的。(注:用最初等的方法解决,越受人尊重) 一 数学建模的基本方法 一般说来数学建模的方法大体上可分为机理分析与测试分析两种。 ????????????? 机理分析: 是根据对客观事物特性的认识,找出反映内部机理的数 量规律,建立的数学模型常有明确的物理或现实意义。 建模方法测试分析: 将研究对象看作一个“黑箱”(意思是内部机理看不清 楚),通过对测量数据的统计分析,找出与数据拟合最 好的模型。 面对于一个实际问题用哪一种方法建模,主要取决于人们对研究对象的了解程度与建模目的。如果掌握了一些内部机理的知识,模型也要求具有反映内部特征的物理意义,建模就应以机理分析为主。而如果对象的内部机理规律基本上不清楚,模型也不需要反映内部特征,那么可以用测试分析。对于许多实际问题也常常将两种方法结合起来,用机理分析建立模型结构,用测试分析确定模型的参数。 二 数学建模的一般步骤 建模要经过哪些步骤并没有一定的模式,通常与问题性质与建模的目的等有关。下面给出建模的一般步骤,如图1、2所示。 ⑴ 模型准备:了解实际背景,明确建模目的,搜索必要信息,弄清对象的主要特征,形成一个比较清晰的“问题”(即问题的提出)。情况明才能方法对,在这个阶段要深入调查研究,虚心向实际工作者请教,尽量掌握第一手资料。

⑵模型假设:根据对象的特征与建模目的,抓住问题的本质,忽略次要因素,作出必要的、合理的简化假设。对于建模的成败这就是非常重要与困难的一步。假设不合理或太简单,会导致错误的或无用的模型;假设作得过分详细,试图把复杂对象的众多因素都考虑进去,会使您很难或无法继续下一步的工作。常常需要在合理与简化之间作出恰当的折衷,要不段积累经验,并注意培养与充分发挥对事物的洞察力与判断力。 ⑶模型的建立:根据假设,用数学的语言、符号描述对象的内在规律,得到一个数学结构。这里除了需要一些相关的专门知识外,还常常需要较为广阔的应用数学方面的知识,要善于发挥想象力,注意使用类比法,分析对象与熟悉的其她对象的共性,借用已有的数学模型。建模时还应遵循的一个原则就是尽量采用简单数学工具,因为您的模型总希望更多的人了解与使用,而不就是只供少数专家欣赏。 ⑷模型求解:使用各种数学方法、数学软件与计算机技术对模型求解。 ⑸模型分析:对求解结果进行数学上的分析,如对结果进行误差分析,分析模型对数据的稳定性或灵敏性等。 ⑹模型检验:把求解与分析结果翻译回到实际问题,与实际现象、数据进行比较,检验模型的合理性与适用性。如果结果与实际不符,问题常常出现在模型假设上,应该修改或补充假设,重新建模。这一步对于模型就是否真的有用就是非常关键的,要以严肃认真的态度对待。 ⑺模型应用:这与问题的性质、建模的目的以及最终结果有关,一般不属于本书讨论的范围。 应该指出,并不就是所有问题的建模都要经过这些步骤,有时各步骤之间的界限也不那么分明,建模时不要拘泥于形式上的按部就班。 三数学建模的全过程 数学建模的全过程可分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型回到现实对象的循环,如图1、3所示。 表述就是根据建模目的与信息将实际问题“翻译”成数学问题,即将现实问题“翻译”成抽象的数学问题,属于归纳法。数学模型的求解选择适当的数学方

初中数学教学中渗透模型思想的思考

初中数学教学中渗透模型思想的思考 摘要:模型思想是构建实际生活与数学知识之间联系的重要途径。结合初中数学教学实践,分析了模型思想的内涵及其在教学内容中的体现,探讨了在初中数学教学中渗透模型思想的实施策略。 关键词:初中数学;教学;模型思想 《义务教育数学课程标准》指出,数学教学不仅要教会学生基本的数学知识和数学技能,还要使学生获得基本的数学思想和数学活动经验。模型思想作为数学思想的重要内容之一,是联系数学知识与现实生活的重要途径,也是激发学生数学学习兴趣、提高数学综合能力的重要方法,对于促进学生的全面发展、终身发展具有重要作用。但是,受应试教育的影响,数学教学过程中对于模型思想没有给予足够重视。很多教师只注重讲授教材知识,而对于其中蕴含和体现的模型思想没有深入挖掘,学生对于模型思想了解很少。这导致很多学生虽然公式、定理记得很牢,但遇到灵活性较强的题目却不会做,究其原因在于没有掌握数学思想和数学方法。数学是来源于生活同时又服务于生活的,数学教学要与生活连通。因此,在初中数学教学中渗透模型思想是十分必要的。 一、模型思想的内涵及其在初中数学教材中的体现

