搜档网
当前位置:搜档网 › 煤矿锚杆支护技术参数

煤矿锚杆支护技术参数

煤矿锚杆支护技术参数
煤矿锚杆支护技术参数

煤层集中皮带机道锚杆锚索支护

参数设计及计算方法

煤层平均厚度3.5m,煤层结构简单,夹石层数1~2层,夹石岩性为炭质泥岩、泥岩、粉砂岩,厚度一般为0.20~0.40m,煤层顶板岩性为砂砾岩、粉砂岩、细砂岩及泥岩;煤层底板岩性有炭质泥岩、粉砂岩、砂砾岩。

煤层集中皮带巷断面设计为矩形,巷道宽度 4.0m,高度3.2m,采用锚网梁索联合支护方式支护顶板,锚网支护方式支护巷帮。

一、巷道锚杆支护参数设计

(一)顶板锚杆支护参数确定

1 、锚杆支护参数确定采用悬吊作用理论进行。

1 )锚杆长度的确定

L=L1+L2+L3

式中L—锚杆长度,m

L1——锚杆外露长度, m

L2——锚杆有效长度,

m

L3——锚杆锚固长度,

m

(1)锚杆外露长度L i的确定

L i =垫板厚度+ 螺母厚度+ (0.02?0.03 ) m 一般L i=0.05m

(2)锚杆有效长度L2的确定

巷道顶锚杆有效长度L2的确定:采用解释法中普式自然平衡拱理论确定1-20

f > 3时,L=1.8B/f

式中f——普氏系数,取4.5 ;

B巷道跨度,取4m

L2= 1.8B/f =1.6m ,取1.65m

(3)锚杆锚固长度L的确定

L3 = 0.3~0.4m,取0.3m。

因此,L=L i+L2+L3 = 0.05+1.6+0.3=1.95m,结合矿井实际,取

L=2.0m。

2) 锚杆间排距的确定

对锚杆支护巷道,考虑施工工艺通常取间排距相等,锚杆间排距

D按下式计算:

D< 0.5 L=0.5*2= 1m

3) 锚杆直径的确定

锚杆直径c[可按下式计算:

d=L/110=2000/110=18.2mm,锚杆直径取20mm> 18.2mm

4) 锚杆锚固力计算

锚杆锚固力可按下式计算:

Q 二KL2D2r

式中Q—锚杆锚固力,t ;

K锚杆安全系数,取2~3;

L2—锚杆有效长度,m

r ----- 视密度,t/m3。

2

Q 二KL2D r=3*1.60*1*1.45=69.6KN,采用直径20m啲等强螺纹钢

锚杆通过树脂药卷锚固后,锚固力约70KN>Q=69.6 KN,符合要求。

锚杆锚固采用树脂药卷。当顶部煤体较好时,锚杆锚固方式可端

部锚固;当顶板煤体松软破碎时,采用全长锚固。

(一)煤帮锚杆支护参数确定

1)煤帮锚杆长度

煤帮锚杆的作用主要是控制因剪切而造成的两帮煤体松动与挤

出,煤帮锚杆必须穿过潜在的剪切松塌,其长度必须满足下式要求:L》L o + L3 + C= 1.9m 式中:L—煤帮锚杆长度m

L o ---------- 煤帮锚杆外露长度0.1m;

L3 --------- 煤帮锚杆在潜在松塌区之外的锚固长度0.3m;

C――巷道两帮松塌破坏深度系数1.5m。根据实际选取长度为

2.0m的煤帮锚杆。

2)煤帮锚杆间排距

煤帮锚杆的间排距与顶板锚杆的排距相同,为 1.0m。

3)两帮侧压值Qs计算公式

a V

Q s= K u C 2 [h sin:+ b cos tg (45 )]=100KN /m 式中:b——顶板潜在的冒落拱高度4m

K u――采动影响系数2;

C――巷道两帮松塌破坏深度系数1.5m;

2——煤体容重14.5KN/M3;

h――巷道掘进高度3m

: --- 煤层倾角°;

:——煤体内摩擦角34 °。

4煤层集中皮带巷掘进时基本不受米动影响,米动影响系数K u 取1,

则每个煤帮测压值为:100/4=25KN/m,要求帮锚杆的锚固力不小于25 KN,根据现场实际,现设计使用的直径18mm的金属锚杆锚固力不小于

30KN>25 KN,能够满足安全使用要求。

二、锚索支护参数的确定

锚索由索体、锚具和托板等组成,索体一般用具有可弯曲、柔性的钢绞线制成。锚索的特点是锚固深度大、承载能力高、可施加较大

的预紧力,因而可获得比较理想的支护效果。其加固范围、支护强度、可靠性是普通锚杆支护所无法比拟的。

表1锚索索体的力学性能

(1)锚索长度的确定

X二X + X 2 + X 3

=0.3+4+1.5=5.4m

根据现场实际,顶板为全岩层,稳定性较好,且层间距平均仅

5.8m,取5m

式中X i――锚索外露长度,取0.3m;

X――锚索锚固长度,取1.5m;

关——潜在不稳定岩层高度,

兀= B=4m B为巷道跨度,m

(2)锚索排距

s=3(T /4 B2Y k

=3X 260/ (4X 42x 12.0 x 0.5 ) =2.0m

式中(T ――每根锚索最低破断载荷,260 kN;

y ——煤岩体积力,12.0kN/m3;

B—巷道宽度,4m

k——安全系数,取0.5 ;

由于巷道宽度为4m因此,布置2排锚索,即锚索排数为2排,排距2m布置在靠巷道中间位置。

( 3)锚索间距

m=0.85B/n=(0.85x4) /2=1.7m

取 1.5m。

式中n——排数;

B --- 巷道宽度,4m。

故锚索采用长度5m直径17.8mm勺钢绞线预应力锚索,锚索排拒2m 间距 1.5m。

基于以上测算和分析,我矿掘进巷道顶板支护锚杆选用长 2.0m,? 20mnr的勺左旋无纵筋等强锚杆,巷道两帮支护锚杆选用长1.8m, ? 18mn 勺勺普通螺纹钢锚杆。

