搜档网
当前位置:搜档网 › 电化学在制备纳米材料方面的综述

电化学在制备纳米材料方面的综述

电化学在制备纳米材料方面的综述
电化学在制备纳米材料方面的综述

电化学在制备纳米材料方面的应用班级:09材料化学2 姓名:方泽权学号:2009274202

摘要:电化学方法制备纳米材料是近十几年来新发展起来的一项技术。近十几年来,已经发展了多种制备纳米粒子的物理方法和化学方法。本文主要对电化学方法在纳米材料制备中的应用及其研究进展做了较为全面的概述,包括了电化学沉积法、模板电化学法合成纳米材料、稳定剂保护下电化学还原法制备金属溶胶、电化学台阶边缘修饰法制备一维纳米材料以及脉冲超声电化学法制备纳米粒子,并对其应用前景做了展望。

关键词:电化学纳米材料模板应用前景

Electrochemical preparation nanometer materials in application

Abstract: the electrochemical method preparation nanometer material is the past dozens of years, developed a new technology. More than ten years, it has developed a variety of preparation of nanometer particle physics method and chemical method. This paper focuses on the electrochemical method in preparation of nanometer materials, the application and research progress in a relatively comprehensive overview of, including electrochemical deposition method, electrochemical synthesis template nanometer materials, stabilizing agent under the protection of the electrochemical reduction method for metal sol, electrochemical method for a modified steps edge nanometer material and pulse ultrasound dimension electrochemical method for nanoparticles, and its application prospect.

Keywords: electrochemical nano material template application prospect

引言:电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直

至现在电化学制备纳米金属线、金属氧化物已有几十年的研究时间。直至1963年,运用电沉积技术制备叠层膜的方法不断改进,Brenner提出了单一电解液中沉积Co-Bi多层膜的设想,由原来的多槽电沉积转变成今天的单槽电沉积,这便是当今电沉积制备纳米金属多层膜的开端。电沉积法制备纳米叠层膜逐渐成为一个比较成熟的获得纳米晶体的方法。

在电沉积领域,人们也认识到超细微粒加人镀层可以增强原金属镀层的耐磨、耐高温等性能,并且在过去的30年里它也得到了长足的发展。对于纳米微粒作为复合镀微粒在电沉积过程中影响金属沉积以及晶粒生长的文献直到近十年才出现。许多研究表明纳米微粒的加人可以抑制晶体的长大并且促进电沉积纳米晶体的形成。

生物传感器作为一门涉及化学、生物学、物理学以及电子学等领域的交叉学科,在临床医药、发酵生产、食品检验和环境保护等诸多领域有着广阔的应用前景。结合电分析技术与生物传感技术的电化学生物传感器是其中非常重要的一类。它是由生物材料作为敏感元件,

电极作为转换元件.以电势、电流或电导等作为特征检测信号的传感器。理想的生物分子的固定方法要求既能促进有效的电子转移.又能保持被固定生物分子的活性。近年来,纳米技术逐步进入电分析和生物传感器领域.引发了突破性的进展。通过将新型纳米材料修饰到电极表面,可以有效地固定生物分子.并促进其氧化还原中心与电极之间的直接电子转移.从而研制新一代的生物传感器及其它生物器件。

1、主要应用领域

1.1腐蚀与防护

电沉积纳米晶体具有优异的耐蚀性,可以广泛应用于各种防护场所。例如普通镍基合金用于核电站水蒸气发生管时常发生晶间应力腐蚀开裂,但若采用纳米晶型的镍基合金,就可以有效地抑制晶间应力腐蚀。又例如镍一铜纳米合金具有优异的耐海水、酸、碱、氧化、还原性气体腐蚀的特性,因而这类合金在工业中的应用将非常广泛。

1.2析氢电极

镍一铝合金以及其他合金具有良好的析氢电催化活性,纳米晶型的合金微粒具有高的表面能,从而使表面原子具有高的活性,析氢交换电流密度增大,析氢过电位降低。因而电沉积纳米晶型的电催化析氢电极的研究与开发具有广阔的前景。

1.3储氢燃料电池

电沉积纳米晶体的镍基以及许多稀土合金由于具有较大的比表面积,并且有良好的储氢性能,是储氢材料研究的一个不可忽略的方面。它的发展为今后燃料其他的应用与普及提供了条件,因而对于此方面的研究也具有很大的潜力。

1.4磁记录元件

电沉积纳米晶体磁性材料在磁记录方面的应用前景也很广,由于纳米晶体磁性材料具有十分特别磁学性能,即随晶粒尺寸的减小而磁饱和强度增大,因而用它制成的磁记录元件材料的音质、图像、记录密度、信噪比等均很好。

1.5膜分离

电沉积技术还可以应用于模板合成制备纳米线状金属材料(纳米线金属可以看作是一串小的纳米晶粒连接而成),如金、银、镍纳米金属线等。这些纳米线状金属既可以用于制备纳米电极,为研究非均相电子转移提供有利的手段,也可以制备出离子选择性透过膜,用于分子的分离。

1.6低温材料

电沉积技术制备的纳米金属叠层膜,例如铜一铬多层膜,不但每层金属膜厚度在纳米范围内,且每层金属均为纳米晶体,这种金属纳米晶交替排列的叠层膜在液氮的温度下具有较高的延展性,具有在低温条件下的潜在应用价值。

1.7生物传感器

在生物传感器方面,物传感技术结合了信息技术与生物技术.涉及化学、生物学、物理学以及电子学等交叉学科,在医药工业、食品检测和环境保护等诸多领域有着广阔的应用前景。

2、电化学方法制备纳米材料

根据沉积方式可以将电化学方法分为直流电沉积、交流电沉积、脉冲电沉积、复合共沉积、喷射电沉积、模板电化学法和脉冲超声电化学法等技术;根据沉积过程可以分为单槽和多槽电沉积。纳米晶体的获得,关键在于制备过程中有效地控制晶粒的成核和生长。传统的电沉积方法电流密度小,因而沉积速率低,生长的晶粒较为粗大。制备纳米晶体要求的电流密度远大于一般电沉积的电流密度,’晶核的生长速率高,晶体长大的速率小,所以晶粒的尺寸.可以控制在纳米范围内。以下分别介绍各种方法的应用实例。

