搜档网
当前位置:搜档网 › 《化学工程与工艺专业英语》课文翻译

《化学工程与工艺专业英语》课文翻译

《化学工程与工艺专业英语》课文翻译
《化学工程与工艺专业英语》课文翻译

Unit 1 Chemical Industry

化学工业

1.Origins of the Chemical Industry

Although the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin‘s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).

1.化学工业的起源

尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。可以认为它起源于工业革命其间,大约在1800年,并发展成为为其它工业部门提供化学原料的产业。比如制肥皂所用的碱,棉布生产所用的漂白粉,玻璃制造业所用的硅及Na2CO3. 我们会注意到所有这些都是无机物。有机化学工业的开始是在十九世纪六十年代以William Henry Perkin 发现第一种合成染料—苯胺紫并加以开发利用为标志的。20世纪初,德国花费大量资金用于实用化学方面的重点研究,到1914年,德国的化学工业在世界化学产品市场上占有75%的份额。这要归因于新染料的发现以及硫酸的接触法生产和氨的哈伯生产工艺的发展。而后者需要较大的技术突破使得化学反应第一次可以在非常高的压力条件下进行。这方面所取得的成绩对德国很有帮助。特别是由于1914年第一次世界大仗的爆发,对以氮为基础的化合物的需求飞速增长。这种深刻的改变一直持续到战后(1918-1939)。

date bake to/from: 回溯到

dated: 过时的,陈旧的

stand sb. in good stead: 对。。。很有帮助

Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years. The lion‘s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s. The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins.

1940年以来,化学工业一直以引人注目的速度飞速发展。尽管这种发展的速度近年来已大大减慢。化学工业的发展由于1950年以来石油化学领域的研究和开发大部分在有机化学方面取得。石油化工在60年代和70年代的迅猛发展主要是由于人们对于合成高聚物如聚乙烯、聚丙烯、尼龙、聚脂和环氧树脂的需求巨大增加。

The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role. It makes thousands of different chemicals which the general public only usually encounter as end or consumer products. These products are purchased because they have the required properties which make them suitable for some particular application, e.g. a non-stick coating for pans or a weedkiller. Thus chemicals are ultimately sold for the effects that they produce.

今天的化学工业已经是制造业中有着许多分支的部门,并且在制造业中起着核心的作用。它生产了数千种不同的化学产品,而人们通常只接触到终端产品或消费品。这些产品被购买是因为他们具有某些性质适合(人们)的一些特别的用途,例如,用于盆的不粘涂层或一种杀虫剂。这些化学产品归根到底是由于它们能产生的作用而被购买的。

2. Definition of the Chemical Industry

At the turn of the century there would have been little difficulty in defining what constituted the chemical industry since only a very limited range of products was manufactured and these were clearly chemicals, e.g., alkali, sulphuric acid. At present, however, many intermediates to products produced, from raw materials like crude oil through (in some cases) many intermediates to products which may be used directly as consumer goods, or readily converted into them. The difficulty cones in deciding at which point in this sequence the particular operation ceases to be pa rt of the chemical industry‘s sphere of activities. To consider a specific example to illustrate this dilemma, emulsion paints may contain poly (vinyl chloride) / poly (vinyl acetate). Clearly, synthesis of vinyl chloride (or acetate) and its polymerization are chemical activities. However, if formulation and mixing of the paint, including the polymer, is carried out by a branch of the multinational chemical company which manufactured the ingredients, is this still part of the chemical industry of does it mow belong in the decorating industry?

2.化学工业的定义

在本世纪初,要定义什么是化学工业是不太困难的,因为那时所生产的化学品是很有限的,而且是非常清楚的化学品,例如,烧碱,硫酸。然而现在有数千种化学产品被生产,从一些原料物质像用于制备许多的半成品的石油,到可以直接作为消费品或很容易转化为消费品的商品。困难在于如何决定在一些特殊的生产过程中哪一个环节不再属于化学工业的活动范畴。举一个特殊的例子来描述一下这种困境。乳剂漆含有聚氯乙烯/聚醋酸乙烯。显然,氯乙烯(或醋酸乙烯)的合成以及聚合是化学活动。然而,如果这种漆,包括高聚物,它的配制和混合是由一家制造配料的跨国化学公司完成的话,那它仍然是属于化学工业呢还是应当归属于装饰工业中去呢?

It is therefore apparent that, because of its diversity of operations and close links in many areas with other industries, there is no simple definition of the chemical industry. Instead each official body which collects and publishes statistics on manufacturing industry will have its definition as to which operations are classified as the chemical industry. It is important to bear this in mind when comparing statistical information which is derived from several sources.

因此,很明显,由于化学工业经营的种类很多并在很多领域与其它工业有密切的联系,所以不能对它下一个简单的定义。相反的每一个收集和出版制造工业统计数据的官方机构都会对如何届定哪一类操作为化学工业有自己的定义。当比较来自不同途径的统计资料时,记住这点是很重要的。

3. The Need for Chemical Industry

The chemical industry is concerned with converting raw materials, such as crude oil, firstly into chemical intermediates and then into a tremendous variety of other chemicals. These are then used to produce consumer products, which make our lives more comfortable or, in some cases such as pharmaceutical produces, help to maintain our well-being or even life itself. At each stage of these operations value is added to the produce and provided this added exceeds the raw material plus processing costs then a profit will be made on the operation. It is the aim of chemical industry to achieve this.

3.对化学工业的需要

化学工业涉及到原材料的转化,如石油首先转化为化学中间体,然后转化为数量众多的其它化学产品。这些产品再被用来生产消费品,这些消费品可以使我们的生活更为舒适或者作药物维持人类的健康或生命。在生产过程的每一个阶段,都有价值加到产品上面,只要这些附加的价值超过原材料和加工成本之和,这个加工就产生了利润。而这正是化学工业要达到的目的。

It may seem strange in textbook this one to pose the question ―do we need a chemi cal industry?‖ However trying to answer this question will provide(ⅰ) an indication of the range of the chemical industry‘s activities, (ⅱ) its influence on our lives in everyday terms, and (ⅲ) how great is society‘s need for a chemical industry. Our appro ach in answering the question will be to consider the industry‘s contribution to meeting and satisfying our major needs. What are these? Clearly food (and drink) and health are paramount. Other which we shall consider in their turn are clothing and (briefly) shelter, leisure and transport.