锚索选用直径为? 17.8mm勺钢绞线,以锚入顶板稳定岩层 1.5m

为宜。

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

煤矿巷道锚杆支护技术规范

煤矿巷道锚杆支护技术规范 1 范围 本标准规定了煤矿巷道锚杆支护技术的术语和定义、技术要求、锚杆支护施工质量检测及锚杆支护监测。 本标准适用于煤矿岩巷、煤巷及半煤岩巷的锚杆支护。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 175-2007 硅酸盐水泥、普通硅酸盐水泥 GB/T 228.1-2010 金属材料拉伸试验第1部分:室温试验方法 GB/T 23561.1-2009 煤和岩石物理力学性质测定方法第1部分:采样一般规定 GB 50086 岩土锚固与喷射混凝土支护工程技术规范 GB/T 50266-2013 工程岩体试验方法标准 MT 146.1-2011 树脂锚杆第1部分:锚固剂 MT 146.2-2011 树脂锚杆第2部分:金属杆体及其附件 MT 285 缝管锚杆 MT/T 861 W型钢带 MT/T 1061-2008 树脂锚杆玻璃纤维增强塑料杆体及其附件 3 术语和定义 GB/T 228.1-2010、MT 146.1-2011、MT 285界定的以及下列术语和定义适用于本文件。 3.1 巷道 roadway 为煤矿提升、运输、通风、排水、行人、动力供应等而掘进的通道。 3.2 煤巷 coal roadway 断面中煤层面积占4/5或4/5以上的巷道。 3.3 岩巷 rock roadway 断面中岩石面积占4/5或4/5以上的巷道。 3.4

半煤岩巷 coal-rock roadway 断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。 3.5 锚杆 rock bolt 安装在围岩中,对围岩实施锚固的杆件系统。一般由杆体、托盘、螺母、垫圈、锚固剂或锚固构件组成。 3.6 预应力锚杆 pretensioned rock bolt 在安装过程中施加一定预拉力的锚杆。 3.7 无预应力锚杆 non-pretensioned rock bolt 在安装过程中不施加预拉力的锚杆。 3.8 树脂锚杆 resin anchored bolt 采用树脂锚固剂锚固的锚杆。 注:改写MT 146.1-2011,定义3.1。 3.9 注浆锚杆 grouting bolt 杆体为中空式,兼做注浆管,对围岩进行注浆加固的锚杆。 3.10 钻锚注锚杆 self-drilling bolt 杆体为中空式,自带钻头,集钻孔、锚固、注浆于一体的锚杆。 3.11 玻璃纤维增强塑料锚杆 glass fibre reinforced plastic bolt 杆体主体部分由玻璃纤维和树脂复合而成的锚杆。 3.12 缝管锚杆 s plit set bolt 经特殊加工成纵向开缝的钢管及其附件。 [MT 285—1992,术语 3.1] 3.13 锚索 cable bolt 安装在围岩中,对围岩实施锚固的索体系统。一般由钢绞线、托盘、锚具及锚固剂组成。 3.14 锚杆支护 rock bolting

煤巷锚杆支护技术要求规范

煤巷锚杆支护技术规范 1 范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。 本标准适用于煤矿煤巷锚杆支护,也适用于半煤岩巷锚杆支护。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T5224-2003 预应力混凝土用钢绞线 GB/T14370-2000 预应力筋用锚具、夹具和连接器 GB50086-2001 锚杆喷射混凝土支护技术规范 MT146.1-2002 树脂锚杆锚固剂 MT146.2-2002 树脂锚杆金属杆体及其附件 MT/T942-2005 矿用锚索 MT5009-1994 煤矿井巷工程质量检验评定标准 3术语和定义 下列术语和定义适用于本标准。 3.1 煤巷coal roadway 断面中煤层面积占4/5或4/5以上的巷道。 3.2 半煤岩巷half-coal and half-rock roadway 断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。

锚杆支护bolt supporting 以锚杆为基本支护形式的支护方式。 3.4 锚杆杆体破断力breaking force of bolt bar 锚杆杆体能承受的极限拉力。 3.5 锚杆拉拔力pulling force of bolt 锚杆锚固后,拉拔试验时,锚杆破断或失效时的极限拉力。 3.6 锚固力anchor capacity 锚杆的锚固部分或杆体在拉拔试验时,所能承受的极限载荷。 〔MT146.1-2002,定义3.8〕 3.7 设计锚固力 design anchor capacity 设计时给定的锚杆应能承受的锚固力。 3.8 树脂锚杆resin anchor bolt 〔MT146.1-2002,定义3.1〕 3.9 树脂锚固剂capsule resin 起粘结锚固作用的材料称锚固剂,树脂锚固剂由树脂胶泥与固化剂两部份分隔包装成卷形。混合后能使杆体与被锚固体煤岩粘接在一起。 〔MT146.1-2002,定义3.2〕

煤矿锚杆支护

煤矿锚杆支护设计GJSS - - 批准: 审定: 审核: 编制:

****年11月18日

目录 一、工程概况 二、场地地质条件 三、锚杆支护方案 四、锚杆施工工艺 五、锚杆基本试验与验收试验 六、主要施工机械设备 七、施工人员安排 八、安全施工措施

九、质量保证措施及检验 十、施工进度计划

锚杆支护设计与施工方案 一、工程概况 由地产开发有限公司投资兴建****的位于东风路和法政路交汇处附近,基坑周长约340m,开挖深度至-15.9m。基坑采用地下连续墙加锚杆支护方案,由****市城市规划勘测设计研究院设计。设计连续墙厚800,预应力锚杆三排,分别布置在-4.5m、-9.2m和-11.9m处,锚杆穿越的土层有淤泥、粘土层、强风化层及中风化层,锚杆预应力400KN。 二、场地地质条件 根据****市城市规划勘测设计研究院提供的工程地质报告,场地地层自上而下依次为:人工填土层、冲积层、残积层及白垩系页岩。