数学模型是按照研究对象的特点和规律运用数学语言 和方法来反映事物内部关系的一种数学表达形式。广义的数学模型包括数学概念、数学公式、数学方程及由之构成的算法系统,狭义的数学模型是指在特定问题或事物系统中提炼出的数学关系结构。简单来说,数学模型就是将生活数字化,用数学思想方法去解决问题。数学模型思想就是指借助数学模型的建立来解决实际问题的一种数学思想方法。在初中数学教材中,模型思想体现在以下方面:一是反映现实生活中数量关系的方程模型,在此类问题中要根据实际情况,设定未知数和相等关系,同时还要验证结果与实际问题是否相符。二是表达实际问题中便利之间关系变化的函数模型,通过分析函数关系初步预测变量的变化规律来解决实际问题。三是三角与几何模型,在测量、工程、台风、航海等应用性问题中常常涉及几何模型。四是不等式模型,针对现实生活中难以确定的问题计算变量的变化范围。五是统计模型,例如根据抽查样本确立统计图运用样本估计总体。 二、初中数学教学中渗透模型思想的实施策略 (一)在生动的情境中感受模型思想 针对初中数学知识较为枯燥抽象的特点,教师应根据教学内容和学生的认知规律来创设生动具体的教学情境,通过营造形象化的教学氛围搭建起数学知识与学生认知经验之 间的桥梁,从而拉近数学学习与学生的距离。对于数学模型

浅析初中数学模型思想

浅析初中数学模型思想 溧水区第二初级中学 孙海燕 摘要:数学是研究数量关系和空间形式的科学,数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。本文就以近3年南京市中考题出发,举例说明模型思想的广泛应用。 关键词:模型思想、中考题、应用 《数学课程标准(2011年版)》要求:在数学课程中,应当注重发展学生的模型思想。模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。 什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到, 所谓“数学模型”是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。 所谓数学模型方法,就是把所考察的实际问题转化为数学问题,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决。简单的说,数学模型方法就是通过构造数学模型来研究原问题的一种数学方法。其框图表示如下: 中学数学中常用的数学模型具体讲有方程模型、函数模型、几何模型、三角模型、不等式模型和统计模型等等,这些模型是解决数学问题和实际问题的有用工具。同时数学模型也是解决各个领域中科技问题的有用工具,在经济、军事以及各个领域中模型思想都有着广泛的应用。 本文就以近3年南京市中考题出发,举例加以说明: 一、方程模型 方程是刻画现实世界数量关系的有效模型。求解此类问题的关键是:针对给出的实际问题,设定适当的未知数,找出相等关系,但要注意验证结果是否符合实际问题的意义。 例1(2012南京25题).某汽车销售公司6月份销售某厂家的汽车。在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车, 则该部 数学抽象 实际解释

谈谈初中数学建模思想

谈谈初中数学建模思想 随着数学教育界中数学建模理念地不断深化,提高数学建模教学势在必行。通过数学建模能力的培养,既能使学生可以从熟悉的情境中引入数学问题,拉近数学与生活、生产的联系,激发学生学习数学的兴趣,又能培养学生的数学应用意识;既能使学生掌握学习数学的方法又能培养学生的创新意识以及分析和解 决实际问题的能力,使“人人学有价值的数学”。这正是新课程改革和数学教育的目的。 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型. 数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 一、初中数学建模教学常见的几种模型

1.建立“方程(组)”模型 现实生活中广泛存在着数量之间的相等关系,“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更正确、清晰的认识、描述和把握现实世界。诸如纳税问题、分期付款、打折销售、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成“方程(组)”模型,通过列方程(组)加以解决。 例:学校准备在图书馆后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建比较合理? [简析]:设与墙面垂直的边长为x米,可得方程x(25-2x)=50。解方程可得答案。 2、不等式模型 现实世界中不等关系是普遍存在的,许多现实问题很难确定(有时也不需要确定)具体的数值。但可以求出或确定这一问题中某个量的变化范围,从而对所有研究问题的面貌有一个比较清楚的认识。 例 2 某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元。已知两种球厂家的批发价和商场的零售价如下表,试解答下列问题:

