搜档网
当前位置:搜档网 › 平面向量及其应用单元测试题(一) 百度文库

平面向量及其应用单元测试题(一) 百度文库

平面向量及其应用单元测试题(一) 百度文库
平面向量及其应用单元测试题(一) 百度文库

一、多选题1.题目文件丢失!

2.下列说法中正确的是( )

A .对于向量,,a b c ,有()()

a b c a b c ??=??

B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底

C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ?<”的充分而不必要条件

D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则

0λμ+=

3.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ?≤

B .若a b c b ?=?且0b ≠,则a c =

C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向

D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是

5,3??-+∞ ???

4.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A b

B a

=,则该三角形的形状是( ) A .等腰三角形

B .直角三角形

C .等腰直角三角形

D .等腰或直角三角形

5.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点

时,点P 的坐标为( ) A .4,23??

???

B .4,33??

???

C .()2,3

D .8

,33?? ???

6.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )

A .1122AE A

B A

C →

→→

=+

B .2AB EF →→

=

C .1133

CP CA CB →

→→

=+

D .2233

CP CA CB →

→→

=+

7.下列结论正确的是( )

A .在ABC 中,若A

B >,则sin sin A B >

B .在锐角三角形AB

C 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形

D .在ABC 中,若3b =,60A =?,三角形面积33S =,则三角形外接圆半径为

33

8.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )

A .10,45,70b A C ==?=?

B .45,48,60b c B ===?

C .14,16,45a b A ===?

D .7,5,80a b A ===?

9.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为

( ) A .8+33 B .83161+

C .8﹣33

D .83161- 10.ABC 中,4a =,5b =,面积53S =,则边c =( ) A .21

B .61

C .41

D .25

11.设向量a ,b 满足1a b ==,且25b a -=,则以下结论正确的是( ) A .a b ⊥

B .2a b +=

C .2a b -=

D .,60a b =?

12.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)-

B .(6,15)

C .(2,3)-

D .(2,3)

13.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )

A .A

B D

C =

B .AB D

C =

C .AB DC >

D .BC AD ∥

14.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C 处,3km ,那么x 的值为( ) A 3B .23

C .3

3D .3

15.化简以下各式,结果为0的有( ) A .AB BC CA ++ B .AB AC BD CD -+- C .OA OD AD -+

D .NQ QP MN MP ++-

二、平面向量及其应用选择题

16.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若

(),DE AB AD R λμλμ=+∈,则λμ?等于( )

A .316

- B .

316 C .

12

D .12

-

17.若△ABC 中,2

sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形

B .等腰三角形

C .等边三角形

D .等腰直角三角形

18.在△ABC 中,内角A 、B 、C 所对边分别为a 、b 、c ,若2cosA 3cosB 5cosC

a b c

==,则

∠B 的大小是( ) A .

12

π

B .

6

π C .

4

π D .

3

π 19.已知20a b =≠,且关于x 的方程2

0x a x a b ++?=有实根,则a 与b 的夹角的

取值范围是( ) A .06

,π??????

B .,3ππ??

?

???

C .2,33ππ??

?

???

D .,6ππ???

???

20.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=?==,则△ABC 的面积的最大值为( ) A .123B .3

C .12

D .18321.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .

1

()2

a b + B .

1

()2

a b - C .

1

2

a b + D .12

a b +

22.在ABC ?中,6013ABC A b S ?∠=?==,,,则2sin 2sin sin a b c

A B C

-+-+的值等于

( ) A 239

B 26

33

C 833

D .2323.已知向量(2

2cos 3m x =,()1,sin2n x =,设函数()f x m n =?,则下列关于函数

()y f x =的性质的描述正确的是( )

A .关于直线12

x π

=

对称

B .关于点5,012π??

???

对称

C .周期为2π

D .()y f x =在,03π??

-

???

上是增函数 24.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ?=?≠,则a b =

C .若,,,A B C

D 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ?>,则a 与b 的夹角为锐角;若0a b ?<,则a 与b 的夹角为钝角 25.已知D ,

E ,

F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,

则①AD =-b -

12a ;②BE =a +12b ;③CF =-12a +1

2

b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .4

26.已知ABC 中,1,3,30a b A ?===,则B 等于( )

A .60°

B .120°

C .30°或150°

D .60°或120°

27.如图所示,在ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+,则λμ+=( )

A .1-

B .1

2

-

C .2-

D .32

-

28.已知O ,N ,P 在ABC ?所在平面内,且,0OA OB OC NA NB NC ==++=,且

???PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ?的( ) (注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心 D .外心重心内心

29.如图所示,设P 为ABC ?所在平面内的一点,并且11

42

AP AB AC =+,则BPC ?与ABC ?的面积之比等于( )

A .

25

B .