在这样的一本教科书中提出:“我们需要化学工业吗?”这样一个问题是不是有点奇怪呢?然而,先回答下面几个问题将给我们提供一些信息:(1)化学工业的活动范围,(2)化学工业对我们日常生活的影响,(3)社会对化学工业的需求有多大。在回答这些问题的时候我们的思路将要考虑化学工业在满足和改善我们的主要需求方面所做的贡献。是些什么需求呢?很显然,食物和健康是放在第一位的。其它我们要考虑的按顺序是衣物、住所、休闲和旅行。

(1) Food. The chemical industry makes a major contribution to food production in at least three ways. Firstly, by making available large quantities of artificial fertilizers which are used to replace the elements (mainly nitrogen, phosphorus and potassium) which are removed as nutrients by the growing crops during modern intensive farming. Secondly, by manufacturing crop protection chemicals, i.e., pesticides, which markedly reduce the proportion of the crops consumed

by pests. Thirdly, by producing veterinary products which protect livestock from disease or cure their infections.

(1)食物。化学工业对粮食生产所做的巨大贡献至少有三个方面。第一,提供大量可以获得的肥料以补充由于密集耕作被农作物生长时所带走的营养成分。(主要是氮、磷和钾)。第二,生产农作物保护产品,如杀虫剂,它可以显著减少害虫所消耗的粮食数量。第三,生产兽药保护家禽免遭疾病或其它感染的侵害。

(2) Health. We are all aware of the major contribution which the pharmaceutical sector of the industry has made to help keep us all healthy, e.g. by curing bacterial infections with antibiotics, and even extending life itself, e.g. ?–blockers to lower blood pressure.

(2)健康。我们都很了解化学工业中制药这一块在维护我们的身体健康甚至延长寿命方面所做出的巨大贡献,例如,用抗生素治疗细菌感染,用β-抗血栓降低血压。

(3) Clothing. The improvement in properties of modern synthetic fibers over the traditional clothing materials (e.g. cotton and wool) has been quite remarkable. Thus shirts, dresses and suits made from polyesters like Terylene and polyamides like Nylon are crease-resistant, machine-washable, and drip-dry or non-iron. They are also cheaper than natural materials.

衣物。在传统的衣服面料上,现代合成纤维性质的改善也是非常显著的。用聚脂如涤纶或聚酰胺如尼龙所制作的T恤、上衣、衬衫抗皱、可机洗,晒干自挺或免烫,也比天然面料便宜。

Parallel developments in the discovery of modern synthetic dyes and the technology to ―bond‖ them to the fiber has resulted in a tremendous increase in the variety of colors available to the fashion designer. Indeed they now span almost every color and hue of the visible spectrum. Indeed if a suitable shade is not available, structural modification of an existing dye to achieve this can readily be carried out, provided there is a satisfactory market for the product.

与此同时,现代合成染料开发和染色技术的改善使得时装设计师们有大量的色彩可以利用。的确他们几乎利用了可见光谱中所有的色调和色素。事实上如果某种颜色没有现成的,只要这种产品确有市场,就可以很容易地通过对现有的色彩进行结构调整而获得。

Other major advances in this sphere have been in color-fastness, i.e., resistance to the dye being washed out when the garment is cleaned.

这一领域中另一些重要进展是不褪色,即在洗涤衣物时染料不会被洗掉。

(4) Shelter, leisure and transport. In terms of shelter the contribution of modern synthetic polymers has been substantial. Plastics are tending to replace traditional building materials like wood because they are lighter, maintenance-free (i.e. they are resistant to weathering and do not need painting). Other polymers, e.g. urea-formaldehyde and polyurethanes, are important insulating materials for reducing heat losses and hence reducing energy usage.

(4)住所,休闲和旅游。讲到住所方面现代合成高聚物的贡献是巨大的。塑料正在取代像木材一类的传统建筑材料,因为它们更轻,免维护(即它们可以抵抗风化,不需油漆)。另一些高聚物,比如,脲甲醛和聚脲,是非常重要的绝缘材料可以减少热量损失因而减少能量损耗。

Plastics and polymers have made a considerable impact on leisure activities with applications ranging from all-weather artificial surfaces for athletic tracks, football pitches and tennis courts to nylon strings for racquets and items like golf balls and footballs made entirely from synthetic materials.

塑料和高聚物的应用对休闲活动有很重要的影响,从体育跑道的全天候人造篷顶,足球和网球的经纬线,到球拍的尼龙线还有高尔夫球的元件,还有制造足球的合成材料。

Likewise the chemical indus try‘s contribution to transport over the years has led to major improvements. Thus development of improved additives like anti-oxidants and viscosity index improves for engine oil has enabled routine servicing intervals to increase from 3000 to 6000 to 12000 miles. Research and development work has also resulted in improved lubricating oils and greases, and better brake fluids. Yet again the contribution of polymers and plastics has been very striking with the proportion of the total automobile derived from these materials—dashboard, steering wheel, seat padding and covering etc.—now exceeding 40%.

多年来化学工业对旅游方面所作的贡献也有很大的提高。一些添加剂如抗氧化剂的开发和发动机油粘度指数改进使汽车日产维修期限从3000英里延长到6000英里再到12000英里。研发工作还改进了润滑油和油脂的性能,并得到了更好的刹车油。塑料和高聚物对整个汽车业的贡献的比例是惊人的,源于这些材料—挡板,轮胎,坐垫和涂层等等—超过40%。

So it is quite apparent even from a brief look at the chemical industry‘s contribution to meeting our major needs that life in the world would be very different without the products of the industry. Indeed the level of a country‘s development may be jud ged by the production level and sophistication of its chemical industry.

很显然简单地看一下化学工业在满足我们的主要需求方面所做的贡献就可以知道,没有化工产品人类社会的生活将会多么困难。事实上,一个国家的发展水平可以通过其化学工业的生产水平和精细程度来加以判断。

4. Research and Development (R&D) in Chemical Industries

One of the main reasons for the rapid growth of the chemical industry in the developed world has been its great commitment to, and investment in research and development (R&D). A typical figure is 5% of sales income, with this figure being almost doubled for the most research intensive sector, pharmaceuticals. It is important to emphasize that we are quoting percentages here not of profits but of sales income, i.e. the total money received, which has to pay for raw materials, overheads, staff salaries, etc. as well. In the past this tremendous investment has paid off well, leading to many useful and valuable products being introduced to the market. Examples include synthetic polymers like nylons and polyesters, and drugs and pesticides. Although the number of new products introduced to the market has declined significantly in recent years, and in times of recession the research department is usually one of the first to suffer cutbacks, the commitment to R&D remains at a very high level.