(完整word版)数学建模的主要步骤

数学建模的主要步骤: 第一、模型准备 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 第二、模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建 模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以 高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应 尽量使问题线性化、均匀化。 第三、模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间 的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老 人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱 大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工

具愈简单愈有价值。 第四、模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法, 特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计 算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 第五、模型分析 对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作 出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差 分析,数据稳定性分析。 数学建模采用的主要方法有: (一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模 型。 1、比例分析法:建立变量之间函数关系的最基本最常用的方法。 2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。 3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策

第1节 数学建模与数学探究

第1节数学建模与数学探究 【内容要求】 数学建模活动是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题.数学建模活动是基于数学思维运用模型解决实际问题的一类综合实践活动,是高中阶段数学课程的重要内容. 【基本过程】 数学建模活动的基本过程如下: 数学探究活动是围绕某个具体的数学问题,开展自主探究、合作研究并最终解决问题的过程.具体表现为:发现和提出有意义的数学问题,猜测合理的数学结论,提出解决问题的思路和方案,通过自主探索、合作研究论证数学结论.数学探究活动是运用数学知识解决数学问题的一类综合实践活动,也是高中阶段数学课程的重要内容. 【过程解读】 掌握建模基本过程,会对实际问题进行问题分析,善于合理假设. ·问题分析也常称为模型准备或问题重述.由于数学模型是建立数学与实际现象之

间的桥梁,因此,首要的工作是要设法用数学的语言表述实际现象.所谓问题重述是指把实际现象尽量地使用贴近数学的语言进行重新描述.为此,要充分了解问题的实际背景,明确建模的目的,尽可能弄清对象的特征,并为此搜集必需的各种信息或数据.要善于捕捉对象特征中隐含的数学因素,并将其一一列出.至此,我们便有了一个很好的开端,而有了这个良好的开端,不仅可以决定建模方向,初步确定用哪一类模型,而且对下面的各个步骤都将产生影响. ·模型假设(即合理假设)是与问题分析紧密衔接的又一个重要步骤.根据对象的特征和建模目的,在问题分析基础上对问题进行必要的、合理的取舍简化,并使用精确的语言作出假设,这是建模至关重要的一步.这是因为,一个实际问题往往是复杂多变的,如不经过合理的简化假设,将很难于转化成数学模型,即便转化成功,也可能是一个复杂的难于求解的模型从而使建模归于失败.当然,假设作得不合理或过分简单也同样会因为与实际相去甚远而使建模归于失败.一般地,作出假设时要充分利用与问题相关的有关学科知识,充分发挥想象力和观察判断力,分清问题的主次,抓住主要因素,舍弃次要因素. 【实际意义】 数学建模的实际意义 1.在一般工程技术领域,数学建模仍然大有用武之地. 在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段. 2.在高新技术领域,数学建模几乎是必不可少的工具. 无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段.数学建模、数值计算和计算机图形等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一.

浅析数学建模的重要意义

浅析数学建模的重要意义 【摘要】本文针对数学建模在工程技术、自然科学等领域的重要地位,在查阅大量文献的基础上,在数学建模的优势、建模步骤、应用等方面进行了探讨,并与结语部分总结了数学建模在教学中的重要性及其未来发展的趋势。 【关键词】数学建模教学创新 数学建模[1]就是用数学语言描述实际现象的过程,是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。高新技术的发展离不开数学的支持,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,因而学生明显感到自己这一方面的能力在具体的建模过程中得到了较大提高。 一、优势 数学建模具有很大的优势,特别是在培养创新意

识和创造能力、训练快速获取信息和资料的能力、锻炼快速了解和掌握新知识的技能、培养团队合作意识和团队合作精神、增强写作技能和排版技术、荣获国家级奖励有利于保送研究生、荣获国际级奖励有利于申请出国留学、更重要的是训练人的逻辑思维和开放性思考方式等方面尤为突出。 二、建模步骤 第一步――准备工作,了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。第二步――假设,根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。第三步――建模,在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构,利用获取的数据资料,对模型的所有参数做出计算(或近似计算[2])。第四步――分析,对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。第五步――检验,将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,