35

C .

34

D .

14

30.在ABC ?中,60A ∠=?,1b =,3ABC S ?=,则2sin 2sin sin a b c

A B C

++=++( )

A .

239

3

B .

263

3

C .

83

3

D .23

31.在ABC ?中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF 的中点,若1AM =,则λμ+的最大值为( ) A .

73

B .

27

3

C .2

D .

21 32.已知ABC ?的内角A 、B 、C 满足()()1sin 2sin sin 2

A A

B

C C A B +-+=--+

,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +> C .612abc ≤≤

D .1224abc ≤≤

33.如图,在ABC 中,14AD AB →

→=,12

AE AC →→

=,BE 和CD 相交于点F ,则向量

AF →

等于( )

A .1277A

B A

C →→

+

B .1377AB A

C →→

+

C .121414

AB AC →→

+ D .131414

AB AC →→

+ 34.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()2

26,c a b =-+3

C π

=

,则

ABC 的面积为( )

A .6

B 33

C .33

D 335.如图所示,在正方形ABCD 中,

E 为BC 的中点,

F 为AE 的中点,则DF =( )

A .13

24

AB AD -+ B .12

23AB AD + C .

11

32

AB AD - D .

13

24

AB AD -

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.无 2.BCD 【分析】

.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】

解:.向量数量积不满足结合律,故错误, ., 解析:BCD 【分析】

A .向量数量积不满足结合律进行判断

B .判断两个向量是否共线即可

C .结合向量数量积与夹角关系进行判断

D .根据向量线性运算进行判断 【详解】

解:A .向量数量积不满足结合律,故A 错误,

B .

12

57

-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,

C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180?,此时0m n <成立,

当0m n <成立时,则m 与n 夹角满足90180θ?

在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,

D .由23CD CB =得22

33CD AB AC =-,

则23λ=,23

μ=-,则22

033λμ+=-=,故D 正确

故正确的是BCD , 故选:BCD . 【点睛】

本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.

3.AC 【分析】

根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】

对于A ,由平面向量数量积定义可知

解析:AC 【分析】

根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】

对于A ,由平面向量数量积定义可知cos ,a b a b a b ?=,则||||||a b a b ?≤,所以A 正确,

对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,

对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即

22||||a b a b -?=,cos 1θ=-,

则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ?+>即2||0a a b λ+?>可得530λ+>,解得5

3

λ>-

, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+?= 所以a 与a b λ+的夹角为锐角时5

3

λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】

本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.

4.D 【分析】

在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.

故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查

解析:D 【分析】 在ABC 中,根据

cos cos A b B a =,利用正弦定理得cos sin cos sin A B

B A

=,然后变形为sin 2sin 2A B =求解.

【详解】

在ABC 中,因为

cos cos A b

B a =, 由正弦定理得cos sin cos sin A B

B A

=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,

解得A B =或2

A B π

+=.

故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】

本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.

5.AD 【分析】

设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,

当点P 靠近点时,,

则, 解得, 所以,

当点P 靠近点时,, 则, 解得, 所以, 故选:

解析:AD 【分析】

设(),P x y ,则()()1

2,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】

设(),P x y ,则()()1

2,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,121

2

PP

PP =, 则()()1421142x x y y ?=-????-=-??

解得432

x y ?=???=?,

所以4,23P ??

???

, 当点P 靠近点2P 时,122PP PP =, 则()()24124x x y y ?=-?

?

-=-??

解得833x y ?=???=?,

所以8,33P ?? ???

, 故选:AD 【点睛】

本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.

6.AC 【分析】

由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:

根据三角形中线性质和平行四边形法则知, , A 是正确的;

因为EF 是中位线,所以B 是正确的; 根据三角形重心

解析:AC 【分析】

由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:

根据三角形中线性质和平行四边形法则知,

111()()222

AE AB BE AB BC AB AC AB AC AB →

→→→→→

→=+=+=+-=+, A 是正确的;

因为EF 是中位线,所以B 是正确的; 根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →

→→→→→????

==?+=+ ? ?????

所以C 是正确的,D 错误. 故选:AC 【点睛】

本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.

7.AB 【分析】

由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】

中,,由得,A 正确;

锐角三角形中,,∴,B 正确; 中,

解析:AB 【分析】

由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】

ABC 中,A B a b >?>,由

sin sin a b A B

=得sin sin A B >,A 正确; 锐角三角形ABC 中,222

cos 02b c a A bc

+-=>,∴2220b c a +->,B 正确;

ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=?,即A B =或90A B +=?,ABC 为等腰三角形或直角三角形,C 错;

ABC 中,若3b =,60A =?,三角形面积S =11

sin 3sin 6022

S bc A c ==??=4c =,∴2222cos 13a b c bc A =+-=,

a =,

∴2sin a R A =

==

,R =D 错. 故选:AB . 【点睛】

本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.

