搜档网
当前位置:搜档网 › 求轨迹方程例题方法解析

求轨迹方程例题方法解析

求轨迹方程例题方法解析
求轨迹方程例题方法解析

求轨迹方程的常用方法

知识梳理:

(一)求轨迹方程的一般方法:

1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项:

1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()

()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ???===

来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。

热身:

1. P 是椭圆5

92

2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:

( )

A 、159422=+y x

B 、154922=+y x

C 、12092

2=+y x D 、5

3622y x +=1

【答案】:B

【解答】:令中点坐标为),(y x ,则点P 的坐标为()2,y x 代入椭圆方程得15

492

2=+y x ,选B

2. 圆心在抛物线)0(22

>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( )

A 04

1

222=-

--+y x y x B 0122

2=+-++y x y x C 0122

2

=+--+y x y x

D 04

1

222=+

--+y x y x 【答案】:D

【解答】:令圆心坐标为(),22a a ,则由题意可得21

22+=a a ,解得1=a ,则圆的方程为

04

1

222=+

--+y x y x ,选D 3: 一动圆与圆O :12

2

=+y x 外切,而与圆C :0862

2

=+-+x y x 内切,那么动圆的圆心M 的轨迹是:

A :抛物线

B :圆

C :椭圆

D :双曲线一支 【答案】:D

【解答】令动圆半径为R ,则有???-=+=1

||1

||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。故选D 。

4: 点P(x 0,y 0)在圆x 2+y 2=1上运动,则点M (2x 0,y 0)的轨迹是 ( ) A.焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆 C. 焦点在y 轴上的双曲线 D. 焦点在X 轴上的双曲线 【答案】:A

【解答】:令M 的坐标为),,(y x 则??

???==????==y y x x y y x x 00

0022代入圆的方程中得

1422=+y x

一:用定义法求曲线轨迹

求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。

例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足

,sin 4

5

sin sin C A B =+求点C 的轨迹。

【解析】由,sin 45sin sin C A B =+可知104

5

==+c a b ,即10||||=+BC AC ,满足椭

圆的定义。令椭圆方程为

12

'

22

'

2=+

b y a x ,则34,5'''=?==b

c a ,则轨迹方程为

19

252

2=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)

。 【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。

(1) 圆:到定点的距离等于定长

(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)

(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (4)

到定点与定直线距离相等。

【变式1】: 1:已知圆的圆心为M 1,圆的圆心为M 2,

一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。 解:设动圆的半径为R ,由两圆外切的条件可得:

∴动圆圆心P 的轨迹是以M 1、M 2为焦点的双曲线的右支,c=4,a=2,b 2=12。

故所求轨迹方程为

2:一动圆与圆O :12

2

=+y x 外切,而与圆C :0862

2

=+-+x y x 内切,那么动圆的圆

心M 的轨迹是:

A :抛物线

B :圆

C :椭圆

D :双曲线一支

【解答】令动圆半径为R ,则有??

?-=+=1

||1

||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。故选D 。

二:用直译法求曲线轨迹方程 此类问题重在寻找数量关系。

例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?

解 设M 点的坐标为),(y x 由平几的中线定理:在直角三角形AOB 中,OM=

,22

1

21a a AB =?= 22222,a y x a y x =+=+∴

M 点的轨迹是以O 为圆心,a 为半径的圆周.

【点评】此题中找到了OM=

AB 2

1

这一等量关系是此题成功的关键所在。一般直译法有下列几种情况:

1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。

2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。

3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。

4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.

【变式2】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2|

||

|=PB PA )

,求动点P 的轨迹方程?

【解答】∵|P A |=222

2)3(||,)3(y x PB y x +-=

++

代入2|||

|=PB PA 得

22222

2224)3(4)3(2)3()3(y x y x y x y x +-=++?=+-++ 化简得(x -5)2+y 2=16,轨迹是以(5,0)为圆心,4为半径的圆.