浅谈初中数学建模思想的培养

浅谈初中数学建模思想的培养 作者姓名:邓小宏单位:于都县乱石初中邮编:342321 内容摘要:数学建模教育旨在拓展学生的思维空间,让数学贴近现实生活,从而使学生在进行数学知识和实际生活双向建构的过程中,体会到数学的价值,享受到学习数学的乐趣,体验到充满生命活力的学习过程。这对于培养学生的应用意识和创新精神是一个很好的途径,也是新大纲中提出的“学数学,做数学,用数学”理念的体现。数学建模是对日常生活和社会中的实际问题进行抽象化,建立数学模型,然后求解数学模型的过程。 关键词:初中数学建模思想培养 数学建模教育旨在拓展学生的思维空间,让数学贴近现实生活,从而使学生在进行数学知识和实际生活双向建构的过程中,体会到数学的价值,享受到学习数学的乐趣,体验到充满生命活力的学习过程。这对于培养学生的应用意识和创新精神是一个很好的途径,也体现出新大纲中提出的“学数学,做数学,用数学”的理念。数学建模是对日常生活和社会中的实际问题进行抽象化,建立数学模型,然后求解数学模型的过程。现在谈谈如何在教学中渗透数学建模的思想过程: 1、激发学生的学习兴趣,培养学生数学建模思想 数学建模活动的实际结果告诉我们,它不仅对好学生、而且对学习有一定困难的学生都能起到培养兴趣、激发创造的目的。例如:如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程;例如,在水塘中投进一块石头,水面上产生圈圈荡漾的水波,便是一个个圆的形象,然后使学生抽象出圆的概念以及圆心、半径等等。研究这样问题,学生积极性很高,就可以激发学生的创造欲望。数学建模的成果还可以为学生建立一种更表现学生素质的评价体系。数学建模的过程可以为不同水平的学生都提供体验成功的机会。 2、重视课本知识的功能,形成学生数学建模思想 数学建模应结合正常的教学内容切入。把培养学生的应用意识落实到平时的教学过程中。从课本的内容出发,联系实际,以教材为载体,拟编与教材有关的建模问题或把课本的

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

数学建模思想在初中应用题中的运用认识

数学建模思想在初中应用题中的运用认识 李楠 在国培课程中,有几个视频种豆提到了数学建模思想。结合课程学习和本人教学实践对数学建模思想在初中应用题中的运用认识,浅谈自己的看法。 应用题的数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题,求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。 教学应用题的常规思路是:将实际问题抽象、概括、转化??为数学问题,然后解决数学问题,最后回答实际问题。具体可按以下程序进行:审题, 建模, 求解,得出结论, 还原回原题. 例有甲乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊就是你的羊的2倍”。乙回答说:“最好还是把你的羊给我一只,我们的羊就一样了,”两个牧童各有羊多少只? 审题----教会学生读题,哪些是有用信息,哪些是关键词句,特别是含有等量关系的词,引导学生抛开没有用的信息,建立等量关系.例如甲对乙说:“把你的羊给我一只,我的羊就是你的羊的2倍”。乙回答说:“最好还是把你的羊给我一只,我们的羊就一样了,”其中一个可以用来假设未知数,另为一个就可以列方程了,二者可以互换的。 设元----找出未知量与已知量,设未知数.例如设甲牧童有羊x只,大多数学生能根据乙回答说:“最好还是把你的羊给我一只,我们的羊就一样了,知道乙有(x+1)只,根据甲对乙说:“把你的羊给我一只,我的羊就是你的羊的2倍”列方程(x +1)=2(x-2-1)求解 建模----题目做完以后,要思考这样的题是否具有典型的特点,首先从题目环境入手,常规应用题的分类在这里不适用,然后从建立的等量关系入手,列方程进而求解. 这种利用题中给出的两个条件,其中的一个用来设未知数,另一个就是列方程的依据,二者可以相互转换的,但是有一种相对来说列方程简单,,解起方程也简单一些,这类题很多。只要抓住了这些题的基本模型,不管题目怎么变,都能转化成为熟悉的原型.