8.BC 【分析】

根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】

对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两

解析:BC 【分析】

根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】

对于选项A 中:由45,70A C =?=?,所以18065B A C =--=?,即三角形的三个角是确定的值,故只有一解;

对于选项B 中:因为csin sin 1B C b =

=<,且c b >,所以角C 有两解;

对于选项C 中:因为sin sin 17

b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b A

B a

=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】

本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.

9.AC

【分析】

利用余弦定理:即可求解. 【详解】

在△ABC 中,b =15,c =16,B =60°, 由余弦定理:, 即,解得. 故选:AC 【点睛】

本题考查了余弦定理解三角形,需熟记定理,考查了基

解析:AC 【分析】

利用余弦定理:2222cos b a c ac B =+-即可求解. 【详解】

在△ABC 中,b =15,c =16,B =60°, 由余弦定理:2222cos b a c ac B =+-,

即216310a a -+=,解得8a = 故选:AC 【点睛】

本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.

10.AB 【分析】

在中,根据,,由,解得或,然后分两种情况利用余弦定理求解. 【详解】

中,因为,,面积, 所以, 所以,解得或,

当时,由余弦定理得:, 解得,

当时,由余弦定理得:, 解得 所以或

解析:AB 【分析】

在ABC 中,根据4a =,5b =,由1

sin 2

ABC

S

ab C =

=60C =或120C =,然后分两种情况利用余弦定理求解.

【详解】

ABC 中,因为4a =,5b =,面积ABC

S

=

所以1

sin 2

ABC

S

ab C =

=

所以sin 2

C =

,解得60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,

解得c =

当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,

解得c =

所以c =c =故选:AB 【点睛】

本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题.

11.AC 【分析】

由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】

,且,平方得,即,可得,故A 正确; ,可得,故B 错误; ,可得,故C 正确; 由可得,故D 错误; 故选:AC 【点睛】

解析:AC 【分析】

由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】

1a b ==,且25b a -=,平方得22445b a a b +-?=,即0a b ?=,可得a b ⊥,故A

正确;

()2

22

22a b

a b a b +=++?=,可得2a b +=,故B 错误; ()

2

2

2

22a b a b a b -=+-?=,可得2a b -=,故C 正确;

由0a b ?=可得,90a b =?,故D 错误; 故选:AC 【点睛】

本题考查向量数量积的性质以及向量的模的求法,属于基础题.

12.ABC 【分析】

设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解. 【详解】 第四个顶点为, 当时,,

解得,此时第四个顶点的坐标为; 当时,, 解得

解析:ABC 【分析】

设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】

第四个顶点为(,)D x y ,

当AD BC =时,(3,7)(3,8)x y --=--,

解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,

解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,

解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】

本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.

【分析】

根据向量的模及共线向量的定义解答即可; 【详解】

解:与显然方向不相同,故不是相等向量,故错误; 与表示等腰梯形两腰的长度,所以,故正确; 向量无法比较大小,只能比较向量模的大小,故

解析:BD 【分析】

根据向量的模及共线向量的定义解答即可; 【详解】

解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误;

AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确; 向量无法比较大小,只能比较向量模的大小,故C 错误; 等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确; 故选:BD . 【点睛】

本题考查共线向量、相等向量、向量的模的理解,属于基础题.

14.AB 【分析】

由余弦定理得,化简即得解. 【详解】

由题意得,由余弦定理得, 解得或. 故选:AB. 【点睛】

本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.

解析:AB 【分析】

由余弦定理得293

cos306x x

?

+-=,化简即得解.

【详解】

由题意得30ABC ?∠=,由余弦定理得293

cos306x x

?

+-=

,

解得x =x 故选:AB.

本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.

15.ABCD 【分析】

根据向量的线性运算逐个选项求解即可. 【详解】 ; ; ; .

故选:ABCD 【点睛】

本题主要考查了向量的线性运算,属于基础题型.

解析:ABCD 【分析】

根据向量的线性运算逐个选项求解即可. 【详解】

0AB BC CA AC CA ++=+=;

()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-=; ()0OA OD AD OA AD OD OD OD -+=+-=-=;

0NQ QP MN MP NP PM MN NM NM ++-=++=-=.

故选:ABCD 【点睛】

本题主要考查了向量的线性运算,属于基础题型.

二、平面向量及其应用选择题

16.A 【分析】

利用平面向量的线性运算,将DE 用AB 和AD 表示,可得出λ和μ的值,由此可计算出

λμ?的值.

【详解】

E 为AO 的中点,且O 为AC 的中点,所以,()

111

244

AE AO AC AB AD ===+, ()

113444DE AE AD AB AD AD AB AD ∴=-=

+-=-,1

4λ∴=,34

μ=-.