1、人工填土层(Q ml):场地均布,杂色,含砖瓦碎石等杂物,层厚1.50~ 3.80m。 2、冲积层(Q al):按岩性不同可分为淤泥及中砂。 (1)淤泥:场地大部分布(除钻孔鉴7、鉴9、技11和鉴12外),灰黑色,软塑~流塑,含少量粉细砂,间夹贝壳及腐木,层厚0.50~ 3.90m。 (2)中砂:仅见于钻孔鉴5、技6、技13及技16,灰黑色,松散,饱和,颗粒较均匀。层厚0.6~1.7m。 3、残积层(Q el): (1)粉质粘土:局部分布,灰黄色,可塑至硬塑,含粉细砂层,为原岩风化产物。 (2)粘土:局部分布,红黄、灰白、灰黄、褐色,硬塑,含少量粉细砂,为原岩风化产物。

锚杆支护技术规范(正式版本)

锚杆支护技术规范(正式) 第一章总则 1 为贯彻安全第一的生产方针,严格执行《煤矿安全规程》和煤炭工业技术政策, 确保正确地进行锚杆支护设计和施工质量,促进煤巷锚杆支护技术的健康发 展,特制定本规范。 2 锚杆支护巷道施工必须进行设计。锚杆支护设计要注重现场调查研究,吸取国内 外锚杆支护设计、施工和监测方面的先进经验,积极采用新技术、新工艺、 新材料,做到技术先进、经济合理、安全可靠。 新采区采用锚杆支护时,要进行基础数据收集并进行锚杆支护试验工作,锚 杆支护设计要组织有关单位会审,并报集团公司备案。 3 对在煤巷应用锚杆支护的有关人员(管理人员、工程技术人员及操作人员),都必 须进行技术培训。 4 在应用锚杆支护的巷道中,必须有矿压及安全监测设计。在施工中必须按设计设置 矿压及安全监测装置,并有专人负责监测。 第二章巷道围岩的稳定性分类 5 采用煤巷锚杆支护技术,必须对巷道围岩稳定性进行分类,为指导锚杆支护设计、 施工与管理提供依据。 6 巷道分类按原煤炭部颁发的《缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》执 行。 7 煤层围岩分类指标以缓倾斜、倾斜薄煤层及中厚煤层回采巷道分类指标为基本分

类指标。其它条件下的煤巷(如煤层上山)稳定性分类指标,可根据具体情况对分类指标进行相应替代,详见表1和表2。 缓倾斜、倾斜薄及中厚煤层回采巷道分类指标 表1 煤层上、下山分类指标 表2

第三章锚杆支护设计 8 锚杆支护设计应贯彻地质力学评估—初始设计—监测与信息反馈—修改设计等四 个步骤。 锚杆支护设计参考以地应力为基础的煤巷锚杆支护设计方法,结合锚杆支 护实践,可根据直接顶稳定情况,按悬吊理论、自然平衡拱理论、组合梁理 论或锚杆楔固理论进行设计计算;亦可采用工程类比法进行设计。无论采用 哪种设计方法,都必须对支护状况进行监测,包括锚杆受力、巷道围岩表面 与深部位移及弱化范围、顶板离层等内容。根据监测信息反馈结果对设计进 行验证或修改。 第9条为进行科学的锚杆支护设计,必须具备表3所要求的原始资料。巷道施工后,根据实际揭露的围岩及地质构造等情况,对有关数据进行校核,为修改和完 善锚杆支护设计提供依据。

煤巷锚杆支护技术规范

煤巷锚杆支护技术规范 ——现场施工、支护施工、质量监测 一、锚杆、锚索支护施工 一)、一般规定煤巷锚杆支护施工应按掘进工作面作业规程的有关规定进行。 掘进作业规程应规定锚杆支护的内容 1、锚杆的材质、规格、间排距、安装(包括药卷的种类、数量及使用要求)、锚固力等要求; 2、锚杆的孔位、孔深和孔径应与锚杆类型、长度、直径相匹配等要求; 3、锚网的铺设与其他锚固装置连接牢固等要求; 4、支护用的作业机具型号和有关技术要求(包括喷浆机具、锚杆钻眼机具、树脂药卷搅拌机具、张拉机具等); 5、支护工艺(包括临时支护和永久支护工序安排说明); 6、支护质量监测技术要求(锚杆扭矩、锚杆和锚索的抗拔力检查、顶板离层监测、保护层强度检测等试验器具及各类破坏性检查的控制要求)。 二)、临时支护锚杆支护巷道掘进工作面应采用临时支护,不应空顶作业,其临时支护形式、规格、要求等应在作业规程、措施中明确规定。煤巷掘进过程中的临时支护,是保证安全生产,提高掘进效率的一个重要因素。临时支护方法要求其操作简单方便,安全性能可靠,才能在生产过程中才能被有效地使用。目前在生产现场经常使用的临时支护通常有以下几种: 1、点柱式安全点柱点柱式安全点柱分为木点柱式和可伸缩式。木点柱取材简单,直接选用圆木作为点柱,成本较低。但是移动不方便,不能随着巷高变化而变化。影响锚杆支护作业,使得作业的空间减小,不方便锚网支护施工。所以木点柱是锚杆支护工艺淘汰的临时支护方式。可伸缩式的安全点柱有以下几种形式:金属摩擦支柱、内注式单体支柱、千斤顶式点柱。此类支护方式优于木点柱,能在一定程度上适应巷高变化。但是必须在将巷道工作面煤矸排出后才能使用,此类 临时支护也不能较好地满足快速施工的需要。 2、吊环前探梁支护吊环前探梁支护,是利用吊环安装在锚杆外露丝扣部位,前探梁贯穿在吊环中移动,从而使锚网施工操作人员在前探梁掩护下作业,操作空间宽阔。吊环前探梁支护克服了支柱笨重移动不方便的缺点,能适应巷道高度变化,同时也使锚网施工操作空间达到最大化。但存在以下不足:前探梁不能接顶,不能对顶板起直接支撑作用,仅能对跨落矸石起缓冲作用,对前探梁下工作人员不能起到本质的保护作用;上下山施工中,前探梁下蹿易造成伤人事故,故在上下山施工中也不能很好的应用。 3、掘进机机载式临时支护利用综掘机的泵站供高压液压油,经溢流阀到操作阀,再经分流集流阀分流,控制截割臂上架体的折叠、伸缩等油缸,托住暴露的顶板,起到临时支护的作用。该临时支护存在以下问题:局部影响综掘机司机的视线;支护面积较小,不能覆盖一个循环进尺范围内顶板;使用临时支护时,截割头离迎头距离太近,造成了迎头操作空间狭窄。 三)、顶板支护锚杆支护巷道落煤(岩)后,应及时进行顶板支护。若两帮煤体稳定,帮锚杆施工可适当滞后,滞后距离和最大空帮时间应在作业规程、措施中明确规定。爆破或综掘机落煤后,快速将掘进工作面煤矸耙运到后方,使其达到方便锚杆安装的适当高度,创造出煤与锚索施工安装平行作业的条件,提高劳动效率。规范对煤巷锚杆支护要求及时支护,说明了煤巷锚杆及时支护的重要性。及时支护是锚杆支护工艺技术的关键环节,通常讲的是露头就锚。及时支护体现以下要求: 1、安全性。在循环进度范围内暴露的顶板都必须先支护好,方可再进行下一道工序的施工,以保护作业区内的人身安全; 2、保障质量。