三:用参数法求曲线轨迹方程

此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的

取值范围。

例3.过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。

【解析】

分析1:从运动的角度观察发现,点M 的运动是由直线l 1引发的,可设出l 1的斜率k 作为参数,建立动点M 坐标(x ,y )满足的参数方程。

解法1:设M (x ,y ),设直线l 1的方程为y -4=k (x -2),(k ≠0) )2(1

4221--

=-⊥x k

y l ,l l 的方程为则直线由 ,,A x l )0k 42(1-∴的坐标为轴交点与 ,k

,B y l )2

40(2+的坐标为轴交点与

∵M 为AB 的中点,

)(1222421242为参数k k k y k k x ????

?????

+=+

=-=-=∴

消去k ,得x +2y -5=0。

另外,当k =0时,AB 中点为M (1,2),满足上述轨迹方程; 当k 不存在时,AB 中点为M (1,2),也满足上述轨迹方程。 综上所述,M 的轨迹方程为x +2y -5=0。

分析2:解法1中在利用k 1k 2=-1时,需注意k 1、k 2是否存在,故而分情形讨论,能否避开讨论呢?只需利用△PAB 为直角三角形的几何特性: ||2

1

||AB MP =

解法2:设M (x ,y ),连结MP ,则A (2x ,0),B (0,2y ), ∵l 1⊥l 2,∴△PAB 为直角三角形 ||2

1

||AB MP ,=由直角三角形的性质 222

2

)2()2(·2

1

)4()2(y x y x +=

-+-∴ 化简,得x +2y -5=0,此即M 的轨迹方程。 分析3::设M (x ,y ),由已知l 1⊥l 2,联想到两直线垂直的充要条件:k 1k 2=-1,即可列出轨迹方程,关键是如何用M 点坐标表示A 、B 两点坐标。事实上,由M 为AB 的中点,易找出它们的坐标之间的联系。

解法3:设M (x ,y ),∵M 为AB 中点,∴A (2x ,0),B (0,2y )。 又l 1,l 2过点P (2,4),且l 1⊥l 2 ∴PA ⊥PB ,从而k PA ·k PB =-1,

02242204--=

--=

y

,k x k PB PA 而 05212

24·224=-+-=--∴y x y

x ,化简,得

注意到l 1⊥x 轴时,l 2⊥y 轴,此时A (2,0),B (0,4) 中点M (1,2),经检验,它也满足方程x +2y -5=0 综上可知,点M 的轨迹方程为x +2y -5=0。

【点评】

1)解法1用了参数法,消参时应注意取值范围。解法2,3为直译法,运用了k PA ·k PB

=-1,||2

1

||AB MP =这些等量关系。。

用参数法求解时,一般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度,有向线段的数量,直线的斜率,点的横,纵坐标等。也可以没有具体的意义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响 【变式3】过圆O :x 2 +y 2= 4 外一点A (4,0),作圆的割线,求割线被圆截得的弦BC 的中点M 的轨迹。

解法一:“几何法”

设点M 的坐标为(x,y ),因为点M 是弦BC 的中点,所以OM ⊥BC,

所以|OM | 2+|MA|2 =|OA| 2

, 即(x 2 +y 2)+(x -4)2 +y 2 =16 化简得:(x -2)2+ y 2 =4................................①

由方程 ① 与方程x 2 +y 2= 4得两圆的交点的横坐标为1,所以点M 的轨迹方程为 (x -2)2+ y 2 =4 (0≤x <1)。所以M 的轨迹是以(2,0)为圆心, 2为半径的圆在圆O 内的部分。

解法二:“参数法”

设点M 的坐标为(x,y ),B (x 1,y 1),C (x 2,y 2)直线AB 的方程为y=k(x -4), 由直线与圆的方程得(1+k 2)x 2 -8k 2x +16k 2-4=0...........(*),

由点M 为BC 的中点,所以x=2

2

21142k

k x x +=+...............(1) , 又OM ⊥BC ,所以k=

x

y

.................(2)由方程(1)(2) 消去k 得(x -2)2+ y 2 =4,又由方程(*)的△≥0得k 2 ≤

3

1

,所以x <1. 所以点M 的轨迹方程为(x -2)2+ y 2 =4 (0≤x <1)所以M 的轨迹是以(2,0)为圆心, 2为半径的圆在圆O 内的部分。

四:用代入法等其它方法求轨迹方程

例4. 的的中点求线段为定点上的动点是椭圆点M AB ,a ,

,A b

y a x B )02(122

22=+ 轨迹方程。

分析:题中涉及了三个点A 、B 、M ,其中A 为定点,而B 、M 为动点,且点B 的运动是有规律的,显然M 的运动是由B 的运动而引发的,可见M 、B 为相关点,故采用相关点法求动点M 的轨迹方程。

【解析】设动点M 的坐标为(x ,y ),而设B 点坐标为(x 0,y 0) 则由M 为线段AB 中点,可得

??