2.1直流电沉积纳米晶体

直流电沉积纳米晶体装置一般采用直流电镀的类似装置,不再叙述,与电沉积普通镀层或晶体的不同之处在于:需要更大的电流密度,需要加人有机添加剂来增大阴极极化,使得沉积层的结晶细致,从而获得纳米晶体。以电沉积纳米镍为例,直流电沉积常常采用以下几种镀液:①Tothkadr (T型)镀液,此种镀液原来是用于电沉积镍一磷非晶态合金,在电沉积纳米晶体时排除了磷酸二氢钠这种成分。②Brenner型(B型)镀液,此种镀液原来是用于电沉积镍一磷晶态合金,因而含有磷酸的成分。③Watts型(W型)镀液,含有常用的有机添加剂,如糖精、香豆素和硫脉等。④硫酸盐镀液,含有硫酸镍、硫酸钠以及甲酸。以上几种镀液在通以直流电的条件下,控制适当的工艺条件,如温度、pH值、电流密度、阴阳极面积比和间距等条件就可以直接获得纳米晶体材料。

图8-1非晶态Ni-S的DSC曲线S原子质量分数/%:a—15.5; b—29.4

杜敏等用直流电沉积的方法获得了Ni-S非晶,通过对非晶热处理得到了纳米晶,这是间接电沉积非晶晶化制备纳米晶的一般方法。图8-1是硫原子质量分数分别为15.5%, 29.4%的两个非晶态Ni-S样品的DSC曲线,由图可以看出,两个样品都存在两次相变,只是由于组成的不同,放热峰的大小有所变化。为了进一步了解样品的具体晶化过程,选择在380K, 405K, 440K,480K对两个样品分别进行热处理并进行了XRD分析,结果见图8-2。硫含量不同的两个样品经不同温度的热处理,都有不同程度的晶化现象,在440K左右基本完成非晶向晶体的转化。由440K热处理过的样品的XRD衍射峰的半峰宽,根据Scherrer方程:

式中d—粒子的粒径,nm;

k—粒子的形状系数(粒子为球形时,其值为1);

λ—X射线的波长,nm;

β—x射线衍射风的半峰宽度,rad ;

θ—X射线衍射峰对应的衍射角,rad。

计算得到电沉积Ni-S合金层的晶体粒度在20一35nm之间。

2.2交流电沉积纳米晶体

采用交流电作为沉积电源,装置类似直流电沉积,其特点是操作简单、反应前驱物价格低廉、反应产率高、产物形貌容易控制等。

厦门大学王翠英、陈祖耀等报道了以不同种类的金属丝为电极,采用交流电沉积的方法在液相水溶液中制备ZnO, Fe 3O 4、Mg(OH)2 ,AIOOH 等多种金属氧化物、氢氧化物纳米材料的详细情况,其具体的装置如图8-3所示。

实验以50Hz 的交流电为实验电源,NaCl 水溶液为电解液,用NH 3·O 2调节pH 值。两个金属丝作为电极,两电极间距离大约3cm 。一个电极的末端固定在电解液中,另一个电极的末端与电解液周期性瞬间接触,每个运动周期大约5s 。两个电极间的电压采用调压变压器在50-200V 间进行调节。在电弧放电过程中,电极因强烈放电而熔化,同时在电解液中产生沉淀物。分离沉淀物,并多次用蒸馏水和乙醇洗涤,然后在真空烘箱中于50℃烘干5h 。样品经XRD (见图8-4)测定得到如下结果。

图8-3采用交流电沉积的方法制备

金属氧化物纳米粉的实验装置

图8-2不同温度时非晶态

Ni-S 的XRD 图谱

S 原子质量分数/%:a 一15.5; b 一

29.4

衍射图8-4中以铁丝为电极制备的Fe3O4样品所有衍射峰完全与具有尖晶石结构的Fe3O4;对应。指标化的计算结果得到的晶格常数为α= 0.8408nm,与文献报道的尖晶石结构的Fe3O4的晶格常数α= 0. 8398nm基本吻合。其他以Zn, Mg, Al为电极制备出的产物分别对应于ZnO, Mg(OH)2、γ-AlOOH。由图中各个样品衍射峰的明显宽化,根据Scherrer方程近似计算出粒子的粒径大约在10-30nm。

图8-4采用交流电沉积的方法制备金属氧化物纳米粉的XRD图谱

2.3脉冲电沉积纳米晶体

脉冲电沉积可以分为恒电流控制和恒电位控制两种形式,按脉冲性质及方向又可分为单脉冲、双脉冲和换向脉冲等。脉冲电沉积可以通过控制波形、频率、通断比以及平均电流密度等参数,使得电沉积过程在很宽的范围内变化,从而获得具有一定特性的纳米晶体镀层。以电沉积镍为例,采用Watts型镀液,加人糖精作为添加剂,采用矩形波脉冲,控制脉冲电镀的通、断时间分别在2.5~5ms和15~45ms,电流密度为1900mA/cm2,6~8cm的电极距以及10:1的阳极与阴极的表面积之比,就可以获得纳米晶体。乔桂英等利用脉冲电沉积制备出了块状纳米材料Co-Ni合金,并研究了其微观组织结构。

试样制备在普通电解池中进行,阴极衬底材料为厚度0.2mm、纯度99.9%的Cu箔,阳极材料co板的纯度为99.9%, Ni板纯度为99.99%。沉积操作前,阴极板、阳极板经3%Na2CO3水溶液碱洗、3 % H2S04水溶液酸洗,再用蒸馏水、酒精充分清洗后立即置于电解液中,阴极板介于两阳极板之间,相距各为10 mm。采用恒稳直流和脉冲直流两种方式沉积,比较这两种方式对微观结构的影响。电沉积条件为电流密度2A/cm2时,电解液温度为30O C,,脉冲电参数ton=toff=0.5s,其中ton为通电时间,toff为断电时间,沉积层厚度为1一1.5mm。得到样品经XRD, TEM分析,其晶体粒度介于10一20nm。经三维结构分析、场粒子显微镜(FIM)分析、X射线能量散射谱(EDS)分析、位置敏感原子探针场离子显微(PoSAP)分析表明,沉积层中Co含量随电解液中Co2+离子浓度增加而显著增加;沉积层合金点阵参数随Co含量