初中数学建模常见类型及举例(无答案)

初中数学建模初探 随着经济的飞速发展和计算机的广泛应用,数学日益成为一种技术,其手段就是计算和数学建模.数学建模是解决实际问题的过程,在这一个过程中,建立数学模型是最关键、最重要的环节,也是学生的困难所在。它需要运用数学的语言和工具,对部分现实世界的信息(现象、数据等)加以简化、抽象、翻译、归纳,然后利用合适的数学工具描述事物特征的一种数学方法。 一、在初中数学教学中,要使学生初步学会建立数学模型的方法,提高学生应用数学知识解决实际问题的能力,应着重注意以下几点: 1、审题 建立数学模型,首先要认真审题。苏联著名数学家斯托利亚尔说过,数学教学也就是数学语言的教学。实际问题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深刻分解实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和对所求结论的限制条件。 2、简化 根据实际问题的特征和建模的目的,对问题进行必要简化。抓住主要因素,抛弃次要因素,根据数量关系,联系数学知识和方法,用精确的语言作出假设。 3、抽象 将已知条件与所求问题联系起来,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。 按上述方法建立起来的数学模型,是不是符合实际,理论上、方法上是否达到了优化,在对模型求解、分析以后通常还要用实际现象、数据等检验模型的合理性。 二、初中数学建模的主要类型

一切数学概念、公式、方程式和算法系统等都是数学模型,可以说,数学建模的思想渗透在中小学数学教材中。因此,只要我们深入钻研教材,挖掘教材所蕴涵的应用数学的材料,并从中总结提炼,就能找到数学建模教学的素材。例如:最大最小问题,包括面(体)积最大(小)、用料最省、费用最低、效益最好等,可以建立函数或不等式模型。行程、工程、浓度问题,可以建立方程(组)、不等式(组)模型。 1、函数模型 当涉及到总运费最少或利润最大等决策性问题时,可通过建立函数模型,将实际问题转化为数学问题,运用函数的相关知识来解决. 2、直角三角形模型 当涉及测量高度、测量距离、航海、拦水坝等应用型问题时,可考虑建立直角三角形的模型,利用直角三角形的知识使问题获得解决. 3、方程(组)模型 现实生活中广泛地存在等量关系,如利息和税率、百分比、工程施工、行程问题等,通常都需要建立方程(组)的模型来解决问题. 4、不等式(组)模型 生活中的不等关系主要体现在市场营销、生产决策、统筹安排等方面,对于此类实际问题可以考虑通过建立不等式(组)的模型来解决. 5、几何模型

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

浅谈数学建模思想在小学数学教学中的渗透

浅谈数学建模思想在小学数学教学中的渗透 在《数学课程标准》我们发现这样一句话——“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”,这实际上就是要求把学生学习数学知识的过程当做建立数学模型的过程,并在建模过程中培养学生的数学应用意识,引导学生自觉地用数学的方法去分析、解决生活中的问题。明确要求教师在教学中引导学生建立数学模型,不但要重视其结果,更要关注学生自主建立数学模型的过程,让学生在进行探究性学习的过程中科学地、合理地、有效地建立数学模型。 一、数学模型的概念 数学模型是对某种事物系统的特征或数量依存关系概括或近似表述的数学结构。数学中的各种概念、公式和理论都是由现实世界的原型抽象出来的,从这个意义上讲,所有的数学知识都是刻画现实世界的模型。狭义地理解,数学模型指那些反映了特定问题或特定具体事物系统的数学关系结构,是相应系统中各变量及其相互关系的数学表达。数学建模就是建立数学模型来解决问题的方法。《数学课程标准》安排了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四块学习领域,强调学生的数学活动,发展学生的数感、符号感、空间观念、以及应用意识与推理的能力。这些内容中最重要的部分,就是数学模型。在小学阶段,数学模型的表现形式为一系列的概念系统,算法系统,

关系、定律、公理系统等。 二、小学数学教学渗透数学建模思想的可行性 数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”、“建模”的意义上,才是一种真正的数学学习。这种“深入”,就小学数学教学而言,更多地是指用数学建模的思想和精神来指导着数学教学,“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进入和发展。” 对数学建模这个概念来讲也许是新的,但回想我们的日常教学不难发现我们的学生已经有数学建模的思想或意识,只不过没有从理论的角度把它概括出来而已。例如,在以往教学求比一个数多几的应用题时,经常碰到这样一个例题“小明家养了6只公鸡,养的母鸡只数比公鸡多3 只,母鸡有几只?”在教学此例时老师们都是采用让学生摆、说等教学活动来帮助学生分析数量关系,理解“同样多的部分”,但教学