?=-=????????=+=+y y a x x y

y x a

x 2222

02

20000 即点B 坐标可表为(2x -2a ,2y )

上在椭圆点又1)(22

2200=+b y a x ,y x B

,b

y a a x b

y

a x 1)2()22(1

2

2

2222

022

0=+-=+∴从而有

14)(422

2

2=+-b

y a a x M ,的轨迹方程为得动点整理 【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系

【变式4】如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满

足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程

【解析】: 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|| 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)

又|AR |=|PR |=22)4(y x +-

所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0

因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动

设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2

,241+=

+y y x , 代入方程x 2+y 2-4x -10=0,得

2

4

4)2()24(

22+?

-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程 【备选题】

已知双曲线22

2x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于

A B ,两点.

(I )若动点M 满足1111F M F A F B FO =++

(其中O 为坐标原点)

,求点M 的轨迹方程; (II )在x 轴上是否存在定点C ,使CA ·CB

为常数?若存在,求出点C 的坐标;若不存

在,请说明理由.

解:由条件知1(20)F -,

,2(20)F ,,设11()A x y ,,22()B x y ,. 解法一:(I )设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+

,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++ 得

121226x x x y y y +=++??

=+?,即12124x x x y y y

+=-??+=?,

于是AB 的中点坐标为422x y -??

??

?,. 当AB 不与x 轴垂直时,1212

24822

y y y y x x x x -==----,即1212()8y y y x x x -=--.

又因为A B ,两点在双曲线上,所以22112x y -=,22

222x y -=,两式相减得

12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.

将1212()8

y

y y x x x -=

--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是2

2

(6)4x y --=.

(II )假设在x 轴上存在定点(0)C m ,,使.为常数.

当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入2

2

2x y -=有2

2

2

2

(1)4(42)0k x k x k -+-+=.

则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421

k x x k +=-,

于是)2)(2())((.212

21--+--=x x k m x m x CB CA

22221212(1)(2)()4k x x k m x x k m =+-++++

222222

22

(1)(42)4(2)411k k k k m k m k k +++=-++-- 22

222

2(12)2442(12)11

m k m m m m k k -+-=+=-++--. 因为.是与k 无关的常数,所以440m -=,即1m =,此时.=1-.

当AB 与x 轴垂直时,点A B ,

的坐标可分别设为(2

,(2, 此时1)2,1).(2,1(.-=-=.

故在x 轴上存在定点(10)C ,,使.为常数. 解法二:(I )同解法一的(I )有12124x x x y y y

+=-??

+=?,

当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入2

2

2x y -=有2

2

2

2

(1)4(42)0k x k x k -+-+=.

则12x x ,是上述方程的两个实根,所以2

12241

k x x k +=-.

21212244(4)411k k

y y k x x k k k ??+=+-=-= ?--??

由①②③得2

2441k x k -=-.…………………………………………………④

241

k

y k =

-.……………………………………………………………………⑤ 当0k ≠时,0y ≠,由④⑤得,

4

x k y

-=,将其代入⑤有 222

2

4

44(4)(4)(4)1x y x y y x x y

y -?

-==----.整理得22

(6)4x y --=. 当0k =时,点M 的坐标为(40),,满足上述方程.

当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 故点M 的轨迹方程是2

2

(6)4x y --=.

(II )假设在x 轴上存在定点点(0)C m ,,使CB CA .为常数,

当AB 不与x 轴垂直时,由(I )有212241k x x k +=-,2122421

k x x k +=-.

以上同解法一的(II ).