4.化学工业的研究和开发。

发达国家化学工业飞速发展的一个重要原因就是它在研究和开发方面的投入和投资。通常是销售收入的5%,而研究密集型分支如制药,投入则加倍。要强调这里我们所提出的百分数不是指利润而是指销售收入,也就是说全部回收的钱,其中包括要付出原材料费,企业管理费,员工工资等等。过去这笔巨大的投资支付得很好,使得许多有用的和有价值的产品

被投放市场,包括一些合成高聚物如尼龙和聚脂,药品和杀虫剂。尽管近年来进入市场的新产品大为减少,而且在衰退时期研究部门通常是最先被裁减的部门,在研究和开发方面的投资仍然保持在较高的水平。

The chemical industry is a very high technology industry which takes full advantage of the latest advances in electronics and engineering. Computers are very widely used for all sorts of applications, from automatic control of chemical plants, to molecular modeling of structures of new compounds, to the control of analytical instruments in the laboratory.

化学工业是高技术工业,它需要利用电子学和工程学的最新成果。计算机被广泛应用,从化工厂的自动控制,到新化合物结构的分子模拟,再到实验室分析仪器的控制。

Individual manufacturing plants have capacities ranging from just a few tones per year in the fine chemicals area to the real giants in the fertilizer and petrochemical sectors which range up to 500,000 tonnes. The latter requires enormous capital investment, since a single plant of this size can now cost $520 million! This, coupled with the widespread use of automatic control equipment, helps to explain why the chemical industry is capital-rather than labor-intensive.

一个制造厂的生产量很不一样,精细化工领域每年只有几吨,而巨型企业如化肥厂和石油化工厂有可能高达500,000吨。后者需要巨大的资金投入,因为一个这样规模的工厂要花费2亿5千万美元,再加上自动控制设备的普遍应用,就不难解释为什么化工厂是资金密集型企业而不是劳动力密集型企业。

The major chemical companies are truly multinational and operate their sales and marketing activities in most of the countries of the world, and they also have manufacturing units in a number of countries. This international outlook for operations, or globalization, is a growing trend within the chemical industry, with companies expanding their activities either by erecting manufacturing units in other countries or by taking over companies which are already operating there.

大部分化学公司是真正的跨国公司,他们在世界上的许多国家进行销售和开发市场,他们在许多国家都有制造厂。这种国际间的合作理念,或全球一体化,是化学工业中发展的趋势。大公司通过在别的国家建造制造厂或者是收购已有的工厂进行扩张。

Unit 2 Research and Development

研究和开发

Research and development, or R&D as it is commonly referred to, is an activity which is carried out by all sectors of manufacturing industry but its extent varies considerably, as we will see shortly. Let us first understand, or at least get a feel for, what the terms mean. Although the distinction between research and development is not always clear-cut, and there is often considerable overlap, we will attempt to separate them. In simple terms research can be thought of as the activity which produces new ideas and knowledge whereas development is putting those ideas into practice as new process and products. To illustrate this with an example, predicting the structure of a new molecule which would have a specific biological activity and synthesizing it could be seen as research whereas testing it and developing it to the point where it could be marketed as a new drug could be described as the development part.

研究和开发,或通常所称R&D是制造业各个部门都要进行的一项活动。我们马上可以看到,它的内容变化很大。我们首先了解或先感觉一下这个词的含义。尽管研究和开发的定义总是分得不很清楚,而且有许多重叠的部分,我们还是要试着把它们区分开来。简单说来,研究是产生新思想和新知识的活动,而开发则是把这些思想贯彻到实践中得到新工艺和新产品的行为。可以用一个例子来描述这一点,预测一个有特殊生物活性的分子结构并合成它可以看成是研究而测试它并把它发展到可以作为一种新药推向市场这一阶段则看作开发部分。

1.Fundamental Research and Applied Research

In industry the primary reason for carting out R&D is economic and is to strengthen and improve the company‘s position and profitability. The purpose of R&D is to generate and provide information and knowledge to reduce uncertainty, solve problems and to provide better data on which management can base decisions. Specific projects cover a wide range of activities and time scales, from a few months to 20 years.

1.基础研究和应用研究

在工业上进行研究和开发最主要的原因是经济利益方面,是为了加强公司的地位,提高公司的利润。R&D的目的是做出并提供信息和知识以减低不确定性,解决问题,以及向管理层提供更好的数据以便他们能据此做出决定。特别的项目涵盖很大的活动范围和时间范围,从几个月到20年。

We can pick out a number of areas of R&D activity in the following paragraphs but if we were to start with those which were to spring to the mind of the academic, rather than the industrial, chemist then these would be basic, fundamental (background) or exploratory research and the synthesis of new compounds. This is also labeled ―blue skies‖ research.

我们可以在后面的段落里举出大量的R&D活动。但是如果我们举出的点子来源于研究院而不是工业化学家的头脑,这就是基础的或探索性的研究

Fundamental research is typically associated with university research. It may be carried out for its own intrinsic interest and it will add to the total knowledge base but no immediate applications of it in the ―real world‖ well be apparent. Note that it will provide a valuable

training in defining and solving problems, i.e. research methodology for the research student who carries it out under supervision. However, later ―spin offs‖ from such work can lead t o useful applications. Thus physicists claim that but for the study and development of quantum theory we might not have had computers and nuclear power. However, to take a specifically chemical example, general studies on a broad area such as hydrocarbon oxidation might provide information which would be useful in more specific areas such as cyclohexane oxidation for the production of nylon intermediates.