的增加按Vegard定律增加,同时晶粒尺寸减小;当晶粒尺寸减小到十几纳米时,出现附加的晶格膨胀效应;研究标明脉冲沉积与直流沉积相比晶粒明显细化。PoSAP操作的在线观测和大量数据的计算机三维重构图表明,Co原子在沉积层中呈均匀分布;FIM观察分析表明纳米晶Co-Ni合金中存在三类晶间结构:正常晶界、非长程有序也非短程有序的“类气态结构”和少量暗区。

2.4复合共沉积纳米晶体

复合共沉积纳米晶体多采用恒定的直流电,在电沉积金属的过程中加人纳米微粒,使得纳米微粒与金属共同沉积。由于纳米微粒的加人,在适当工艺条件下,沉积的基体金属的晶粒尺寸得以控制在纳米范围内,即使电流密度较小时,仍可以获得纳米晶体。以电沉积纳米镍/A12O3为例,采用硫酸盐镀液(NiSO4、MgSO4, 0一150g/L),加人从Al2O3纳米粒子,pH值控制在3.5—4.0之间,电流密度大约为0. 5—8. OA/dm2,温度控制在50O C,即可以获得复合共沉积纳米晶体。

2.5喷射电沉积纳米晶体

喷射电沉积是一种局部高速电沉积技术,由于其特殊的流体力学性能,并具有高的热量和物质传输率,以及高的沉积速率而在纳米晶体制备方面受到注目。电沉积时,一定流量和压力的电解液从阳极喷嘴垂直喷射到阴极表面,使得电沉积反应在喷射流与阴极表面冲击区发生。电解液的冲击不仅对镀层进行了机械活化,同时还有效地减少了扩散层的厚度,改善电沉积过程,使得镀层致密,晶粒细化。如采用含有硫酸镍、氯化镍及硼酸的Watts型镀液,通过喷射电沉积方法,在喷射速度为2一5.5m/s,电流密度为80一160A/dm2 ,温度为(50士1)℃和pH值为3.0士0.1的条件下可以获得平均尺寸在20~30nm的纳米晶体。

图8-8实验装置示意

1一塑料管;2一电沉积室;3一恒温水浴槽;

4一阳极镍管;5一温度计;

6一阴极试样;7一电镀液;

8一控制阀;9-流量计;

10一离心泵;11-蒸馏水

熊毅等利用喷射电沉积的

方法从Watts镀液中制备出了纳米晶镍,采用图8-8实验装置,实验装置主要由3部分组成:控温系统、镀液循环系统、电源系统。电沉积室(如图8-9)为150 mm X 150 mm X 200mm 的玻璃电解槽。电解液在3个串联离心泵的作用下,经由阳极镍管喷射人沉积室中,最后经沉积室出口回流至溶液槽中。

沉积速度随喷射速度的变化情况如图8-10所示。实验表明,随着喷射速度的增加,沉积速度亦随之提高。喷射速度的增加增强了溶液的搅拌强度,使阴极附近消耗的金属离子得到及时补充,降低了阴极的浓差极化作用,使得电极表面的扩散层厚度显著减小,加快了液相传质的过程,故而相应地提高了沉积速度。其他参数一定时,随着喷射速度的提高,允许使用的电流密度亦增大。喷射速度从2m/s增加到5.5m/s的过程中,允许使用的电流密度亦从80 A/dm2增加到160 A/dm2。

对沉积层的XRD、TEM分析结果表明:X射线衍射谱中各衍射峰均由于晶粒细化而宽化,且无其他相出现。利用各衍射线的宽化程度根据Scherrer公式算出样品的平均晶粒尺寸见表8-1,其平均晶粒尺寸为20~30nm。其对应的TEM照片表明镀层中有较多的孪晶存在,且取

向基本一致。孪晶等结构缺陷的存在表明纳米晶体的晶界处于有序状态。TEM照片显示出镀层中存在一种细小的筐篮状的网格形微细结构,体现出了三维外延微晶集聚的痕迹。当三维外延微晶生长,发展并联合为完整的镀层时,基体上的缺陷如孪晶也就发展了,计算其平均晶粒尺寸分别为28.7nm和26.3nm,与X射线衍射结果相吻合。

图8-10沉积速度随喷射速度的变化

表8-1不同纳米晶Ni样品的晶粒尺寸

2.6单槽电沉积与多槽电沉积纳米晶体

单槽电沉积是将欲镀的两种或多种不同电化学活性的金属离子以适当的比例添加在同一个电解槽中,加人适当的添加剂以控制不同金属离子的沉积电位,控制电极电位在一定的范围内周期性的变化,获得不同种类的物质或组分周期性变化的多层纳米晶,一般采用恒电位方法。

多槽电沉积是交替在含有不同电化学活性的金属离子盐的两个或多个电解槽中,分别控制其电极电位进行电沉积,获得物质或组分周期性变化的纳米多层膜,一般采用恒电位方法。

2.7模板电化学法合成纳米材料

模板电化学合成法是选择具有纳米孔径的多孔材料作为阴极,利用物质在阴极的电化学还原反应使材料定向地进入纳米孔道中,模板的孔壁将限制所合成的材料的形状和尺寸,从而得到一维纳米材料。模板电化学合成方法的特点是: (1) 合成反应可以在较低的温度下进行,实验设备简单,能耗低; (2)能合成多种材料的纳米管或纳米纤维,如导电聚合物、金属、半导体、碳等等; (3) 通过改变模板孔径的大小来调节纳米管或纳米纤维的直径,例如Wu 和Bein 等人最近用此方法研制出半径仅为3 nm 的导电聚合物纳米纤维,这是其他方法难以做到的;