1.错误诊断

【例题5】ABC ?中,B ,C 坐标分别为(-3,0),(3,0),且三角形周长为16,求点A 的轨迹方程。

【常见错误】由题意可知,|AB|+|AC|=10,满足椭圆的定义。令椭圆方程为122

22=+b y a x ,

则由定义可知3,5==c a ,则4=b ,得轨迹方程为116

252

2=+y x

【错因剖析】ABC 为三角形,故A ,B ,C 不能三点共线。

【正确解答】ABC 为三角形,故A ,B ,C 不能三点共线。轨迹方程里应除去点)0,5).(0,5(-,

即轨迹方程为)5(116

252

2±≠=+x y x

2.误区警示

1:在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,因此,在求出曲线方程的方程之后,应仔细检查有无“不法分子”掺杂其中,将其剔除;另一方面,又要注意有无“漏网之鱼”仍逍遥法外,要将其“捉拿归案”。

2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方法的选择。

3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部分或漏掉的部分。

【课外作业】

【基础训练】

1:已知两点)4

5,4(),45,1(--N M 给出下列曲线方程:①0124=-+y x ;②32

2=+y x ;

③122

2=+y x ;④12

22=-y x ,在曲线上存在点P 满足||||NP MP =的所有曲线方程是( )

A ①③

B ②④

C ①②③

D ②③④

【答案】:D

【解答】: 要使得曲线上存在点P 满足||||NP MP =,即要使得曲线与MN 的中垂线

32--=x y 有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,则选D

2.两条直线01=--my x 与01=-+y mx 的交点的轨迹方程是 . 【解答】:直接消去参数m 即得(交轨法):02

2

=--+y x y x

3:已知圆的方程为(x-1)2+y 2=1,过原点O 作圆的弦0A ,则弦的中点M 的轨迹方程是 .

【解答】:令M 点的坐标为(),y x ,则A 的坐标为(2)2,y x ,代入圆的方程里面得:)0(4

1

)21(22≠=

+-x y x 4:当参数m 随意变化时,则抛物线()y x m x m =+++-2

2

211的顶点的轨迹方程为___________。

【分析】:把所求轨迹上的动点坐标x ,y 分别用已有的参数m 来表示,然后消去参数m ,便可得到动点的轨迹方程。

【解答】:抛物线方程可化为x m y m ++?? ???=++?

? ??

?12542

它的顶点坐标为x m y m =--

=--1254

, 消去参数m 得:y x =-

34

故所求动点的轨迹方程为4430x y --=。

5:点M 到点F (4,0)的距离比它到直线x +=50的距离小1,则点M 的轨迹方程为____________。

【分析】:点M 到点F (4,0)的距离比它到直线x +=50的距离小1,意味着点M 到点F (4,0)的距离与它到直线x +=40的距离相等。由抛物线标准方程可写出点M 的轨迹方程。

【解答】:依题意,点M 到点F (4,0)的距离与它到直线x =-4的距离相等。则点M 的轨迹是以F (4,0)为焦点、x =-4为准线的抛物线。故所求轨迹方程为y x 2

16=。

6:求与两定点()()

O O A 1030,、,距离的比为1:2的点的轨迹方程为_________

【分析】:设动点为P ,由题意PO PA

=

1

2

,则依照点P 在运动中所遵循的条件,可列出等量关系式。

【解答】:设()

P x y ,是所求轨迹上一点,依题意得

PO PA

=

1

2

由两点间距离公式得:

()x y x y 22

22

312

+-+=

化简得:x y x 22

230++-=

7抛物线x y 42

=的通径(过焦点且垂直于对称轴的弦)与抛物线交于A 、B 两点,动点C 在抛物线上,求△ABC 重心P 的轨迹方程。

【分析】:抛物线x y 42

=的焦点为()01,F 。设△ABC 重心P 的坐标为()x y ,,点C

的坐标为()x y 11,。其中11≠x

【解答】:因点()

P x y ,是重心,则由分点坐标公式得:3

3211y

y x x =+=

, 即y y x x 32311=-=,

由点()

C x y 11,在抛物线x y 42

=上,得:1214x y =

将y y x x 32311=-=,代入并化简,得:??

?