煤矿锚杆支护技术规范标准设计

煤矿锚杆支护技术规范(新) ICS 73.100.10 D 97 备案号:26921—2010 MT 2009-12-11发布 2010-07-01实施 中华人民共和国煤炭行业标准 MT/T 1104—2009 煤巷锚杆支护技术规范 Technical specifications for bolt supporting in coal roadway 国家安全生产监督管理总局发布 前言 本标准的附录A为资料性附录。 本标准由中国煤炭工业协会科技发展部提出。 本标准由煤炭行业煤矿专用设备标准化技术委员会归口。 本标准由中国煤炭工业协会煤矿支护专业委员会负责起草。煤炭科学研究总院南京研究所、煤炭科学研究总院开采设计研究分院、煤炭科学研究总院建井研究分院、中国矿业大学、兖州矿业集团公司、徐州矿务集团公司、鹤岗矿业集团公司、新汶矿业集团公司、山西焦煤西山煤电集团公司、江阴市矿山器材厂、石家庄中煤装备制造有限公司、深圳海川工程科技有限公司参加起草。 本标准主要起草人:袁和生、康红普、陈桂娥、权景伟、张农、王方荣、王富奇、何清江、周明、秦斌青、晨春翔、黄汉财、赵盘胜、何唯平。 煤巷锚杆支护技术规范 1 范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。 本标准适用于煤矿煤巷锚杆支护,也适用于半煤岩巷锚杆支护。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 5224-2003 预应力混凝土用钢绞线 GB/T 14370-2000 预应力筋用锚具、夹具和连接器 GB 50086-2001 锚杆喷射混凝土支护技术规范 MT 146.1-2002 树脂锚杆锚固剂 MT 146.2-2002 树脂锚杆金属杆体及其附件 MT/T 942-2005 矿用锚索 MT 5009-1994 煤矿井巷工程质量检验评定标准

2021煤巷锚杆支护技术规范

煤巷锚杆支护技术规范 1总则 1.1煤巷锚杆支护技术是一种先进的巷道支护技术。潞安集团公司所属各矿应积极推广应用煤巷锚杆支护技术。 1.2煤巷锚杆支护的合理性和可靠性是由先进的技术、合格的施工和严格的管理来保证的。推广应用煤巷锚杆支护技术时,要高度重视技术问题,同时强化管理。 1.3煤巷锚杆支护技术是不断发展的。各矿应根据自己的条件积极引进和推广应用新技术、新材料、新机具、新工艺。 1.4制定本规范的宗旨是促进潞安矿区煤巷锚杆支护技术的推广应用和健康发展,保证支护技术安全、可靠、经济,为采煤工作面的快速推进,矿井实现高产高效创造良好条件。 1.5本规范在潞安集团公司所属各矿研究、试验和应用煤巷锚杆支护技术的基础上,进行总结和分析,并结合国内外先进技术制定而成。 1.6本规范包括煤巷锚杆支护技术的7 个关键内容:测试、设计、材料、施工、检测、监测及管理。 1.7本规范适用于潞安集团公司所属各矿以锚杆支护为主要手段的煤巷和半煤岩巷。这些巷道包括: (l)回采巷道(运输巷、回风巷、开切眼等); (2)采区集中巷; (3)煤层大巷; (4)各类煤巷交岔点和硐室。

1.8本规范未涉及的煤巷锚杆支护技术问题,应按国家、煤炭行业和潞安集团公司有关标准、规范和规定执行。 1.9 名词解释 (l)煤巷:煤层巷道,在煤层中掘进的巷道。 (2)煤层顶板煤巷:沿煤层底板掘进,顶板为煤层的煤巷。 (3)全煤巷道:在煤层中掘进,顶板、底板和两帮全部为煤层的煤巷。(4)大断面巷道:巷道宽度不小于5m 的煤巷。 (5)树脂锚杆:对巷道围岩起锚固作用的一套构件,包括杆体、树脂锚固剂、托板、螺母与减摩垫圈等。 (6)锚杆支护:以锚杆为基本支护形式的支护方式。 (7)杆体屈服载荷:锚杆杆体屈服时承受的拉力(kN)。 (8)杆体拉断载荷:锚杆杆体所能承受的极限拉力(kN)。 (9)锚固剂:将锚杆杆体锚固于钻孔中的无机或有机化学豁结材料。(10)锚固长度:锚杆杆体、锚固剂和钻孔孔壁的有效结合长度。(11)端部锚固:锚杆锚固长度不超过500 mm 或不超过钻孔长度的1/3 。 (12)全长锚固:锚杆锚固长度不小于钻孔长度的90 %。 (13)加长锚固:锚杆锚固长度介于端部锚固和全长锚固之间。(14)锚杆拉拔力:锚杆拉拔试验时,锚杆破断或失效时的极限拉力(kN)。 (15) 锚杆锚固力:锚杆的锚固部分或杆体在拉拔试验时,所能承受的极限载荷(kN)。