基础研究通常与大学研究联系在一起,它可能是由于对其内在的兴趣而进行研究并且这种研究能够拓宽知识范围,但在现实世界中的直接应用可能性是很小的。请注意,这种以内就在提出和解决问题方面提供了极有价值的训练,比如,在指导下完成研究工作的学生所接受的研究方法学(的训练)。而且,从这些工作中产生的“有用的副产品”随后也能带来可观的使用价值。因此,物理学家宣称要不是量子理论的研究和发展我们可能仍然没有计算机和核能量。不管怎样,举一个特殊的化学方面的例子吧,在各个领域如烃的氧化方面所做的广泛的研究将为一些特殊的领域如环己烯氧化生成尼龙中间产物提供有用的信息。

Aspects of synthesis could involve either developing new, more specific reagents for controlling particular functional group interconversions, i.e. developing synthetic methodology or complete synthesis of an entirely new molecule which is biologically active. Although the former is clearly fundamental the latter encompasses both this and applied aspects. This term ?applied‘ has traditionally been more associated with research out in industrial laboratories, since this is more focused or targeted. It is a consequence of the work being business driven.

通过合成可以生产出一些新的、更特殊的试剂以控制特殊的官能团转换,即发展合成方法或完成一些具有生物活性的新分子的合成。尽管前者显然属于基础性研究而后者则包括基础研究和实用性研究两部分。所谓“实用性”习惯上是指与在工业实验室完成的研究联系在一起的,因为它更具目的性,它是商业行为驱动的结果。

Note, however, that there has been a major change in recent years as academic institutions have increasingly turned to industry for research funding, with the result that much more of their research effort is mow devoted to more applied research. Even so, in academia the emphasis generally is very much on the research rather than the development.

然而,请注意。近几年有很大的变化,大学研究机构正越来越多地转向工业界寻求研究经费,其结果就是他们的研究工作越来越多地是致力于实用研究。即使这样,学院工作的重点通常还是在于研究而不是开发。

2.Types of Industrial Research and Development

The applied or more targeted type of research and development commonly carried out in industry can be of several types and we will briefly consider each. They are: (ⅰ)product development, (ⅱ) process development, (ⅲ) process improvement and (ⅳ) applications development. Even under these headings there are a multitude of aspects so only a typical example can be quoted in each case. The emphasis on each of these will vary considerably within the different sectors of the chemical industry.

2.工业研究和开发的类型

通常在生产中完成的实用型的或有目的性的研究和开发可以分为好几类,我们对此加以简述。它们是:(1)产品开发;(2)工艺开发;(3)工艺改进;(4)应用开发;每一类

下还有许多分支。我们.对每一类举一个典型的例子来加以说明。在化学工业的不同部门内每类的工作重点有很大的不同。

(1)Product development. Product development includes not only the discovery and development of a new drug but also, for example, providing a new longer-active anti-oxidant additive to an automobile engine oil. Development such as this have enabled servicing intervals to increase during the last decade from 3000 to 6000 to 9000 and now to 12000 miles. Note that most purchasers of chemicals acquire them for the effects that they produce i.e. a specific use. Teflon, or polytetrafluoroethylene (PTFE), may be purchased because it imparts a non-stick surface to cooking pots and pans, thereby making them easier to clean.

(1)产品开发。产品开发不仅包括一种新药的发明和生产,还包括,比如说,给一种汽车发动机提供更长时效的抗氧化添加剂。这种开发的产品已经使(发动机)的服务期限在最近的十年中从3000英里提高到6000、9000现在已提高到12000英里。请注意,大部分的买家所需要的是化工产品能创造出来的效果,亦即某种特殊的用途。Tdflon,或称聚四氟乙烯(PTFE)被购买是因为它能使炒菜锅、盆表面不粘,易于清洗。

(2) Process development. Process development covers not only developing a manufacturing process for an entirely new product but also a new process or route for an existing product. The push for the latter may originate for one or more of the following reasons: availability of new technology, change in the availability and/or cost of raw materials. Manufacture of vinyl chloride monomer is an example of this. Its manufacturing route has changed several times owing to changing economics, technology and raw materials. Another stimulus is a marked increase in demand and hence sales volume which can have a major effect on the economics of the process. The early days of penicillin manufacture afford a good example of this.

(2)工艺开发。工业开发不仅包括为一种全新的产品设计一套制造工艺,还包括为现有的产品设计新的工艺或方案。而要进行后者时可能源于下面的一个或几个原因:新技术的利用、原材料的获得或价格发生了变化。氯乙烯单聚物的制造就是这样的一个例子。它的制造方法随着经济、技术和原材料的变化改变了好几次。另一个刺激因素是需求的显著增加。因而销售量对生产流程的经济效益有很大影响。Penicillin早期的制造就为此提供了一个很好的例子。

The ability of penicillin to prevent the onset of septicemia in battle wounds during the Second World War (1939~1945) resulted in an enormous demand for it to be produced in quantity. Up until then it had only been produced in small amounts on the surface of the fermentation broth in milk bottles! An enormous R&D effort jointly in the U.S. and the U.K. resulted in two major improvements to the process. Firstly a different stain of the mould gave much better yields than the original Penicillium notatum. Secondly the major process development was the introduction of the deep submerged fermentation process. Here the fermentation takes place throughout the broth, provided sterile air is constantly, and vigorously, blown through it. This has enabled the process to be scaled up enormously to modern stainless steel fermenters having a capacity in excess of 50000 liters. It is salutary to note that in the first world war (1914~1919) more soldiers died from septicemia of their wounds than were actually killed outright on the battlefield!

Penicillin能预防战争中因伤口感染引发的败血症,因而在第二次世界大战(1939-1945)

中,penicillin的需求量非常大,需要大量生产。而在那时,penicillin只能用在瓶装牛奶表面发酵的方法小量的生产。英国和美国投入了巨大的人力物力联合进行研制和开发,对生产流程做出了两个重大的改进。首先用一个不同的菌株—黄霉菌代替普通的青霉,它的产量要比后者高得多。第二个重大的流程开发是引进了深层发酵过程。只要在培养液中持续通入大量纯化空气,发酵就能在所有部位进行。这使生产能力大大地增加,达到现代容量超过5000升的不锈钢发酵器。而在第一次世界大战中,死于伤口感染的士兵比直接死于战场上的人还要多。注意到这一点不能不让我们心存感激。

Process development for a new product depends on things such as the scale on which it is to be manufactured, the by-products formed and their removal/recovery, and required purity. Data will be acquired during this development stage using semi-technical plant (up to 100 liters capacity) which will be invaluable in the design of the actual manufacturing plant. If the plant is to be a very large capacity, continuously operating one, e.g. petrochemical or ammonia, then a pilot plant will first be built and operated to test out the process and acquire more data, these semi-technical or pilot plants will be required for testing, e.g., a pesticide, or customer evaluation, e.g., a new polymer.