??-=

32342

x y ()1≠x 【能力训练】

8.已知双曲线中心在原点且一个焦点为F (,0),直线y=x -1与其相交于M 、N 两点,

MN 中点的横坐标为

,求此双曲线方程。

【解答】:设双曲线方程为122

22=-b

y a x 。将y=x -1代入方程整理得

由韦达定理得32

2,22

222122221-=-=+-=+b a a x x b a a x x 。又有

,联立方程组,

解得5,22

2==b a 。

∴此双曲线的方程为。

9.已知动点P 到定点F (1,0)和直线x=3的距离之和等于4,求点P 的轨迹方程。

【解答】:设点P 的坐标为(x ,y ),则由题意可得。

(1)当x ≤3时,方程变为1)1(,43)1(2

222+=+-=-++-x y x x y x ,化简得

)30(42≤≤=x x y 。

(2)当x>3时,方程变为x y x x y x -=+-=-++-7)1(,43)1(2

222,化简得

故所求的点P 的轨迹方程是或

10.过原点作直线l 和抛物线642+-=x x y 交于A 、B 两点,求线段AB 的中点M 的轨迹方程。

【解答】:由题意分析知直线l 的斜率一定存在,设直线l 的方程y=kx 。把它代

入抛物线方程,得。因为直线和抛物线相交,所以△>0,解得),624()624,(+∞+-?---∞∈x 。 设A (

),B (

),M (x ,y ),由韦达定理得

由消去k 得。

,所以),6()6,(+∞?--∞∈x 。

∴点M 的轨迹方程为),6()6,(,422+∞?--∞∈-=x x x y 。

【创新应用】

11.一个圆形纸片,圆心为O ,F 为圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F

重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于P ,则P 的轨迹是( ) A:椭圆 B:双曲线 C:抛物线 D:圆 【答案】:A 【解答】:由对称性可知||PF|=|PM|,则|PF|+|PO|=|PM|+|PO|=R (R 为圆的半径),则P 的轨迹是椭圆,选A 。

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

研究生数理方程期末试题-10-11-1-A-答案

北京交通大学硕士研究生2010-2011学年第一学期 《数学物理方程》期末试题(A 卷) (参考答案) 学院__________ 专业___________ 学号 __________ 姓名____________ 1、( 10分)试证明:圆锥形枢轴的纵振动方程为: 玫[I h .丿&」V h .丿& 其中E是圆锥体的杨氏模量,「是质量密度,h是圆锥的高(如下图所示) 【提示:已知振动过程中,在x处受力大小为ES ,S为x处截面面积。】 ex 【证明】在圆锥体中任取一小段,截面园的半径分别是r1和r2,如图所示。于是,我们有 2、::u(x dx,t) 2 u(x,t) — 2 u2(x,t) E( D) E( * ) ( A )dx 于 x x t r1 = (h「x)tan : r2= (h _(x dx)) tan : 上式化简后可写成

2 2 ::U(X,t) 2 ::u(x,t) 2, ;u (x,t) E[(h -x) 卜亠 & -(h -'X) 〔x J - - (h -'X)dx 2 从而有 E ::[(^x)2;:U(x ,t)H-(^x)2::u2(x,t) .x :X :t 或成 2 ::[(1「)2汽("]“2(1「)小叩) .x h ::x h ;:t 其中a^E ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片, 它的一边y=b 处于较高温度U ,其它三边y=0. x = 0和x = a 则处于冷却介质中,因而保持较低的温度 u o 。试求该截面上的稳定温度 分布u(x,y),即求解以下定解问题: u|y 卫二 %, u|y 生二 U, 0 x a. 【提示:可以令u(x, y)二u 0 v(x, y),然后再用分离变量方法求解。】 【解】令u(x, y) v(x, y),则原定解问题变为 Wl x£=0, V=0, 0cy