巷道锚杆支护设计专题报告

巷道锚杆支护 摘要 煤巷锚杆支护的技术已趋于成熟但是锚杆支护仍然存在较多问题。第一,锚杆支护工程隐蔽性强,监测技术不能完全满足煤矿的需要,安全可靠根本没有保证。第二,我国煤炭资源分布范围广,地质条件复杂多变,好多复杂地质条件下锚杆支护并未达到理想的支护效果。该设计是从锚杆支护的隐蔽性和我国复杂多变的地质条件等特点出发。围绕这些特点,从杆体材料,加工方法,支护设计理念、施工质量,检测设备,监测手段等方面入手进行试验研究,提高支护质量,实现高产高效。 关键词:巷道;锚杆支护;高强度锚杆;监测 1问题的提出 由于锚杆支护能够改变围岩的力学特性,能获得良好的支护效果,带来传统支护方式无法比拟的技术经济效益,在国内外已受到了普遍的重视并得到了快速的发展及广泛的应用。因此,探索正确的巷道支护理论、选择安全可靠的支护方法、确定经济合理的支护参数以及实用高效的施工工艺成了长期以来人们所致力解决的一个重大理论及技术课题,对于煤矿来说具有重大意义。锚杆支护是巷道支护的一次重大革命,它可以起到加固、悬吊、合成梁和挤压连接体等作用,在支护中使用锚杆可以改变岩体的受力状态,不仅增加了岩石本身的稳定程度,而且使被支护岩体由荷载变为承载体,提高了岩体承载能力。同时,大量工程实践表明,锚杆支护具有用料节省、巷道断面利用率高、支护及时、劳动强度小、经济效益高以及对巷道围岩变形的适应性好等诸多优。因而,井下巷道采用锚杆支护是一种行之有效的支护手段,成为世界主要产煤国家煤矿支护的主要形式,美国、澳大利亚的煤矿巷道普遍采用锚杆支护,其支护比例己接近100%,英法两国煤巷的锚杆支护比例也分别达到了50%和80%以上,而我国煤矿锚杆支护在煤巷中仅占20%左右,和世界先进水平相比存在较大差距。其主要原因是巷道事故率很高。巷道变形破坏、片帮冒顶等事故在地下工程中是最常见的。据不完全统计,煤矿事故中59%以上是巷道事故。究其原因,还是对巷道变形破坏规律认识不清、支护理论不完善,从而造成支护设计工程类比居多,缺乏科学的指导,巷道支护方式选择不合理,因而也就无法保证巷道在不同地质条件下稳定和安全使用。所以本文系统的介绍锚杆支护。

现阶段锚杆支护技术发展情况简介

现阶段锚杆支护技术发展情况简介 寸录 一,技术原理介绍。 二,锚杆支护的优缺点。 三,锚杆支护技术的发展历史及国外主要产煤国锚杆支护技术概况。 四,我国锚杆支护技术的现状及改进方法。 (一),我国锚杆技术发展历史。 (二),煤巷锚杆支护快速掘进技术的缺点。 (三),锚杆支护技术的改进方法。

锚杆支护技术是现在最流行的围岩支护技术。为了更好地了解该 项技术,服务于工程技术人员和与锚杆支护技术相关产品制造者、服务提供者,本文以煤矿锚杆支护技术为例,介绍了锚杆支护技术的原理、优缺点、国内外技术状况等。另外,本文还分析了我国煤巷锚杆支护技术现存的主要问题,并结合自己的工作实 际探讨了今后锚杆支护技术的发展途径和对策。 一,技术原理介绍。 在巷道开掘后,由于岩体内部应力重新分布即围岩出现应力集中,岩体的物性状态有一个由弹性状态向塑性状态转变的过程,巷道周边围岩产生塑性变形,并从周边向岩体深部扩张,出现塑性变形区,同时引起应力向围岩深部转移,导致周边围岩松散、破碎和发生位移,从而导致巷道变形。 软岩中,岩石的膨胀和崩解主要是其所表现的主要特征。软岩围岩里多为松软的粘土质岩层,巷道开掘后,粘土岩经不同程度的浸水或风化,体积增大和相应的引起压力增大,围岩松动圈和塑性变形发展很快,给巷道稳定性带来影响,不同软岩影响程度不同即围岩性质对巷道变形和破坏有决定性的影响。所以软岩巷道 掘进时受松动圈及塑性变形的影响,巷道稳定性较差。

锚杆支护对象是围岩松动发展过程中的碎胀变形,它起到阻止变形的作用。锚杆作用于围岩松动圈或塑性区中,正常情况下,锚杆能在巷道周围被加固地段内形成一定厚度的压缩带,这不仅可防止受节理等弱面切削的岩快产生滑动,而且锚杆本身也有抗剪 销钉的作用,能有效的防止层间滑动。在这种情况下,锚固层不仅能保持自身的稳定性,而且还有可能在一定程度上承受上位岩层的载荷和抑制变形和松动。根据围岩性质和结构不同,锚杆可起到悬吊、组合梁、挤压加固拱等作用。 二,锚杆支护的优缺点。 锚杆支护技术是集理念、理论、方法、软件、材料、机具、施工工艺、监测仪器和技术规范于一体的巷道支护成套技术创新体系。现在该技术已广泛应用于煤巷、岩巷、半煤岩巷、全煤巷道、冲击地压巷道、软岩巷道、深部动压巷道、无煤柱巷道、复合和松软破碎顶板等困难条件下的支护。 锚杆支护作为一种有效的采准巷道支护方式,由于对巷道围岩强 度的强化作用,可显著提高围岩的稳定性,加之具有支护成本较低、成巷速度快、劳动强度减轻、提高巷道断面利用率、简化回采面端头维护工艺、明显改善作业环境和安全生产条件等优点,

煤矿锚杆支护技术规范(新)