对一个新产品进行开发要考虑产品生产的规模、产生的副产品以及分离/回收,产品所要求的纯度。在开发阶段利用中试车间(最大容量可达100升)获得的数据设计实际的制造厂是非常宝贵的,例如石油化工或氨的生产。要先建立一个中试车间,运转并测试流程以获得更多的数据。他们需要测试产品的性质,如杀虫剂,或进行消费评估,如一种新的聚合物。

Note that by-products can has a major influence on the economics of a chemical process. Phenol manufacture provides a striking example of this. The original route, the benzenesulphonic acid route, has become obsolete because demand for its by-produce sodium sulfite (2.2 tons/l ton phenol) has dried up. Its recovery and disposal will therefore be an additional charge on the process, thus increasing the cost of the phenol. In contrast the cumene route owes its economic advantage over all the other routes to the strong demand for the by-product acetone (0.6 tons/l ton phenol).The sale of this therefore reduces the net cost of the phenol.

注意,副产品对于化学过程的经济效益也有很大的影响。酚的生产就是一个有代表性的例子。早期的方法,苯磺酸方法,由于它的副产品亚硫酸钠需求枯竭而变的过时。亚硫酸钠需回收和废置成为生产过程附加的费用,增加了生产酚的成本。相反,异丙基苯方法,在经济效益方面优于所有其他方法就在于市场对于它的副产品丙酮的迫切需求。丙酮的销售所得降低了酚的生产成本。

A major part of the process development activity for a mew plant is to minimize, or ideally prevent by designing out, waste production and hence possible pollution. The economic and environmental advantages of this are obvious.

对一个新产品进行工艺开发的一个重要部分是通过设计把废品减到最低,或尽可能地防止可能的污染,这样做带来的经济利益和对环境的益处是显而易见的。

Finally it should be noted that process development requires a big team effort between chemists, chemical engineers, and electrical and mechanical engineers to be successful.

最后要注意,工业开发需要包括化学家、化学工程师、电子和机械工程师这样一支庞大队伍的协同合作才能取得成功。

(3) Process improvement. Process improvement relates to processes which are already operating. It may be a problem that has arisen and stopped production. In this situation there is a lot of pressure to find a solution as soon as possible so that production can restart, since ?down time‘ c osts money.

(3)工艺改进。工艺改进与正在进行的工艺有关。它可能出现了某个问题使生产停止。在这种情形下,就面临着很大的压力要尽快地解决问题以便生产重新开始,因为故障期耗费资财。

down time: 故障期

More commonly, however, process improvement will be directed at improving the profitability of the process. This might be achieved in a number of ways. For example, improving the yield by optimizing the process, increasing the capacity by introducing a new catalyst, or lowering the energy requirements of the process. An example of the latter was the introduction of turbo compressors in the production of ammonia by the Haber process. This reduced utility costs (mainly electricity) from $6.66 to %0.56 per ton of ammonia produced. Improving the quality of the product, by process modification, may lead to new markets for the product.

然而,更为常见的,工艺改进是为了提高生产过程的利润。这可以通过很多途径实现。例如通过优化流程提高产量,引进新的催化剂提高效能,或降低生产过程所需要的能量。可说明后者的一个例子是在生产氨的过程中涡轮压缩机的引进。这使生产氨的成本(主要是电)从每吨6.66美元下降到0.56美元。通过工艺的改善提高产品质量也会为产品打开新的市场。

In recent years, however, the most important process improvement activity has been to reduce the environmental impact of the process, i.e., to prevent the process causing any pollution. Clearly there have been two interlinked driving forces for this. Firstly, the public‘s concern about the safety of chemicals and their effect on the environment, and the legislation which has followed as a result of this. Secondly the cost to the manufacturer of having to treat waste (i.e., material which cannot be recovered and used r sold) so that it can be safely disposed of, say by pumping into a river. This obviously represents a charge on the process which will increase the cost of the chemical being made. The potential for improvement by reducing the amount of waste is self-evident.

然而,近年来,最重要的工艺改进行为主要是减少生产过程对环境的影响,亦即防止生产过程所引起的污染。很明显,有两个相关连的因素推动这样做。第一,公众对化学产品的安全性及其对环境所产生影响的关注以及由此而制订出来的法律;第二,生产者必须花钱对废物进行处理以便它能安全地清除,比如说,排放到河水中。显然这是生产过程的又一笔费用,它将增加所生产化学产品的成本。通过减少废物数量提高效益其潜能是不言而喻的。

Note, however, with a plant which has already been built and is operating there are usually only very limited physical changes which can be made to the plant to achieve the above aims. Hence the importance, already mentioned, of eliminating waste production at the design stage of a new plant. Conserving energy and thus reducing energy cost has been another major preoccupation in recent years.

然而,请注意,对于一个已经建好并正在运行的工厂来说,只能做一些有限的改变来达到上述目的。因此,上面所提到的减少废品的重要性应在新公厂的设计阶段加以考虑。近年来另一个当务之急是保护能源及降低能源消耗。

(4) Applications development. Clearly the discovery of new applications or uses for a product can increase or prolong its profitability. Not only does this generate more income but the resulting increased scale of production can lead to lower unit costs and increased profit. An example is PVC whose early uses included records and plastic raincoats. Applications which came later included plastic bags and particularly engineering uses in pipes and guttering.

(4)应用开发。显然发掘一个产品新的用处或新的用途能拓宽它的获利渠道。这不仅能创造更多的收入,而且由于产量的增加使单元生产成本降低,从而使利润提高。举例来说,PVC早期是用来制造唱片和塑料雨衣的,后来的用途扩展到塑料薄膜,特别是工程上所使用的管子和排水槽。

Emphasis has already been placed on the fact that chemicals are usually purchased for the effect, or particular use, or application which they have. This often means that there will be close liaison between the chemical companies‘ technical sales representatives and the customer, and the level of technical support for the customer can be a major factor in winning sales. Research and development chemists provide the support for these applications developments. An example is CF3CH3F. This is the first of the CFC replacements and has been developed as a extracting natural products from plant materials. In no way was this envisaged when the compound was first being made for use as a refrigerant gas, but it clearly is an example of applications development.