求动点的轨迹方程方法例题习题答案

求动点的轨迹方程(例题,习题与答案) 在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难 点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中 没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形 状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与 交轨法等;求曲线的方程常用“待定系数法”。 求动点轨迹的常用方法 动点P 的轨迹方程是指点P 的坐标(x, y )满足的关系式。 1. 直接法 (1)依题意,列出动点满足的几何等量关系; (2)将几何等量关系转化为点的坐标满足的代数方程。 例题 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN 切圆C 于N 。 依题意:MN MQ =,即22MN MQ = 而222NO MO MN -=,所以 (x-2)2+y 2=x 2+y 2-1 化简得:x=45 。动点M 的轨迹是一条直线。 2. 定义法 分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点 的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。依题意求出曲线的相关参数,进一步写出 轨迹方程。 例题:动圆M 过定点P (-4,0),且与圆C :082 2=-+x y x 相切,求动圆圆心M 的轨迹 方程。 解:设M(x,y),动圆M的半径为r 。 若圆M 与圆C 相外切,则有 ∣M C ∣=r +4 若圆M 与圆C 相内切,则有 ∣M C ∣=r-4 而∣M P ∣=r, 所以 ∣M C ∣-∣M P ∣=±4 动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。其中a=2, c=4。 动点的轨迹方程为: 3. 相关点法 若动点P(x ,y)随已知曲线上的点Q(x 0,y 0)的变动而变动,且x 0、y 0可用x 、y 表示,则 将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程。这种方法称为相关点法。

直线与直线方程经典例题

必修2 第二章 解析几何初步 第一节:直线与直线方程(王建明) 一、直线的倾斜角和斜率 (1)倾斜角定义:平面直角坐标系中,对于一条与x 轴相交的直线l , 把__x 轴(正方向)_按__逆时针__方向绕着交点旋转到和直线l 重合所成的角, 叫作直线l 的倾斜角。(0°≤α<180°) (2)斜率k=tan α=1 212x x y y -- (0°≤α<180°),当α=90时,k 不存在。(两种求法,注意21x x =的情况)(3)函数y=tanx 在)90,0[0增加的,在)180,90(00也是增加的。 例1:过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为 。 例2:过两点A (m 2+2,m 2-3),B (3-m-m 2,2m )的直线l 的倾斜角为45°求m 的值。 例3:已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k 的取值范围。 例4:已知a >0,若平面内三点A (1,—a ),B (2,a 2),C(3,a 3)共线,则a 值为 。 练习: 1经过点P (2,m )和Q (2m ,5)的直线的斜率等于12 ,则m 的值是( B ) A .4 B .3 C .1或3 D .1或4 变:的取值范围的斜率的直线求经过点 )1,cos (),sin ,2( k l B A θθ-- 2. 已知直线l 过P(-1,2),且与以A(-2,-3)、B(3,0)为端点的线段相交,求直线l 的斜率的取值范围. 点评:要用运动的观点,研究斜率与倾斜角之间的关系!答案: ? ?? ??-∞,-12∪[5,+∞) 3.已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1),若D 为△ABC 的边AB 上一动点,求直线CD 斜率k 的变化范围. 答案:? ???-∞,-12∪[5,+∞) 二、两直线的平行与垂直 1.平行的判定: 2. 垂直的判定: 例(1)l 1 经过点M (-1,0), N (-5,-2),l 2经过点R (-4,3),S (0,5),l 1与l 2是否平行? (2)l 1 经过点A (m ,1), B (-3,4), )l 2 经过点C (1,m ), D (-1, m+1),确定m 的值,使l 1//l 2。 练习: 例(1) l 1的倾斜角为45,l 2经过点P (-2,-1),Q (3,-6). 例(2)已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,求点P 的坐标。 练习: 1.求a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直? 答案:a=-1 2.求过点P (1,-1),且与直线l 2:2x +3y +1=0垂直的直线方程. 答案:3x -2y -5=0. 三、直线的方程 1、点斜式: y-y 0=k (x -x 0) (斜率存在,可为0) 1、 斜截式: y=kx +b (b 是与y 轴的交点) (斜率存在,可为0)

数理方程期末考试试题

2013-2014学年度第二学期数理方程(B )期末考试试题 考后回忆版本 一、求下列偏微分方程的通解),(y x u u =(16分) (1)y x y x u 22=???(2)xy x u y x u y =??+???2二、求下列固有之问题的解。要求明确指出固有值及其所对应的固有函数(10分) ?????=′+∞<<<=+′+′′.0)2(,)0()20(,022y y x y x y x y x λ三、求第一象限}0,0|),{(2 >>∈=y x R y x D 的第一边值问题的Green 函数。(12分) 四、用积分变换法求解下列方程。(12分)???=>+∞<<<=).21(),0(,)(),0(. 1)1,(,0)0,()0,10(,4x x u x x x u t u t u t x u u t xx tt δ?七、用分离变量法求解下列方程。(15分) ?????=<++=++=++0|)1(,1 222222z y x zz yy xx u z y x z u u u 八、求解下列定解问题。(5分) ?????==>+∞<