煤矿锚杆支护技术规范 锚杆支护中锚固力与锚杆拉拔力区别 ①锚固力是锚杆对围岩产生的约束力,是限制围岩变形,起支护作用的力。锚杆拉拔力是锚杆锚固后拉拔实验时,所能承受的极限载荷,反映的是杆体、锚固剂、岩石粘结到一起后,锚杆破断或失效的最大拉力。 ②锚固力随着被支护围岩变形、围岩的膨胀而增大,因此锚固力是一个动态发展并不断变化的力。锚杆拉拔力是一个固定值,不随围岩变形和锚杆受力而改变。如果围岩不发生变形且不考虑杆体的松驰效应,锚固力等于初锚力。 ③锚固力检测使用安装于锚杆螺母和托盘之间的锚杆测力计,一般在锚杆安装时把锚杆测力计安好。检测锚固力是为了监测锚杆受力状况,需要进行长期观测。锚杆拉拔力检测使用锚杆拉力计,检测可以在锚杆安装完成后任何时候进行,检测锚杆拉拔力是为了查验锚杆杆体、锚固剂、岩石粘结效果。在施工中,检测锚杆拉拔力时,一般只要达到设计锚固力即可;在做破坏性检测时,则要求锚杆被拉断或锚杆被拉出才终止。 ④检查锚杆施工质量时,一般检查锚杆拉拔力。监测分析锚杆工作情况时,测锚固力。测量锚固力是为了验证支护的可靠性,为以后修改支护设计提供依据。设计和施工时,必须保证锚杆拉拔力大于杆体破断力这一基本原则,即锚杆杆体受力超过其破断力后,锚杆可能被拉断,但锚杆不能被拉出。常见错误是设计的锚杆拉拔力小

于杆体破断力。 ⑤施工、设计中锚固力与锚杆拉拔力经常混淆、混用。二者混淆原因一方面是由于一些标准、教课书说法不一,造成混乱;另一方面对二者内涵认识理解有误,辨识不清。 一、术语和定义 1、煤巷:断面中煤层面积占4/5或4/5以上的巷道。 2、半煤岩巷:断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。 3、锚杆支护:以锚杆为基本支护形式的支护方式。 4、锚杆杆体破断力:锚杆杆体能承受的极限拉力。 5、锚杆拉拔力:锚杆锚固后,拉拔试验时,锚杆破断或失效时的极限拉力(锚杆拉拔力是锚杆锚固后拉拔实验时,所能承受的极限载荷,反映的是杆体、锚固剂、岩石粘结到一起后,锚杆破断或失效的最大拉力)。 6、锚固力:锚杆的锚固部分或杆体在拉拔试验时,所能承受的极限载荷(锚固力是锚杆对围岩产生的约束力,是限制围岩变形,起支护作用的力。)。 7、设计锚固力:设计时给定的锚杆应能承受的锚固力。 8、树脂锚杆:以树脂锚固剂配以各种材质杆体及托盘(托板)、螺母与减磨垫圈等构件组成的锚杆。

锚杆支护技术规范(正式版本)

锚杆支护技术规范(正式) 第一章总则 1为贯彻安全第一得生产方针,严格执行《煤矿安全规程》与煤炭工业技术政策,确保正确地进行锚杆支护设计与施工质量,促进煤巷锚杆支护技术得健康发 展,特制定本规范。 2 锚杆支护巷道施工必须进行设计.锚杆支护设计要注重现场调查研究,吸取国内外锚 杆支护设计、施工与监测方面得先进经验,积极采用新技术、新工艺、新材 料,做到技术先进、经济合理、安全可靠。 新采区采用锚杆支护时,要进行基础数据收集并进行锚杆支护实验工作,锚杆支护设计要组织有关单位会审,并报集团公司备案. 3 对在煤巷应用锚杆支护得有关人员(管理人员、工程技术人员及操作人员),都必须 进行技术培训。 4 在应用锚杆支护得巷道中,必须有矿压及安全监测设计。在施工中必须按设计设置 矿压及安全监测装置,并有专人负责监测. 第二章巷道围岩得稳定性分类 5采用煤巷锚杆支护技术,必须对巷道围岩稳定性进行分类,为指导锚杆支护设计、施工与管理提供依据。 6巷道分类按原煤炭部颁发得《缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》执行。 7煤层围岩分类指标以缓倾斜、倾斜薄煤层及中厚煤层回采巷道分类指标为基本分类指标。其它条件下得煤巷(如煤层上山)稳定性分类指标,可根据具体情 况对分类指标进行相应替代,详见表1与表2。 缓倾斜、倾斜薄及中厚煤层回采巷道分类指标

第三章锚杆支护设计 8 锚杆支护设计应贯彻地质力学评估-初始设计-监测与信息反馈—修改设计等四个步 骤。 锚杆支护设计参考以地应力为基础得煤巷锚杆支护设计方法,结合锚杆支护实践,可根据直接顶稳定情况,按悬吊理论、自然平衡拱理论、组合梁理论或锚杆楔固理 论进行设计计算;亦可采用工程类比法进行设计。无论采用哪种设计方法,都 必须对支护状况进行监测,包括锚杆受力、巷道围岩表面与深部位移及弱化 范围、顶板离层等内容。根据监测信息反馈结果对设计进行验证或修改。 第9条为进行科学得锚杆支护设计,必须具备表3所要求得原始资料。巷道施工后,根据实际揭露得围岩及地质构造等情况,对有关数据进行校核,为修改与完善锚 杆支护设计提供依据。