我们已经强调了化学产品是由于它们的效果,或特殊的用途、用处而得以售出这个事实。这就意味着化工产品公司的技术销售代表与顾客之间应有密切的联系。对顾客的技术支持水平往往是赢得销售的一个重要的因素。进行研究和开发的化学家们为这些应用开发提供了帮助。CH3CH3F的制造就是一个例子。它最开始是用来做含氟氯烃的替代物作冷冻剂的。然而近来发现它还可以用作从植物中萃取出来的天然物质的溶解剂。当它作为制冷剂被制造时,固然没有预计到这一点,但它显然也是应用开发的一个例子。

3.Variations in R&D Activities across the Chemical Industry

Both the nature and amount of R&D carried out varies significantly across the various sectors of the chemical industry. In sectors which involve largescale production of basic chemicals and where the chemistry, products and technology change only slowly because the process are mature, R&D expenditure is at the lower end of the range for the chemical industry. Most of this will be devoted to process improvement and effluent treatment. Examples include ammonia, fertilizers and chloralkali production from the inorganic side, and basic petrochemical intermediates such a ethylene from the organic side.

3.化工行业中研究与开发活动的变化

化学工业的不同部门所进行的R&D的性质与数量都有很大的变化。与大规模生产的基础化工产品有关的部门中,化学产品和技术变化都很慢,因为流程已很成熟。R&D经费支出属于化工行业中低的一端,而且大部分的费用是用于过程改进和废水处理。无机方面的例子有氨、肥料和氯碱的生产,有机方面的如乙烯等一些基础石油化学的中间产物。

At the other end of the scale lie pharmaceuticals and pesticides (or plant protection products). Here there are immense and continuous efforts to synthesize new molecules which exert the desired, specific biological effect. A single company may generate 10,000 new compounds for screening each year. Little wonder that some individual phar maceutical company‘s annual R&D

expenditure is now approaching $1000 million! Expressing this in a different way they spend in excess of 14% of sales income (note not profits) on R&D.

不一样规模生产的是药品和除草剂。人们付出了巨大而持续的努力以合成能产生所希望的、特殊的生物作用的新分子。一家公司每年可能要合成10,000新化合物以供筛选。可以想象一些医药公司其每年的R&D经费支出高达100亿美元。换句话说,他们把超过14%的销售收入投入在R&D上。

Unit 3 Typical Activities of Chemical Engineers

化学工程师的例行工作

The classical role of the chemical engineer is to take the discoveries made by the chemist in the laboratory and develop them into money--making, commercial-scale chemical processes. The chemist works in test tubes and Parr bombs with very small quantities of reactants and products (e.g., 100 ml), usually running ―batch‖, constant-temperature experiments. Reactants are placed in a small container in a constant temperature bath. A catalyst is added and the reactions proceed with time. Samples are taken at appropriate intervals to follow the consumption of the reactants and the production of products as time progresses.

化学工程师经典的角色是把化学家在实验室里的发现拿来并发展成为能赚钱的、商业规模的化学过程。化学家用少量的反应物在试管和派式氧弹中反应相应得到少量的生成物,所进行的通常是间歇性的恒温下的实验,反应物放在很小的置于恒温水槽的容器中,加点催化剂,反应继续进行,随时间推移,反应物被消耗,并有生成物产生,产物在合适的间歇时间获得。

By contrast, the chemical engineer typically works with much larger quantities of material and with very large (and expensive) equipment. Reactors can hold 1,000 gallons to 10,000 gallons or more. Distillation columns can be over 100 feet high and 10 to 30 feet in diameter. The capital investment for one process unit in a chemical plant may exceed $100 million!

与之相比,化学工程师通常面对的是数量多得多的物质和庞大的(昂贵的)设备。反应器可以容纳1000 到10,000加仑甚至更多。蒸馏塔有100英尺多高,直径10到30英尺。化工厂一个单元流程的投资可能超过1亿美元。

The chemical engineer is often involved in ―scaling up‖ a chemist-developed small-scale reactor and separation system to a very large commercial plant. The chemical engineer must work closely with the chemist in order to understand thoroughly the chemistry involved in the process and to make sure that the chemist gets the reaction kinetic data and the physical property data needed to design, operate, and optimize the process. This is why the chemical engineering curriculum contains so many chemistry courses.

在把化学家研制的小型反应器及分离系统“放大”到很大的商业化车间时,通常需要化学工程师的参与。为了彻底了解过程中的化学反应,化学工程师必须与化学家密切合作以确保能得到所需要的反应的动力学性质和物理性质参数以进行设计、运转和优选流程。这就是为什么化工课程要包括那么多的化学类课程的原因。

The chemical engineer must also work closely with mechanical, electrical, civil, and metallurgical engineers in order to design and operate the physical equipment in a plant--the reactors, tanks, distillation columns, heat exchangers, pumps, compressors, Control and instrumentation devices, and so on. One big item that is always on such an equipment list is piping. One of the most impressive features f a typical chemical plant is the tremendous number of pipes running all over the site, literally hundreds of miles in many plants. These pipes transfer process materials (gases and liquids) into and out of the plant. They also carry utilities (steam, cooling water, air, nitrogen, and refrigerant) to the process units.

化学工程师还必须与机械、电子、土木建筑和冶金工程师密切协作以设计和操作工厂的机械设备—反应器、槽、蒸馏塔、热交换器、泵、压缩机、控制器和仪器设备等等。在这张设备单上还有一大类是管子。化工厂最典型的特征之一就是数目庞大的管道贯穿所有生产间。可以毫不夸张地说,在许多车间都有几百英里长的管道。这些管道输入和输出车间的反应物质进行传递,同时还可携带有用的东西(水蒸气、冷却水、空气、氧、冷却剂)进入操作单元。

To commercialize the laboratory chemistry, the chemical engineer is involved in development, design, construction, operation, sales, and research. The terminology used to label these functions is by no means uniform from company to company, but a rose by any other name is still a rose. Let us describe each of these functions briefly. It should be emphasized that the jobs we shall discuss are ―typical‖ and ―classical‖, but are by no means the only things that c hemical engineers do. The chemical engineer has a broad background in mathematics, chemistry, and physics. Therefore, he or she can, and does, fill a rich variety of jobs in industry, government, and academia.