数学建模方法归类(很全很有用)

在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。 用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势):matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。 在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。 回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。相对应的有线性回归、多元二项式回归、非线性回归。 逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。(主要用SAS来实现,也可以用matlab软件来实现)。 聚类分析:所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类。 系统聚类分析—将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。最终可以按照需要来决定分多少类,每类有多少样本(指标)。 系统聚类方法步骤: 1.计算n个样本两两之间的距离 2.构成n个类,每类只包含一个样品 3.合并距离最近的两类为一个新类 4.计算新类与当前各类的距离(新类与当前类的距离等于当前类与组合类中包含的类的距离最小值), 若类的个数等于1,转5,否则转3 5.画聚类图 6.决定类的个数和类。 判别分析:在已知研究对象分成若干类型,并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。 距离判别法—首先根据已知分类的数据,分别计算各类的重心,计算新个体到每类的距离,确定最短的距离(欧氏距离、马氏距离) Fisher判别法—利用已知类别个体的指标构造判别式(同类差别较小、不同类差别较大),按照判别式的值判断新个体的类别 Bayes判别法—计算新给样品属于各总体的条件概率,比较概率的大小,然后将新样品判归为来自概率最大的总体 模糊数学:研究和处理模糊性现象的数学(概念与其对立面之间没有一条明确的分界线)与模糊数学相关的问题:模糊分类问题—已知若干个相互之间不分明的模糊概念,需要判断某个确定事物用哪一个模糊概念来反映更合理准确;模糊相似选择—按某种性质对一组事物或对象排序是一类常见的问题,但是用来比

浅谈初中数学中的方程教学与方程思想_1

浅谈初中数学中的方程教学与方程思想 方程是数学发展史上的一个重要里程碑.它可以包容和展示丰富的数量关系,使数学语言有了质的飞跃;用等式作为数学思维的工具,对不同结构形式的方程,人们逐步探索出一套分类处理解方程的方法.正是源于解决数学问题的需求意识发展,人类才创造出方程这一璀璨的数学明珠.今天,课改教材遵循知识的历史发展观:阐明形成方程知识的背景,强调数学思维发展依赖数学工具、语言的功能创新;重视等式变形意义:解方程所采用的数学法则、方法和程序,不仅是学生对方程类型辨识和结构分析,而且又是对数学本质和意义理解的感悟,更是数学化归思想、优化意识在解题对策中的思辨.教材编写意图,旨在让学生体验:方程建模是解决实际问题的有效手段,它是小学后数学新思维、新语言、新方法、新功能的发展. 一、重视方程解法的教学 (一)引导学生探究并理解方程的解法原理 要让学生把方程解法掌握得更好、更牢固,而不是空中楼阁,就必须让学生理解方程的解法原理。一元一次方程解法原理是等式基本性质;一元二次方程按其解法不同其解法原理有两个,直接开平方法、配方法,公式法的解法原理是平方根的定义即若则叫做的平方根,即;因式分解法的解法原理是若则;二元一次方程组解法原理是通过等量代换进行消元转化成一元一次方程来解 (二)进行适量的解方程(组)的训练,让学生形成较稳定的解方程(组)的能力

解一元一次方程,一元二次方程,二元一次方程组的能力是新课程标准规定的初中阶段的学生必须掌握的一项基本技能,要形成熟练的解方程(组)的能力,适当的训练是必须的,而且在训练时,选题应该典型有代表性,全面有覆盖性。 (三)适时归纳解方程(组)基本步骤和基本思路。在训练的基础上,适时对解方程(组)的基本步骤和基本思路进行归纳,可以使学生站在更高的层次上理解方程解法和思路,掌握得会更好、更牢固。例如解一元一次方程的基本步骤是①有分母去分母;②有括号去括号; ③移项;④合并同类项;⑤系数化为1;处理方程或方程组的基本思路是:无理方程有理化,分式方程整式化,高次方程低次化,多元方程一元化,总而言之一句话,消元降次简单化。 二、重视方程应用题的教学 (一)用方程来解决问题是初中数学学习的重点、难点。《新课程标准》对方程提出了这样的要求“能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型”,因此对于方程的应用,也应当成为教学的一大重点,对绝大多数学生来说学习方程的一个重要原因就是能够应用它解决问题,包括数学的问题和非数学的问题。列方程(组)解应用题,是初中数学的一个难点,许多学生怕应用题,主要是他们理不清纷繁复杂的数量及其关系,或者难以将实际问题数学化,因而列不出正确的方程,教学中要把握这个重点,设法破解这个难点。 (二)重视教会学生审题和寻找相等关系的方法