轨迹方程的求法及典型例题(含答案)

" 轨迹方程的求法 一、知识复习 轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法 注意:求轨迹方程时注意去杂点,找漏点. 一、知识复习 例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。 { ]

例2、如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠ APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. $ 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) ) 又|AR |=|PR |= 2 2)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,2 41+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. |

例3、如图, 直线L 1和L 2相交于点M, L 1 L 2, 点N L 1. 以A, B 为端点的曲线段C 上的 任一点到L 2的距离与到点N 的距离相等. 若 AMN 为锐角三角形, |AM|= 17 , |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程. 、 解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点。 依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点。 @ 设曲线段C 的方程为)0,(),0(22 >≤≤>=y x x x p px y B A , 其中x A,x B 分别为A ,B 的横坐标,P=|MN|。 ) 2(92)2() 1(172)2(3||,17||)0,2 (),0,2(22=+-=++==- A A A A px p x px p x AN AM p N p M 得 由所以 由①,②两式联立解得 p x A 4= 。再将其代入①式并由p>0解得??????====2214A A x p x p 或 因为△AMN 是锐角三角形,所以A x p >2,故舍去???==2 2A x p ∴p=4,x A =1

高三数学轨迹方程50题及答案精选

高三数学轨迹方程50题及答案 求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法. (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程. (2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求. (3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程. (5)交轨法 若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程. (6)待定系数法 求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念. 一、选择题: 1、方程y=122+--x x 表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线 2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线 3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( ) A 、x 2+y 2=1 B 、x 2+y 2=1(x ≠±1) C 、x 2+y 2=1(x ≠1) D 、y=21x - 4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( ) A 、x 2+y 2=2(x+y) B 、x 2+y 2=2|x+y| C 、x 2+y 2=2(|x|+|y|) D 、x 2+y 2=2(x -y) 5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆 C 、中点在原点的双曲线 D 、中心在(5,0)的双曲线

研究生数理方程期末试题10111A答案

《数学物理方程》期末试题(A 卷) (参考答案) 学院 专业 学号 姓名 1、 (10分)试证明:圆锥形枢轴的纵振动方程为: 其中E 是圆锥体的杨氏模量,ρ是质量密度,h 是圆锥的高(如下图所示): 【提示:已知振动过程中,在x 处受力大小为u ES x ??,S 为x 处截面面积。】 【证明】在圆锥体中任取一小段,截面园的半径分别是1r 和2r ,如图所示。于是,我们有 上式化简后可写成 从而有 或成 其中2 E a ρ = ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片,它的一边y b =处于较高温度U ,其它三边0y =, 0x =和x a =则处于冷却介质中,因而保持较低的温度0u 。试求该截面上的稳定温度 分布(,)u x y ,即求解以下定解问题: 【提示:可以令0(,)(,)u x y u v x y =+,然后再用分离变量方法求解。】 【解】令0(,)(,)u x y u v x y =+,则原定解问题变为 分离变量:

代入方程得到关于X 和Y 的常微分方程以及关于X 的定解条件: 可以判定,特征值 特征函数 利用特征值n λ可以求得 于是求得特征解 形式解为 由边界条件,有 得到 解得 最后得到原定解问题的解是 3、 (20分)试用行波法求解下列二维半无界问题 【解】方程两端对x 求积分,得 也即 对y 求积分,得 也即 由初始条件得 也即 再取0x =,于是又有 从而得 于是 将这里的()g x 和()h y 代入(,)u x y 的表达式中,即得 4、 (20分)用积分变换法及性质,求解无界弦的自由振动问题: 【提示:可利用逆Fourier 积分变换公式:11 ,||sin []20, ||x at a t F a a x at ωω-?