要把实验室研究商业化,化学工程师要参与进行开发、设计、建筑、操作、销售和研究工作。各个公司用来表示这些工作的名词不完全一样,但万变不离其宗。让我们简单地把每个工作描述一下。应该强调的是,我们所讨论的工作是“典型的”和“经典的”,但并不意味着化学工程师只能做这些事。化学工程师在数学、化学和物理学方面都有很好的知识基础,因此,他或她能够而且确实适应工业、政府部门、大专院校等非常广泛的职业要求。

1.Development

Development is the intermediate step required in passing from a laboratory-size process to a commercial-size process. The ―pilot-plant‖ process involved in development might involve reactors that are five gallons in capacity and distillation columns that are three inches in diameter. Development is usually part of the commercialization of a chemical process because the scale-up problem is a very difficult one. Jumping directly from test tubes to 10,000-gallon reactors can be a tricky and sometimes dangerous endeavor. Some of the subtle problems involved which are not at all obvious to the uninitiated include mixing imperfections, increasing radial temperature gradients, and decreasing ratios of heat transfer areas to heat generation rates.

1. 开发

开发工作是从实验室规模向商业化规模转化所必需的中间阶段。开发阶段所涉及的“中试”流程所使用的反应器容量为5加仑,蒸馏塔直径为3英寸。开发通常是化学流程商业化的一部分。因为“放大”规模是一个非常困难的问题。直接从试管研制跳到在10.000加仑反应器里生产是非常棘手的有时甚至是危险的工作。一些(在实验室研究阶段)根本不明显的未加以考虑的细微问题,如混合不均匀,温度梯度辐射状升高,热交换面积逐渐降低以及热交换速度下降等(在后一阶段变得影响很大)。

The chemical engineer works with the chemist and a team of other engineers to design, construct, and operate the pilot plant. The design aspect involves specifying equipment sizes, configuration, and materials of construction. Usually pilot plants are designed to be quite flexible, so that a wide variety of conditions and configurations can be evaluated.

化学工程师与化学家和其他一些工程师协作对中师车间进行设计、安装和运行,设计方面包括确定设备的尺寸、结构、制造所用的材料。通常中师车间的设计是有很大的变通性的,

以便能对各种情况和构造进行评估。

Once the pilot plant is operational, performance and optimization data can be obtained in order to evaluate the process from an economic point of view. The profitability is assessed at each stage of the development of the process. If it appears that not enough money will be made to justify the capital investment, the project will be stopped.

中试车间一旦开始运转,就能获得性能数据和选定最佳数值以便从经济学角度对流程进行评价。对生产过程的每一个阶段可能获得的利润进行评定。如果结果显示投入的资金不能有足够的回报,这项计划将被停止。

The pilot plant offers the opportunity to evaluate materials of construction, measurement techniques, and process control strategies. The experimental findings in the pilot plant can be used to improve the design of the full-scale plant.

中师车间还提供了评价设备制造材料、测量方法、流程控制技术的机会。中试车间的这些实验数据对于工业装置设计的改善能提供有用的帮助。

2.Design

Based on the experience and data obtained in the laboratory and the pilot plant, a team of engineers is assembled to design the commercial plant. The chemical engineer‘s job is to specify all process flow rates and conditions, equipment types and sizes, materials of construction, process configurations, control systems, safety systems, environmental protection systems, and other relevant specifications. It is an enormous responsibility.

2.设计

根据在实验室和中试车间获得的经验和数据,一组工程师集中起来设计工业化的车间。化学工程师的职责就是详细说明所有过程中的流速和条件,设备类型和尺寸,制造材料,流程构造,控制系统,环境保护系统以及其它相关技术参数。这是一个责任重大的工作。

The design stage is really where the big bucks are spent. One typical chemical process might require a capital investment of $50 to $100 million. That‘s a lot of bread! And the chemical engineer is the one who has to make many of the decisions. When you find yourself in that position, you will be glad that you studied as hard as you did (we hope) so that you can bring the best possible tools and minds to bear on the problems.

设计阶段是大把金钱花进去的时候。一个常规的化工流程可能需要五千万到一亿美元的资金投入,有许多的事情要做。化学工程师是做出很多决定的人之一。当你身处其位时,你会对自己曾经努力学习而能运用自己的方法和智慧处理这些问题感到欣慰。

The product of the design stage is a lot of paper:

(1) Flow sheets are diagrams showing all the equipment schematically, with all streams labeled and their conditions specified (flow rate, temperature, pressure, composition, viscosity, density, etc.)

设计阶段的产物是很多图纸:

(1)工艺流程图。是显示所有设备的图纸。要标出所有的流线和规定的条件(流速、温度、压力、构造、粘度、密度等)。

(2) P and I (Piping and Instrumentation) Drawings are drawings showing all pieces of equipment (including sizes, nozzle locations, and materials), all piping (including sizes, materials, and valves), all instrumentation (including locations and types of sensors, control valves, and controllers), and all safety systems (including safety valve and rupture disk locations and sizes, flare lines, and safe operating conditions).

(2)管道及设备图。标明所有设备(包括尺寸、喷嘴位置和材料)、所有管道(包括大小、控制阀、控制器)以及所有安全系统(包括安全阀、安全膜位置和大小、火舌管、安全操作规则)。

(3) Equipment specification Sheets are sheets of detailed information on all the equipment precise dimensions, performance criteria, materials of construction, corrosion allowances, operating temperatures, and pressures, maximum and minimum flow rates, and the like. These ―spec sheets‖ are sent to the equipment manufacturers for price bids and then for building the equipment.

(3)仪器设备说明书。详细说明所有设备准确的空间尺度、操作参数、构造材料、耐腐蚀性、操作温度和压力、最大和最小流速以及诸如此类等等。这些规格说明书应交给中标的设备制造厂以进行设备生产。

3.Construction

After the equipment manufacturers (vendors) have built the individual pieces of equipment, the pieces are shipped to the plant site (sometimes a challenging job of logistics, particularly for large vessels like distillation columns). The construction phase is the assembling of all the components into a complete plant. It starts with digging holes in the ground and pouring concrete for foundations for large equipment and buildings (e.g., the control room, process analytical laboratory, and maintenance shops).