(4) 由于模板上的孔径是单分散的,由此可得到单分散的纳米结构材料; (5) 利用模板法制备的纳米管或纳米纤维易于分离和收集。

模板电化学合成纳米材料的过程通常为:首先制备具有纳米孔道的模板材料,在模板的一图8-9电沉积室示意

1一阳极镍管;2-温度计;

3一玻璃缸;4一阴极试样;

5-镀液出口

表面蒸镀上一层金属膜(如Au、Ag) 作为阴极,然后把镀有金属的一面固定在导电基底上,另一面暴露于电解液中,在恒电位或恒电流状态下将金属或半导体沉积到模板的纳米孔道中,最后将模板溶解得到纳米管或纳米线(如图1) 。一般说来,为了得到纳米管材料,需要预先对模板的孔壁进行修饰,使金属能够很好地沉积到孔壁上。模板电化学法合成纳米材料的示意图憎溶剂部分与孔壁之间存在相互作用力。另外,导电聚合物的分子和孔壁之间还存在着静电相互作用力。材料与孔壁之间的作用力促使电化学沉积物沿孔壁生长。通过控制聚合时间,可以得到薄壁管、厚壁管或纳米线等多种纳米结构材料。

在模板电化学合成法中经常使用的模板有多孔聚合物模板和多孔阳极氧化铝模板(AAO 模板) 。多孔聚合物模板是通过径迹刻蚀的方法得到的,其孔径可以达到微米级甚至纳米级,所用的膜材料一般为聚碳酸酯膜、聚脂或其他聚合物材料;多孔氧化铝模板是在酸性溶液中通过电化学阳极氧化制备的,这种膜含有孔径一致、排列有序、分布均匀的柱状孔。当然还有其他形式的模板材料可应用于模板电化学合成中。例如,胶质晶体模板(colloidal crystal templates) 是应用紧密排列的单分散微粒(如聚苯乙烯或硅) 组成的模板。以此为模板通过电化学还原可得到拥有三维有序大孔结构的材料,如金属、半导体或者导电聚合等。

2.8、脉冲超声电化学法合成纳米微粒的研究

超声波是由一系列疏密相间的纵波构成,并通过液体介质传播,当超声波能量足够高时就会产生“超声空化”作用,空化气泡在形成与湮灭的瞬间会产生局部的高温高压。超声波在电化学系统中通过超声能量对电极界面的扰动使电极表面得到清洁,并且使电极附近双电层内的金属离子得到更新。Reisse 课题组发明了一种装置,如图3 和4所示:一个钛电极同时作为阴极和超声发生装置,超声电极的电活性部位是此电极底部的一个圆形电极,它和电解液直接接触,电极的其他部分都是绝缘的。该超声电极可以在一个电流脉冲结束后马上发出一个超声脉冲。电流脉冲可以在阴极上得到高密度的金属纳米晶核,然后在超声脉冲所发出的超声能量下把阴极上形成的晶核振离阴极表面,同时使阴极表面得到清洁,其附近双电层中的金属离子得到更新。利用此装置可以制备单金属、合金或半导体纳米粒子。

3、电化学生物传感器的原理

电化学生物传感器一般采用固体电极作基础电极,将生物敏感分子固定在电极表面,通过生物分子间的特异性识别作用,生物敏感分子能选择性地识别目标分子并将目标分子捕获

到电极表面,基础电极作为信号转换器将电极表面发生的识别反应信号导出,变成可以测量的电信号如电流、电位或者电容等,从而实现对分析目标进行定量或定性分析的目的。它的核心部件是检测器,主要由两部分组成:一是生物敏感元件,由对被测定的物质(底物)具有高选择性分子识别功能的材料膜构成;二是转换器,它能把膜上进行的生化反应中消耗或生成的化学物质信息转换成电信号,电信号经过电子信息技术的处理在仪器上显示并记录下来,还可以进一步进行数据处理和分析。电化学生物传感器的基本结构如图所示:

4、电化学方法制备纳米晶体的优点

与传统的纳米晶体材料制备法相比,电化学法获得的纳米晶体具有以下一些优点。

①可以获得晶粒尺寸在1一100nm的各种纳米晶体材料,如纯金属(铜、镍、锌、钻等)、合金(钴一钨、镍一锌、镍一铝、铬一铜、钴一磷等)、半导体(硫化锅等)、纳米金属线(金、银等)、纳米叠层膜(铜/镍、铜/铁、镍/钥/铁等)以及其他复合镀层(镍一碳化硅、镍一三氧化二铝等),并且可以大批量生产。