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

直线与方程知识点及典型例题.docx

第三章直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ① 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即 k=tan 。斜率反映直线与轴的倾斜程度。 当直线 l 与 x 轴平行或重合时 ,α=0°,k = tan0 =0;° 当直线 l 与 x 轴垂直时 ,α= 90k°不,存在 . 当0,90时, k0 ;当90 ,180时, k0;当90 时,k不存在。 例 .如右图,直线l 1的倾斜角 =30°,直线 l1⊥ l 2,求直线 l1和 l2的斜率 . y 解: k1=tan30° =3∵ l1⊥ l2∴ k1· k2 =— 1l 1 3 ∴ k2 =—32x 1 例:直线 x 3 y50 的倾斜角是()o l2 °°°° ②过两点 P1 (x1, y1)、P1(x1,y1) 的直线的斜率公式: k y2y 1 ( x1x 2 ) x2x1 注意下面四点: (1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与 P1、 P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 例 .设直线l1经过点A(m,1)、B(—3,4),直线l2经过点C(1,m)、D(—1,m+1), 当 (1) l / / l 2(2) l⊥l时分别求出 m 的值 111 ※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。 3. 直线方程 ① 点斜式:y y1k( x x1 )直线斜率k,且过点x1, y1 注意:当直线的斜率为0°时, k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

直线与圆的方程典型例题(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 2224)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a . ∴ 所 求 圆 方 程 为 2 224)4()1022(=-+--y x ,或 2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2 2 2 7)14()2(=--+-a ,或2 2 2 1)14()2(=--+-a (无解),故 622±=a . ∴ 所 求 圆 的 方 程 为 2 224)4()622(=++--y x ,或 2224)4()622(=+++-y x . 说明:对本题,易发生以下误解: 由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如 2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其 圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2 2 2 7)14()2(=-+-a ,解

求轨迹方程例题方法解析

求轨迹方程的常用方法 知识梳理: (一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。 6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。 )()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ?? ?=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 热身: 1. P 是椭圆5 92 2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为: ( ) A 、159422=+y x B 、154922=+y x C 、12092 2=+y x D 、5 3622y x +=1 【答案】:B

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆: 1、 长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程; 2、 线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 3如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 4在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. 5(2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明 直线l 过定点。 二、椭圆类型: 3、 定义法:点M(x ,y )与定点F(2,0)的距离和它到定直线8=x 的距离之比为2 1 ,求点M 的轨迹方程.

高一数学直线方程知识点归纳及典型例题

直线的一般式方程及综合 【学习目标】 1.掌握直线的一般式方程; 2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处; 3.能利用直线的一般式方程解决有关问题. 【要点梳理】 要点一:直线方程的一般式 关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式. 要点诠释: 1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线. 当B≠0时,方程可变形为 A C y x B B =--,它表示过点0, C B ?? - ? ?? ,斜率为 A B -的直线. 当B=0,A≠0时,方程可变形为Ax+C=0,即 C x A =-,它表示一条与x轴垂直的直线. 由上可知,关于x、y的二元一次方程,它都表示一条直线. 2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0, 也可以是 11 22 x y -+=,还可以是4x―2y+2=0等.) 要点二:直线方程的不同形式间的关系 直线方程的五种形式的比较如下表: 要点诠释: 在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x1≠x2,y1≠y2),应用时若采用(y2―y1)(x―x1)―(x2―x1)(y―y1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同. 要点三:直线方程的综合应用 1.已知所求曲线是直线时,用待定系数法求. 2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程. 对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.

轨迹方程的求法及典型例题

轨迹方程的求法 一、知识复习 轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法 注意:求轨迹方程时注意去杂点,找漏点. 一、知识复习 例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。

例2、如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |= 2 2)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,2 41+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.

例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若?AMN 为锐角三角形, |AM|= 17 , |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程. 解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点。 依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点。 设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A , 其中x A,x B 分别为A ,B 的横坐标,P=|MN|。 ) 2(92)2() 1(172)2(3||,17||)0,2 (),0,2(22=+-=++==- A A A A px p x px p x AN AM p N p M 得 由所以 由①,②两式联立解得 p x A 4= 。再将其代入①式并由p>0解得??????====2214A A x p x p 或

相关主题