煤矿井下巷道锚杆支护技术分析

煤矿井下巷道锚杆支护技术分析 发表时间:2019-06-25T14:50:55.663Z 来源:《基层建设》2019年第7期作者:赵仪强李航张海[导读] 摘要:随着我国经济的不断发展,能源需求越来越旺盛,对于煤炭的需求也是不断增加,由此,则带动着对于煤矿相关技术的大发展,而煤矿井下巷道锚杆支护技术就是其中较为重要的一项技术。内蒙古科技大学内蒙古自治区包头 014000摘要:随着我国经济的不断发展,能源需求越来越旺盛,对于煤炭的需求也是不断增加,由此,则带动着对于煤矿相关技术的大发展,而煤矿井下巷道锚杆支护技术就是其中较为重要的一项技术。本文从煤矿井下巷道锚杆支护的理论入手,简要描述煤矿井下巷道锚杆支护理论,为煤矿安全生产提供理论支持。 关键词:煤矿井下巷道;锚杆支护对于我国各地的煤矿而言,其主要是采取的井工开采,大多数而言的生产环境较为复杂。在我国的特厚煤层煤炭资源开采工作中,工作人员通常都会在煤层底板部位掘进一条巷道,以促进特厚煤层煤炭资源的顺利开采,而这些巷道的围岩则可能因为其松软破碎的岩质,而导致离层问题的出现,从而对煤炭资源的生产造成了极大的阻碍。此外,随着煤矿开采强度不断增加,开采技术出现巨大进步,巷道布置发展方向出现转变为:岩巷向煤巷发展、巷道拱形断面向矩形断面发展、岩石顶板煤巷向煤层顶板巷道和全煤巷道发展、巷道从小断面向大断面发展、巷道埋深从浅部向深部发展、单巷布置向多巷发展、简单地质条件巷道向复杂地质条件发展等。 一、锚杆支护理论对于传统的锚杆支护,其理论上有诸如组合梁、悬吊、加固拱等,它们在实际的生产生活中都发挥着巨大的作用,但是,其也有着不小的局限性。在井下实测、数值计算等基础上,针对复杂困难巷道条件,提出高预应力、强力支护理论,要点是:巷道围岩变形主要包括两部分:一是结构面离层、滑动、裂隙张开及新裂纹产生等扩容变形,属于不连续变形;二是围岩的弹性变形、峰值强度之前的塑性变形、锚固区整体变形,属于连续变形。由于结构面的强度一般比较低,因此开巷以后,不连续变形先于连续变形。合理的巷道支护型式是大幅度提高支护系统的初期支护刚度与强度,有效控制围岩不连续变形,保持围岩的完整性,同时支护系统应具有足够的延伸率,允许巷道围岩有较大的连续变形,使高应力得以释放。与传统的“先柔后刚、先让后抗”的支护理念相比,深部及复杂困难巷道支护应该是“先刚后柔、先抗后让”,最大限度地保持围岩完整性,尽量减少围岩强度的降低。对于预应力锚杆支护,它发挥的主要功效在于控制锚固区围岩滑动、离层、产生新裂纹、裂隙张开等,从而达到让围岩受压的状态,更好的抑制围岩弯曲变形、拉伸与剪切破坏,让围岩成为承载主体。锚固区内形成刚度较大的预应力承载结构,阻止锚固区外岩层产生离层,同时改善围岩深部的应力分布状态。锚杆预应力及其扩散对支护效果起着决定性作用。根据巷道条件确定合理的预应力,并使预应力实现有效扩散是支护设计的关键。单根锚杆预应力的作用范围是很有限的,必须通过托板、钢带和金属网等构件将锚杆预应力扩散到离锚杆更远的围岩中。特别是对于巷道表面,即使施加很小的支护力,也会明显抑制围岩的变形与破坏,保持顶板的完整。锚杆托板、钢带与金属网等护表构件在预应力支护系统中发挥极其重要的作用。对于预应力锚杆支护系统而言,其也是有着临界支护刚度,纵然锚固区不会有明显的离层和拉应力区所需支护提供刚度。如果支护刚度在临界支护刚度以下,则围岩将会长期在变形与不稳定的形态下;相反,支护系统刚度如果达到或超过临界支护刚度,围岩变形得到有效抑制,巷道处于长期稳定状态。支护刚度的关键影响因素是锚杆预应力,因此,存在锚杆临界预应力值。当锚杆预应力达到一定数值后,可以有效控制围岩变形与离层,而且锚杆受力变化不大。锚杆支护对巷道围岩石的弹性变形、峰值强度之前的塑性变形、锚固区整体变形等连续变形控制作用不明显,要求支护系统应具有足够的延伸率,使围岩的连续变形得以释放。对于深部及复杂困难巷道,应采用高预应力、强力锚杆组合支护,应尽量一次支护就能有效控制围岩变形与破坏,避免二次支护和巷道维修。 二、锚杆支护设计方法 1、动态信息设计法我们依照煤矿巷道自身的特点,参考国外的先进技术,提出锚杆支护动态信息设计。此种方法有两大特点:设计是动态过程而非一次完成;设计充分用好每个信息,实时做好信息的收集、分析与反馈。此种设计可以分为五部分:巷道围岩地质力学评估、初始设计、井下监测、信息反馈与修正设计。我们围绕着岩地质力学评估包括围岩结构、围岩强度、地应力、井下环境评价及锚固性能测试等内容,为初始设计提供可靠的基础参数;初始设计以数值计算方法为主,结合已有经验和实测数据确定出比较合理的初始设计,目前应用效果比较好的数值计算程序为有限差分软件FLAC和离散单元法软件UDEC;将初始设计实施于井下,进行详细的围岩位移和锚杆受力监测;根据监测结果判断初始设计的合理性,必要时修正初始设计。正常施工后应进行日常监测,保证巷道安全。 2、描杆支护形式和参数选择原则对于不少井下巷道,其生产条件和地质条件都较为复杂,为此,为了能够更为有效地发挥锚杆支护功效,我们需要遵循以下原则:一次支护。对于锚杆支护,其需要尽可能的在第一次支护时就可以有效的控制住围岩的变形,以免出现二次(多次)支护或者是巷道维修。同时,其还能够更好地实现矿井高效、安全生产。而对于回采巷道,加快推进采煤工作面,服务于回采顺槽需要在使用期内稳定;对于大巷和俐室等永久工程,更需要保持长期稳定,不能经常维修。另一方面,这是锚杆支护本身的作用原理决定的。巷道围岩一旦揭露立即进行锚杆支护效果最佳,而在已发生离层、破坏的围岩中安装锚杆,支护效果会受到显著影响;高预应力和预应力扩散原则。预应力是锚杆支护中的关键因素,是区别锚杆支护是被动支护还是主动支护的参数,只有高预应力的锚杆支护才是真正的主动支护,才能充分发挥锚杆支护的作用。一方面,要采取有效措施给锚杆施加较大的预应力;另一方面,通过托板、钢带等构件实现锚杆预应力的扩散,扩大预应力的作用范围,提高锚固体的整体刚度与完整性;“三高一低”原则。即高强度、高刚度、高可靠性与低支护密度原则。在提高锚杆强度、刚度,保证支护系统可靠性的条件下,降低支护密度,减少单位面积上锚杆数量,提高掘进速度;临界支护强度与刚度原则。锚杆支护系统存在临界支护强度与刚度,如果支护强度与刚度低于临界值,巷道将长期处于不稳定状态,围岩变形与破坏得不到有效控制。因此,设计锚杆支护系统的强度与刚度应大于临界值;相互匹配原则。锚杆各构件,包括托板、螺母、钢带等的参数与力学性能应相互匹配,锚杆与锚索的参数与力学性能应相互匹配,以最大限度地发挥锚杆支护的整体支护作用;可操作性原则。提供的锚杆支护设计应具有可操作性,有利于井下施工管理和掘进速度的提高;在保证巷道支护效果和安全程度,技术上可行、施工上可操作的条件下,做到经济合理,有利于降低巷道支护综合成本。 三、结论