②所得的纳米晶体材料具有很高的密度和极少的空隙率。③电化学法制备纳米晶体材

料受尺寸和形状的限制很少。

④电化学法不像溶胶一凝胶法需要繁杂的后续过程,可以直接获得大批量的纳米晶体材料。

⑤电化学方法获得纳米晶体的投资成本相对较低而产率又非常高。

⑥电化学方法在技术上的困难较小,工艺灵活、易于控制,很容易由实验室向工业现场转变。

4.1电沉积纳米晶体的独特性能

电沉积纳米晶体与电沉积普通晶体相比,在以下几方面显出独特的性能(以电沉积纳米镍为例)。

时,硬度为14 . 7MPa (150kg/mm2 ) ;但是当晶体尺

(1)硬度大当镍晶体尺寸为100m

寸在10 nm时,其硬度达到63.7MPa (650kg/mm2)以上。

(2)磁饱和强度高磁饱和实验表明,当晶粒尺寸降低时磁饱和强度增加,只有当晶粒尺寸降至l0nm时,磁饱和性受晶粒尺寸的影响才很小。

(3)电阻小在室温下,晶粒尺寸在10 nm的镍的电阻性能是传统粗晶的3倍以上。

(4)扩散系数大氢渗人研究表明,氢在17nm纳米晶体中的扩散系数要高于普通晶体的扩散系数。

(5)抗局部腐蚀性能好动电位扫描测试及其他电化学测试均表明纳米晶体具有优异的抗局部腐蚀性能。

但是纳米晶体属于亚稳态,随着温度的升高,晶粒尺寸会增大,例如晶粒尺寸在l0nm

的镍在573K时晶粒开始变为粗晶。

4.2脉冲电沉积纳米晶体的优点

与纳米材料的物理和化学制备方法相比,电化学合成法具有如下的特点:首先,反应过

程可以在室温下进行,设备简单、操作方便、能耗低,而且不需要高纯度的起始反应物就可

以得到高纯度的纳米微粒;其次,可以通过调节电流密度、电极电位等电化学参数以及改变

阴极材料和溶液的组成等手段来方便地合成不同形状和大小的纳米粒子;再者,电化学制

备纳米材料的应用范围非常广,原则上只要在电极上可以沉积的物种都可以通过电化学的

方法制备出纳米粒子,包括金属、金属合金、半导体、高分子导电聚合物等。另外,电化学

方法还可以和其他化学合成方法相结合,灵活方便地制备适用于不同要求的纳米粒子。

现在常用的制备纳米晶体的电化学方法是直流电沉积和脉冲电沉积,两者相比,脉冲电沉积获得的纳米晶体在以下几方面比直流电沉积获得的纳米晶体性能更好。

(1)产品性能好脉冲电沉积可以获得比直流电沉积好得多的产品性能。例如提高其硬度,增加其密度、延展性、耐磨性、耐蚀性等,降低孔隙率及内应力等。

(2)沉积速率大脉冲电沉积的电流密度以及电沉积速率远比直流电沉积的大。

(3)附着力强使用脉冲电沉积可以减少产物表面的金属氧化物,增加其附着力。

(4)镀层均匀采用脉冲电沉积可以获得沉积均匀,厚度一致的镀层。

(5)杂质含量低采用脉冲电沉积获得的镀层中杂质的含量比直流电沉积得到的镀层中少。

(6)成分稳定采用脉冲电沉积可以获得成分稳定的合金镀层。

(7)工艺简单采用脉冲电沉积可以很方便地在单槽中获得纳米叠层膜,从而克服了运用直流法需要多槽电镀的困难。

5、总结与发展前景

近十几年来对电化学制备纳米晶体的研究,发现电化学法制备纳米晶体具有其他普通晶体所不具有的优异性能,例如耐磨性、延展性、硬度、电阻、电化学性能以及耐腐蚀性等。并且电化学制备纳米晶体也相对比较容易,因而其在科学技术上的发展前景是非常广阔的,电化学合成方法为制备纳米功能材料开辟了一块新天地。例如,电化学方法可以与醇盐水解法相结合制备多种纳米粒子。可以相信,随着人们对电化学合成纳米粒子机理的认识的不断深入,电化学方法将在纳米微粒的制备中扮演更重要的角色,并一定会有新的突破。

纳米技术的介入为生物传感器的发展提供了无穷的想象。在生物电分析化学研究和电化学生物传感器的研制中,生物分子的固定化是一个关键因素。这涉及到生物分子氧化还原中心与电极之间的电连接。因此找到一种可靠且有效的方法来保持固定化生物分子的高活性同时允许电极和氧化还原活性中心之间有效的电子传递至关重要。纳米材料具有如电学、磁学、力学、电化学等诸多特异性质,同时能够有效同定生物组分。当前纳米粒子的研究已经进入到药物的控制释放领域。纳米粒子在人体内的传输非常方便。由纳米粒子包裹的智能药物进入人体后,可主动识别并攻击癌细胞或修补损伤组织。一种糖尿病患者专用的超微型传感器,可植入患者皮下.适时监控体内血糖水平,根据需要释放胰岛素。现在,科学家正在制造纳米智能机器人,这种机器人在人体中巡游,随时监控人体各项生理指标,根据预先设定的指令,清除有害物质,自动释放药物,并进行自身组织的构建和修复。纳米技术已经而且将继续为生物传感器的发展带来突破,它们的有机结合为人类展望了美好的未来。

参考文献

[ 1 ] Parthasarathy R , Martin C R. Nature , 1994 , 369 : 298 —301

[ 2 ] Braun P V , Wiltzius P. Nature , 1999 , 402 : 603 —604

[ 3 ] Hagfeld A , Gratzel M. Chem. Rev. , 1995 , 95 : 49 —68

[ 4 ] Schmid G. Chem. Rev. , 1992 , 92 : 1709 —1727

[ 5 ] Ozin G A. Adv.Mater. , 1992 , 4 : 612 —649

[ 6 ] Alivisatos A P. Science , 1996 , 271 : 933 —937

[ 7 ] Lee S B , Martin C R. Chem. Mater. , 2001 , 13 : 3236 —3244

[ 8 ] Braun E , Elchem Y, Sivan U , et al . Nature , 1998 , 391 : 775 —778

[ 9 ] Preston C K, Moskowits M. J . Phys . Chem. , 1993 , 97 : 8495 —8503

[10] Reetz M T, Helbig W. J . Am. Chem. Soc. , 1994 , 116 : 7401 —7402

[11] Delplancke J L , Dille J , Reisse J , et al . Chem. Mater. , 2000 ,12 : 946 —955

[12] Zhu J J , Aruna S T, Koltypin Y, Gedanken A. Chem. Mater. ,2000 , 12 : 143 —147

[13] Franzke D , Wolaun A. J . Phys. Chem. , 1992 , 96 : 6377 —6381

[14] Penner R M, Martin C R. J . Electrochem. Soc. , 1986 , 133 :2206 —2207

[15] Martin C R. Adv. Mater. , 1991 , 3 : 960 —966

[16] Cikby A F J , Hornyak G L , Stochert J A , Martin C R. J . Phys.Chem. , 1994 , 98 : 2963 —2971

[17] Klein J D , Herrick R D I , Palmer D , et al . Chem. Mater. ,1993 , 5 : 902 —904