浅析数学建模思想在中学数学教学中应用

浅析数学建模思想在中学数学教学中应用 Last revised by LE LE in 2021

浅析数学建模思想在中学数学教学中应用 四川省宜宾市翠屏区沙坪中学毛泽胜 摘要:在新一轮的课程改革中,数学知识的应用是数学教育的重要内容。呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识,开展中学数学建模教学与应用的研究,对提高学生数学应用意识,培养学生灵活的思维能力,分析问题、解决问题的能力,促进中学数学教学改革,全面推进中学数学素质教育有十分重要的意义。本文在对数学模型、数学建模和数学建摸思想研究的基础上,开展对中学数学建模教学活动的理论依据和教学原则的探讨,并对中学的方程、不等式、函数、统计、三角等教学内容进行数学建模教学进行了一些研讨。因此本文认为数学建模的教学将为中学数学课堂教学改革提供一条新路,将为培养更多更好的“创造型”人才提供一个全新的舞台。 关键词:数学模型、数学建模、数学建模思想、课程改革、中学数学教学 随着课程改革的不断深入,数学教学转变了传统的观念,教材编写背景结合了生活实际和社会实践,突出了理论与知识结合,理论与实践结合,强调学生对数学知识的应用,呼唤数学应用意识。而中学学数学最常用和最有效的教学方法之一是探索法,这一方法与数学建模有很多共同特征,本文拟通过数学模型、数学建模和数学建模思想的研究,探讨数学建模思想应用于中学数学教学的可行性,为中学数学课堂教学改革寻找一条可行之路。 一、数学模型、数学建模和数学建模思想的定义 所谓数学模型,是指针对或参照某种事物的特征或数量相依关系,采用形式化的数学语言,概括地或近似地表述出来一种数学结构。广义的解释:凡是一切数学概念、数学理论体系、各种数学公式、各种方程(代数方程、函数方程、微分方程、……)以及由公式系列构成的算法系统等等都称之为数学模型。而创建一个数学模型的全过程称为数学建模,即用数学的语言、方法去近似地刻画该实际问题,并加以解决的全过程。 总之,数学模型与数学建模较为严格的定义是,对于现实世界的一个特定对象,为了一个特定目的,根据对象特有的内在规律,在做出问题分析和一些必要、合理的简化假设后,运用适当的数学工具,得到的一个数学结构就称为该特定对象的数学模型。数学建模的过程,可以用如下框图来说明: 近似、概括、抽象

初中数学建模思想的策略研究定稿版

初中数学建模思想的策略研究精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

初中数学建模思想的策略研究 勐海县布朗山乡九年制学校雷鑫 一.什么是数学建模 1.1 数学建模( Mathematical Modeling )是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下: ( 1 )、普通高中数学课程标准 [4] 中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容 . ( 2 )、叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(Mathematical Modeling) 就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“ 规律” 建立起变量、参数间的确定的数学问题 ( 也可称为一个数学模型 ) ,求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。 两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。

什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”( Mathematic Model )是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。 本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。 另外,我们所谈的数学建模主要侧重于解决非数学领域内的问题。这类问题往往来自于日常生活、经济、工程、医学等其他领域,呈现“原胚”状态,需要分析、假设、抽象等加工,才能找出其隐含的数学关系结构。 一般地,数学建模的过程可用下面的框图表示: 1.2 什么是中学数学建模 这里的“中学数学建模”有两重含义, 一是按数学意义上的理解、在中学中做的数学建模。主要指基于中学范围内的数学知识所进行的建模活动,同其它数学建模一样,它仍以现实世界的具体问题为解决对象,但要求运用的数学知识在中学生认知水平内,专业知识不能要求太高,并且要有一定的趣味性和教学价值。 二是按课程意义理解,它是本文要展开讨论的,一种要在中学中实施的特殊的课程形态。它是一种以“问题引领、操作实践”为特征的活动型课程。学生要通过经历建模特有的过

相关主题