煤矿公司锚杆支护技术管理规定

煤矿公司锚杆支护技术管理规定 第一章总则 第一条为积极推广应用锚杆支护技术,加强顶板管理,规范锚杆施工,依据《煤矿安全规程》及有关规定,特制定本规定。 第二条制定本规定旨在安全、高效、经济的原则下,鼓励和支持推广应用锚杆支护技术,保证和促进锚杆支护技术的推广应用,提高经济效益。 第二章支护设计 第三条所有巷道施工前,都必须进行支护设计。新揭露煤层、新建矿井巷道必须进行地质力学评估,地质力学评估和巷道围岩分类是锚杆支护设计的主要依据。 第四条地质力学评估的内容,包括现场地质条件调查、巷道围岩力学性质测定、应力实测及可锚性试验。原则上每个采区都应进行原岩应力实测,测点布置要有代表性,以使实测结果能够最大程度地反映采区和井田的实际情况,在此基础上绘制矿井地应力分布图。 第五条设计方法可采用计算机数值模拟法、理论分析法和工程类比法。在理论分析的基础上,根据围岩稳定性分类,至少选择两种技术经济可行的方案进行分析对比,选择最合理的设计方案。

第六条按设计施工后,应立即进行监测,根据监测结果及时修改或补充设计。 第七条设计应包括以下内容 1、巷道名称、位置、用途及巷道设计断面; 2、巷道锚杆支护布置图; 3、锚杆几何参数(长度、直径)、力学参数(强度)及确定依据; 4、锚杆布置参数(间排距、角度)及确定依据; 5、锚杆锚固参数(孔径、锚固长度)及确定依据; 6、锚杆预紧力矩(或预紧力)、锚杆锚固力、可锚性试验结论; 7、钢带形式、强度、规格; 8、金属网、塑料网或钢筋网形式、规格、强度; 9、支护材料消耗; 10、施工工艺方法; 11、施工工艺要求及质量管理指标; 12、相关安全技术措施:临时支护、控顶距; 13、验证设计的监测方案; 14、补强加固措施; 15、预计可能出现的问题,以及应采取的相应措施; 16、预计的支护成本。 第八条锚杆支护设计中锚固剂、杆体、托盘及钢带等的性

锚杆支护规范

矿区锚杆支护技术规范 .1 本规范是专门针对潞安矿区现有生产矿井所开采的3#煤层的地质与生产条件而编制的,旨在促进潞安矿区煤巷锚杆支护技术健康发展,为矿井实现安全高效创造良好条件。 1.2 根据《潞安矿区巷道围岩地质力学测试与分类研究报告》和《潞安矿区煤巷锚杆支护成套技术研究》的结论,在潞安矿区的煤巷中可以并应积极推广应用锚杆支护技术。 指导思想是:解放思想,实事求是,因地制宜,积极推广应用。 工作原则是:以科学的理论依据为指导,以严谨的态度抓好设计、施工和管理。 1.3 本规范适用于潞安矿区以锚杆支护作为主要手段的煤巷,包括: (1) 回采巷道(运输巷,回风巷,开切眼,瓦排巷等); (2) 采区集中巷; (3) 煤层大巷; (4) 各类煤巷交岔点和峒室。 1.4 在进行煤巷锚杆支护设计前,必须有全面、准确、可靠的巷道围岩地质力学参数,包括地应力的大小和方向、围岩强度、围岩结构等。否则,不能进行锚杆支护设计。 1.5 煤巷锚杆支护设计采用动态信息设计法。设计是一个动态过程,充分利用每个过程提供的信息。设计应严格按五个步骤进行,即巷道调查和地质力学评估、初始设计、井下施工与监测、信息反馈分析和修正设计、日常监测。 1.6 煤巷锚杆支护材料的尺寸规格、力学性能与产品质量必须满足锚杆支护设计的要求,并符合煤矿安全有关规定。否则,不能下井使用。 1.7 煤巷锚杆支护施工应严格按照设计和作业规程要求进行,确保施工质量。 1.8 与煤巷锚杆支护技术有关的各级管理和技术人员,以及操作工人,都应进行锚杆支护技术培训。 1.9 本规范未涉及的煤巷锚杆支护技术问题,应按煤炭行业有关规定执行。 第二章巷道围岩地质力学评估与现场调查 2.1 巷道围岩地质力学评估与现场调查是煤巷锚杆支护设计的基础依据和先决条件,必须在进行支护设计之前完成。 2.2 地质力学评估与现场调查首先应确定评估与调查的区域,考虑巷道服务期间影响支护系统的所有因素,随后的锚杆支护设计应该限定在这个区域内。 2.3 地质力学评估与现场调查主要包括以下内容 (1) 巷道围岩岩性与强度 煤层厚度、倾角和强度;顶、底板各岩层的岩性、厚度、倾角和强度。 (2) 围岩结构与地质构造 巷道围岩内节理、裂隙等不连续面的分布,对围岩完整性的影响;巷道附近较大断层、褶曲等地质构造与巷道的位置关系,以及对巷道围岩稳定性的影响程度。 (3) 地应力

(完整版)锚杆支护理论计算方法

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2 ——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟; 四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度

宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm ~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm ); d1——锚杆钢筋直径走私或锚索体直径(cm ); d2——锚杆孔直径(cm ); f st ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2); f cs ——水泥砂浆与钢筋或水泥砂浆与锚索的设计粘结强度 (N/cm 2);圆钢为2.5MPa ,螺纹钢为5MPa 。

相关主题