[18] Parthasarathy R V , Martin C R. Adv. Mater. , 1995 , 7 : 896 —897

[19] Wu C G, Bein T. Science , 1994 , 264 : 1757 —1759

[20] Brumlik C J , Martin C R. J . Am. Chem. Soc. , 1991 , 113 :3174 —3175

[21] Vandyke L S , Martin C R. Langmuir , 1990 , 6 : 1118 —1123

[22] Parthasarathy R V , Martin C R. Chem. Mater. , 1994 , 6 :1627 —1632

[23] Bartlett P N , Baumberg J J . Birkin P R , et al . Chem. Mater. ,2002 , 14 : 2199 —2208

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

纳米相增强金属材料制备技术的研究进展及应用

纳米相增强金属材料制备技术的研究进展及应用 【摘要】目前纳米技术应用广泛,在高强金属材料应用方面尤为突出。本文针对现有主要几种纳米增强金属材料制备工艺方法进行概述并比较,讨论其优缺点。最后还探讨了纳米相增强制备技术未来的发展趋势和改进方向,并对纳米结构材料应用领域和前景进行展望。 【关键词】纳米增强制备方法优缺点 随着科技进步,各个领域对于相关材料的性能要求日益提高。纳米增强技术是改善材料性能的重要方法之一,其在金属材料领域尤其应用广泛。在电子、汽车、船舶、航天和冶金等行业对高性能复合材料需求迫切,选用最佳制备方法制备出性能更优良的纳米材料是当前复合材料发展的迫切要求。 1 纳米增强技术概述 纳米相增强金属材料是由纳米相分散在金属单质或合金基体中而形成的。由于纳米弥散相具有较大的表面积和强的界面相互作用,纳米相增强金属复合材料在力学、电学、热学、光学和磁学性能方面不同于一般复合材料,其强度、导电性、导热性、耐磨性能等方面均有大幅度的提高[1]。 1.1 机械合金化法 机械合金化法(MA)是一种制备纳米颗粒增强金属复合材料的有效方法。通过长时间在高能球磨机中对不同的金属粉末和纳米弥散颗粒进行球磨,粉末经磨球不断的碰撞、挤压、焊合,最后使原料达到原子级的紧密结合的状态,同时将颗粒增强相嵌入金属颗粒中。由于在球磨过程中引入了大量晶格畸变、位错、晶界等缺陷,互扩散加强,激活能降低,复合过程的热力学和动力学不同于普通的固态过程,能制备出常规条件下难以制备的新型亚稳态复合材料。 1.2 内氧化法 内氧化法(Internal oxidation)是使合金雾化粉末在高温氧化气氛中发生内氧化,使增强颗粒转化为氧化物,之后在高温氢气气氛中将氧化的金属基体还原出来形成金属基与增强颗粒的混合体,最后在一定的压力下烧结成型。因将材料进行内氧化处理,氧化物在增强颗粒处形核、长大,提高增强粒子的体积分数及材料的整体强度,这样可以提高材料的致密化程度,且可以改善相界面的结合程度,使复合材料的综合力学性能得到提高。 1.3 大塑性变形法 大塑性变形法(Severe plastic deformation)是一种独特的纳米粒子金属及金属合金材料制备工艺。较低的温度环境中,大的外部压力作用下,金属材料发

金属氧化物纳米材料的电化学合成与形貌调控研究进展

[Review] https://www.sodocs.net/doc/b56586982.html, doi:10.3866/PKU.WHXB 201209145 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2012,28(10),2436-2446 October Received:August 30,2012;Revised:September 10,2012;Published on Web:September 14,2012.? Corresponding author.Email:dsxu@https://www.sodocs.net/doc/b56586982.html,;Tel:+86-10-62760360. The project was supported by the National Natural Science Foundation of China (51121091,21133001,61176004),National Key Basic Research Program of China (973)(2007CB936201,2011CB808702),and Science and Technology on Electro-optical Information Security Control Laboratory,China (9140C150304110C1502). 国家自然科学基金(51121091,21133001,61176004),国家重点基础研究发展规划项目(973)(2007CB936201,2011CB808702)和国家光电信息控制和安全技术重点实验室基金(9140C150304110C1502)资助 ?Editorial office of Acta Physico-Chimica Sinica 金属氧化物纳米材料的电化学合成与形貌调控研究进展 焦淑红1 徐东升1,2,*许荔芬1张晓光2 (1北京大学化学与分子工程学院,分子动态与稳态结构国家重点实验室,北京分子科学国家实验室,北京100871; 2 光电信息控制和安全技术重点实验室,河北三河065201) 摘要:金属氧化物纳米材料因其丰富的形貌、独特的性能、广泛的应用成为材料合成领域研究的热点.调控金 属氧化物纳米材料的形貌对于调变其性能、拓展其应用空间具有重要意义.电化学方法由于操作简单易控、方法灵活多变,因此成为调控金属氧化物形貌的常用方法.本文综述了近年来我们在金属氧化物纳米材料的电化学合成与形貌调控方面已取得的研究结果;总结了不同金属氧化物在电化学过程中晶体生长机制和形貌调控的规律,为实现功能材料的定向合成奠定了基础.关键词: ZnO;金属氧化物;形貌调控;电沉积;纳米管;多级结构 中图分类号: O646 Recent Progress in Electrochemical Synthesis and Morphological Control of Metal Oxide Nanostructures JIAO Shu-Hong 1 XU Dong-Sheng 1,2,* XU Li-Fen 1 ZHANG Xiao-Guang 2 (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;2Science and Technology on Electro-optical Information Security Control Laboratory,Sanhe 065201,Hebei Province,P .R.China ) Abstract:There has been considerable focus on the synthesis of metal oxide nanostructures because of their extensive structures,unique properties,and wide applications.The morphological control of metal oxide nanostructures is of interest for tuning their performance and expanding their range of applications.Electrochemical methods have become a common way of controlling the morphologies of metal oxides,owing to their simple operation,ease of control,and flexible modes.This paper presents a brief overview of our research in the electrochemical synthesis and morphological control of metal oxide nanostructures.We will also discuss the crystal growth mechanism and the morphology control of different metal oxides during the electrochemical deposition process,which lays the foundation for orientation design and fabrication of functional materials. Key Words:ZnO;Metal oxide;Morphological control; Electrodeposition; Nanotube; Hierarchical structure 2436