因此,133

4416

λμ???=?-=- ???,故选:A.

本题考查利用基底表示向量,要充分利用平面向量的加减法法则,考查运算求解能力,属于中等题. 17.A 【分析】

已知等式左边第一项利用诱导公式化简,根据sin C 不为0得到sin()sin A B C -=,再利用两角和与差的正弦函数公式化简. 【详解】

ABC ?中,sin()sin A B C +=,

∴已知等式变形得:2sin sin()sin C A B C -=,即sin()sin sin()A B C A B -==+,

整理得:sin cos cos sin sin cos cos sin A B A B A B A B -=+,即2cos sin 0A B =,

cos 0A ∴=或sin 0B =(不合题意,舍去),

0A π<< 90A ∴=?,

则此三角形形状为直角三角形. 故选:A 【点睛】

此题考查了正弦定理,以及三角函数中的恒等变换应用,熟练掌握公式是解本题的关键,属于中档题. 18.D 【分析】

根据正弦定理,可得

111

tan tan tan 235

A B C ==,令tan 2A k =,tan 3B k =,tan 5C k =,再结合公式tan tan()B A C =-+,列出关于k 的方程,解出k 后,进而可得

到B 的大小. 【详解】 解:∵2cosA 3cosB 5cosC

a b c ==, ∴sin sin sin 2cos 3cos 5cos A B C

A B C ==,

111

tan tan tan 235

A B C ==, 令tan 2A k =,tan 3B k =,tan 5C k =,显然0k >, ∵tan tan tan tan()tan tan 1

A C

B A

C A C +=-+=-,

∴273101k k k =

-,解得k =

∴tan 3B k ==B =3

π

【点睛】

本题考查正弦定理边角互化的应用,考查两角和的正切,用k 表示tan 2A k =,tan 3B k =,tan 5C k =是本题关键

19.B 【分析】

根据方程有实根得到2

4cos 0a a b θ?=-≥,利用向量模长关系可求得1cos 2

θ≤,根据向量夹角所处的范围可求得结果. 【详解】

关于x 的方程2

0x a x a b ++?=有实根 2

40a a b ∴?=-?≥

设a 与b 的夹角为θ,则2

4cos 0a a b θ-≥ 又20a b =≠ 24cos 0b b θ∴-≥ 1cos 2

θ∴≤

又[]0,θπ∈ ,3πθπ??∴∈????

本题正确选项:B 【点睛】

本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果. 20.A 【分析】

由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值 【详解】

由题意,可得如下示意图

令||AC a =,||BC b =,又2BM MC =,即有1||||33

b

CM CB =

= ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠

2221216()332333

a a

b ab ab ab

b =+-?≥-=,当且仅当3a b =时等号成立

∴有48ab ≤

∴11sin 4822ABC S ab C ?=≤?=故选:A 【点睛】

本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值 21.D 【分析】

根据向量的加法的几何意义即可求得结果. 【详解】

在ABC ?中,M 是BC 的中点, 又,AB a BC b ==, 所以11

22

AM AB BM AB BC a b =+=+=+, 故选D. 【点睛】

该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 22.A 【解析】

分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.

详解:由题意,在ABC ?中,

利用三角形的面积公式可得011

sin 1sin 6022

ABC S bc A c ?==???=, 解得4c =,

又由余弦定理得2

2

2

1

2cos 116214132

a b c bc A =+-=+-???

=

,解得a =,

由正弦定理得2sin 2sin sin sin 3a b c a A B C A -+===

-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 23.D

【详解】

()22cos 3sin 2cos 23sin 212sin(2)16f x x x x x x π=+=++=++,当12

x π

=

时,sin(2)sin

163x π

π

+

=≠±,∴f (x )不关于直线12

x π

=

对称;

当512x π=时,2sin(2)116x π

++= ,∴f (x )关于点5(

,1)12

π对称; f (x )得周期22

T π

π==, 当(,0)3

x π

∈-

时,2(,)6

26x π

ππ

+

∈-

,∴f (x )在(,0)3

π

-上是增函数. 本题选择D 选项. 24.C 【分析】

根据平面向量的定义与性质,逐项判断,即可得到本题答案. 【详解】

因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ?=?≠,但a b ≠,故B 不正确;

,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形

ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且

||||AB DC =,所以AB DC =,故C 正确;0a b ?>时,,a b 的夹角可能为0,故D 不正

确. 故选:C 【点睛】

本题主要考查平面向量的定义、相关性质以及数量积. 25.D 【分析】

本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案. 【详解】

①如图可知AD =AC +CD =AC +

12CB =-CA -1

2

BC

相关主题