多孔碳纳米球的制备及其电化学性能_杨秀涛

物理学报Acta Phys.Sin.Vol.66,No.4(2017)048101 多孔碳纳米球的制备及其电化学性能 ?杨秀涛梁忠冠袁雨佳阳军亮夏辉? (中南大学物理与电子学院,长沙 410083) (2016年10月11日收到;2016年10月31日收到修改稿) 以三嵌段共聚物F108为软模板,通过水热法合成酚醛树脂球并在氮气氛围下碳化、KOH 活化处理,最终得到多孔碳纳米球材料.通过扫描电子显微镜,透射电子显微镜和氮气吸附分析仪对样品进行表征,结果表明样品的平均粒径为120nm,球形度高,比表面积达到1403m 2/g,孔径分布广.通过X 射线衍射研究样品的结晶度, 序度提高明,10000次循环充放电后,关键词:PACS:1引上的电池,长、能影响较大[纳米管[5,6]球[12?14].物为模板,活化,得到活 P123(PEO 20-. 为软模板,利用水(porous .通过扫描电子X 射线,研究孔隙结构、 ?国家自然科学基金(批准号:51673214)资助的课题.?通信作者.E-mail:xhui73@https://www.sodocs.net/doc/b56586982.html, ?2017中国物理学会Chinese Physical Society https://www.sodocs.net/doc/b56586982.html, 网络出版时间:2017-01-12 10:56:13 网络出版地址:https://www.sodocs.net/doc/b56586982.html,/kcms/detail/11.1958.O4.20170112.1056.016.html

结晶度和表面官能团的影响.结合PCNS 样品的电化学性能的测试,研究了PCNS 样品的理化特性对其电化学性能的影响. 2实验部分 2.1 多孔碳纳米球的合成 首先,称取1.96g 三嵌段共聚物F108溶解于30mL 水中搅拌均匀得到澄清溶液A.然后称1.2g 的苯酚并量取4.2mL 质量分数为37%的甲醛溶液溶解于30mL 的0.1M(mol/L)氢氧化钠溶液,搅拌均匀, min 体系中加入到溶液B.取物质烘干.氛下以700? 物PCNS 为中性,900?C 时,2.2600i)TWIX)比表面积S 孔面积(S 计算.品的孔径分布.用X 射线衍射仪(XRD,SIEMENS D500)在电压为40kV 、电流为100mA,Cu 靶、K α射线(λ=0.15056nm)、石墨单色滤波器以及衍射角为10?—70?的条件下以2?/s 的速度对样品扫描. 用红外光谱仪(FTIR,Niclet 380)对样品在波数500cm ?1—4500cm ?1范围内进行扫描,根据得到的吸收光谱图分析样品的表面元素及官能团组成. 2.3电化学特性测试 采用辰华CHI660E 电化学工作站在三电极体 系进行电化学特性的测试.测试体系的对电极和参比电极分别采用铂片电极和Hg/HgO 电极,而工作电极的制备采用(1×1)cm 2泡沫镍为基底,将制备的多孔碳纳米球样品作为活性物-质和乙炔黑,用乙醇作为溶剂,60wt%聚四氟乙烯(PTFE)混合,调成浆状,,于10MPa 压(cyclic (galvano-GC)和电化学阻spectroscopy,5,10,20,50,100V 的电压区间进行·m ), (1) (A),放电时间(g).电化学kHz,微扰为,1(b)分别是PCNS 1(c)和图1(d)是照片,图1(e)和TEM 照片,每TEM 照片,KOH 处理后其粒径大小没有明显的改变.从选区电子衍射图可知,样品在?002?和?100?晶面处具有衍射特征峰.由超高放大倍数TEM 照片,可以看出样品PCNS700和PCN900的微晶有序度要高于PCNS 的有序度.

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

电化学方法制备纳米材料

电化学方法制备纳米材料 Mcc 引言:诺贝尔奖获得者Feyneman在六十年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元,纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。而电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直至现在的电化学制备纳米金属线、金属氧化物等过程,为纳米材料的研究做出了极大的贡献。 摘要:纳米是指特征维度尺寸介于1-100 nm范围内的粒子微小粒子,又称作超微粒子。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。本文简单综述了纳米材料的合成与制备中常用的几种方法以及简单的一些应用,着重综述了

纳米材料的电化学制备方法并对其影响因素和发展情景做以简单探究。 关键词:纳米材料电化学制备特征应用 Electrochemical preparation of nano materials Mcc Introduction:Nobel Prize winner in the s Feyneman prophecy: if we tiny scale of objects arranged to some control of words, we can make the object have a lot of unusual characteristics, you will see the properties of materials have a wealth of change. What he said is the material of the nanometer material now. Nano materials and nanotechnology is widely thought to be the 21 st century the most important new materials and one of the areas of science and technology. In 1992, the Nanostructured Materials "the official publication, marked the nanometer material science into an independent scientific < https://www.sodocs.net/doc/b56586982.html,/gongxue/ >. Since 1991, the first time the Iijima preparation since carbon nanotubes, a one-dimensional nanomaterials due to the nature of the has many special and broad application prospects and caused the people's attention. Because the morphology of nanometer material and size of its performance has the important influence, therefore, the size

磁性纳米材料的制备及应用前景

磁性纳米材料的制备及应用前景 摘要:磁性纳米材料因其具有独特的性质,在现代社会中有着广泛的应用,并越来越受到人们的关注。本文主要介绍了磁性纳米材料的制备及应用前景,概述了纳米磁性材料的制备方法,如机械球磨法,水热法,微乳,液法,超声波法等,总结了纳米磁性材料在实际中的应用,并对其研究前景进行了展望。 Abstract: magnetic nanomaterials due to their unique properties, in the modern society has a wide range of applications, and people pay more and more attention. This paper mainly introduces the magnetic nanometer material preparation and application prospect of nano magnetic materials, summarized the preparation methods, such as mechanical ball milling method, hydrothermal method, microemulsion, liquid method, ultrasonic method, summarizes the nanometer magnetic materials in practical application, and the research prospect.

前言 纳米材料因其尺寸小而具有普通块状材料所不具有的特殊性质,如表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,从而与普通块状材料相比具有较优异的物理、化学性能。磁性纳米材料由于其在高密度信息存储,分离,催化,靶向药物输送和医学检测等方面有着广泛的应用,已经受到了广泛关注。磁性复合纳米材料是以磁性纳米材料为中心核,通过键合、偶联、吸附等相互作用在其表面修饰一种或几种物质而形成的无机或有机复合材料。由于社会的发展和科学的进步,磁性纳米材料的研究和应用领域有了很大的扩展。磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高 信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。目前普遍采用化学法制备铁氧体磁性纳米颗粒,具体有溶胶~凝胶法、化学共沉淀法等,而由于生物合成的磁性纳米颗粒表现出更优良的性质。 1.磁性纳米材料的特点 量子尺寸效应:材料的能级间距是和原子数N 成反比的,因此,当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 2. 磁性复合纳米材料的制备方法 2.1水热合成法 水热合成法是液相中制备纳米粒子的一种新方法。一般是在100~300摄氏度温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗透析反应和物理过程的控制,得到改进的无机物,再过滤,洗涤,干燥,从而得到高纯,超细的各类微粒子。研究发现以FeC13为铁源,AOT为表面活性剂,N2H4·H20(50%)为还原剂水热合成 Fe3O4纳米颗粒时,反应温度和时间,表面活性剂和还原剂浓度对最终产物的尺寸形貌、分散性和磁性有明显影响。还有通过调节水热反

纳米材料的制备及应用

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

第8章电化学方法在制备纳米材料中的应用

第八章电化学方法在制备纳米材料中的应用 人们对于分离超微粒子的研究开始于20世纪60年代。1963年Uyeda等人采用气体冷凝法制备了金属超微粒子,并对超微粒子的形貌和晶体结构进行了电镜和电子衍射研究;20世纪70年代末德克雷斯勒成立了NST (Nano-scale Science and Technology)研究组;1984年在柏林召开的第二届国际超微粒子和等离子体会议,使超微粒子的研究成为世界性热点之一;1989年德国著名科学家Gleiter等首次提出了纳米材料这一概念;1990年7月在美国巴尔的摩召开的第一届国际NST会议标志着这一全新科技—纳米科技的正式诞生;1992年的TMS (Minerals, Metals, Materials)年会上有5个分会场专门讨论纳米粒子的制备、结构和性质,由此可见其重要性。美国材料科学学会预言,纳米材料将是21世纪最有前途的新兴材料之一,是21世纪高新科技的重要组成部分,被科学家们誉为“21世纪最有前途的材料”闭。它的出现将和金属、半导体、荧光材料的出现一样,引起科技领域的重大变革。 纳米粒子是指特征维度尺寸介于1~100 nm范围内的微小粒子,又称作超微粒子。处在原子簇和宏观物体交界的过渡区域,是一种典型的介观系统;它的大小介于宏观物质与微观粒子如电子、原子、分子之间,属于亚微观的范畴。由纳米粒子形成的晶体称为纳米晶体,它既不像一般晶体那样具有长程有序,也不像非晶体那样具有短程有序结构,它是一种具有全新“气体状”(gas-like)固体结构的新型材料,粒子内部存在有序一无序结构(order disorder)。从传统热力学观点来看,这是一种亚稳态结构。 纳米材料由两种组元构成:晶体组元和界面组元。晶体组元由晶粒中的原子组成,这些原子都严格位于晶格位置上;界面组元由各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。由于纳米粒子的粒径很小,使得粒子中的原子有很大部分处于粒子表面,表现在固体纳米材料中,有相当大比例的原子处于晶体界面上,即界面组元的比例很高,一般纳米晶粒内部的有序原子与纳米晶粒的界面无序原子各占总原子数的50%左右。晶界对纳米材料的结构及物性具有重要作用,由于这些大量处于晶界或晶粒缺陷中心的原子,使纳米粒子产生小尺寸效应、量子效应、宏观量子隧道效应、表面和界面效应等,引起了纳米材料在许多物理、化学、力学性能上与同组成的微米粒子材料有非常显著的差异,它不仅开拓了人们认识世界的视野,也改变了某些传统观念。例如,纳米陶瓷的出现使得陶瓷在表现刚性的同时也具有了很好的塑性;传统意义上的典型导体(如Ag)纳米化后可以变成绝缘体;同样,部分绝缘体纳米化后也可以变为导体。因此,对超微粒子及其由此压制而成的纳米固体材料结构及性能的研究引起了世人的广泛关注,对纳米粒子的研究也变得十分活跃。 中国古代早就制备出了这种材料,例如古铜镜表面的防锈层即由纳米氧化锡组成,灯灰就是纳米炭黑,只是由于表征手段的原因,当时未能给出纳米材料这一确切的名称。由此可见纳米材料是一个古老而又崭新的研究领域。 而电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直至现在的电化学制备纳米金属线、金属氧化物等过程,已有几十年的研究时间。早在1939年,Brenner就在其博士论文中论述了使用两个含不同成分的电解池,交替在两池之间进行电沉积制备纳米叠层膜的研究。但当时所使用的这种方法太烦琐,易造成镀件表面污染,影响沉积层质量。随后在1949年又对其工艺进行了改进,直至1963年,运用电沉积技术制备叠层膜的方法不断改进,Brenner提出了单一电解液中沉积Co-Bi多层膜的设想,由原来的多槽电沉积转变成今天的单槽电沉积,这便是当今电沉积制备纳米金属多层膜的开端。此后的一段时间里,此研究发展较慢。直到20世纪80年代,电沉积叠层膜开始有了

相关主题