3.建造

当设备制造把设备的所有部分都做好了以后,这些东西要运到工厂所在地(有时这是后勤部门颇具挑战性的任务,尤其对象运输分馏塔这样大型的船只来说)。建造阶段要把所有的部件装配成完整的工厂,首先要做的就是在地面打洞并倾入混凝土,为大型设备及建筑物打下基础(比如控制室、流程分析实验室、维修车间)。

After these initial activities, the major pieces of equipment and the steel superstructure are erected. Heat exchangers, pumps, compressors, piping, instrument sensors, and automatic control valves are installed. Control system wiring and tubing are run between the control room and the plant. Electrical wiring, switches, and transformers are installed for motors to drive pumps and compressors. As the process equipment is being installed, it is the chemical engineer‘s job to check that it is all hooked together properly and that each piece works correctly.

完成了第一步,就开始安装设备的主要部分以及钢铁上层建筑。要装配热交换器、泵、压缩机、管道、测量元件、自动控制阀。控制系统的线路和管道连接在控制室和操作间之间。电线、开关、变换器需装备在马达上以驱动泵和压缩机。生产设备安装完毕后,化学工程师的职责就是检查它们是否连接完好,每部分是否正常工作。

This is usually a very exciting and rewarding time for most engineers. You are seeing your ideas being translated from paper into reality. Steel and concrete replace sketches and diagrams.

Construction is the culmination of years of work by many people. You are finally on the launch pad, and the plant is going to fly or fizzle! The moment of truth is at hand.

对大部分工程师来说这通常是一个令人激动、享受成功的时候。你将看到自己的创意由图纸变为现实。钢铁和混凝土代替了示意图和表格。建筑是许多人多年辛劳的结果。你终于站到了发射台上,工厂将要起飞还是最后失败。揭晓的那一刻即将到来。

Once the check-out phase is complete, ―startup‖ begins. Startup is the initial commissioning of the plant. It is a time of great excitement and round-the-clock activity. It is one of the best learning grounds for the chemical engineer. Now you find out how good your ideas and calculations really are. The engineers who have worked on the pilot plant and on the design are usually part of the startup team.

测试阶段一旦完成,“运转阶段”就开始了。启动是工厂的首项任务,是令人兴奋的时刻和日夜不停的工作。这是化学工程师最好的学习机会之一。现在你可以了解你的构思和计算究竟有些什么好。参与中试车间和设计工作的工程师通常也是启动队伍中的人员。

The startup period can require a few days or a few moths, depending on the newness of the technology, the complexity of the process, and quality of the engineering that has gone into the design. Problems are frequently encountered that require equipment modifications. This is time consuming and expensive: just the lost production from a plant can amount to thousands of dollars per day. Indeed, there have been some plants that have never operated, because of unexpected problems with control, corrosion, or impurities, or because of economic problem.

启动阶段需要几天或几个月,根据设计所涉及工艺技术的新颖、流程的复杂程度以及工程的质量而定。中间经常会遇到要求设备完善的问题。这是耗时耗财的阶段:仅仅每天从车间出来的废品会高达数千美金。确实,曾经有些车间因为没有预计到的问题如控制、腐蚀、杂质或因为经济方面的问题而从来没有运转过。

The engineers are usually on shift work during the startup period. There is a lot to learn in a short time period. Once the plant has been successfully operated at its rated performance, it is turned over to the operating or manufacturing department for routine production of products.

在启动阶段,工程师们通常需轮流值班。在很短的时间里有很多的东西需要学习。一旦车间按照设定程序成功运转,它就转变为产品的常规生产或制造部门。

4.Manufacturing

Chemical engineers occupy a central position in manufacturing. (or ―operations‖ or ―production,‖ as it is called in some companies). Plant technical service group are responsible for the technical aspects of running an efficient and safe plant. They run capacity and performance tests on the plant to determine where the bottlenecks are in the equipment, and then design modifications and additions to remove these bottlenecks.

4.制造

化学工程师在制造阶段占据中心的位置。车间技术服务部门负责车间有效而安全地运转的技术方面。他们进行生产量和性能测试以找出设备的瓶颈在哪,然后设计一些修正或附加的东西以解决这些瓶颈。

Chemical engineers study ways to reduce operating costs by saving energy, cutting raw

material consumption, and reducing production of off-specification products that require reprocessing. They study ways to improve product quality and reduce environmental pollution of both air and water.

化学工程师研究一些方法节省能源,降低原材料消耗、减少不合要求的需进行处理的产品的生产,以降低生产成本。他们还研究一些提高产品质量、减少空气和水中环境污染的措施。

In addition to serving in plant technical service, many engineers have jobs as operating supervisors. These supervisors are responsible for all aspects of the day-to-day operation of the plant, including supervising the plant operators who run the plant round the clock on a three-shift basis, meeting quality specifications, delivering products at agreed-upon times and in agreed-upon quantities, developing and maintaining inventories of equipment spare parts, keeping the plant well maintained, making sure safe practices are followed, avoiding excessive emissions into the local environment, and serving as spokespersons for the plant to the local community.

除了提供技术服务外,许多工程师还负责生产监督。这些监督保证工厂日常生产的各个方面正常进行。包括管理换班工作的操作工,满足质量要求,按期按量发出产品,生产并保持设备备件的存储量,为车间设备维修,保证安全规则被遵守,避免过多排出废物污染环境,并且做工厂对当地社会的代言人。

5.Technical sales

Many chemical engineers find stimulating and profitable careers in technical sales. As with other sales positions, the work involves calling on customers, making recommendations on particular products to fill customer‘s needs, and being sure that orders a re handled smoothly. The sales engineer is the company‘s representative and must know the company‘s product line well. The sales engineer‘s ability to sell can greatly affect the progress and profitability of the company.

5.技术销售

许多化学工程师发现在技术销售中充满了刺激性的、有利可图的机会。与其它的销售业务一样,这项业务包括拜访客户,推荐一些特别的商品以满足客户的需要,并确保订单能顺利完成。销售工程师是公司的代表,必须十分清楚公司的产品生产情况。销售工程师的销售能力极大地影响公司的发展和利润。

The marketing of many chemicals requires a considerable amount of interaction between engineers in the company producing the chemical and engineers in the company using the chemical. This interaction can take the form of advising on how to use a chemical or developing a new chemical in order to solve a specific problem of a customer.

许多化工产品的市场开发需要制造化工产品公司的工程师与使用化工产品公司的工程师密切合作。这种合作所采取的方式可以是对如何使用一种化学产品提出建议,或者是生产出一种新的化学产品以解决客户的某个特殊的困难。

When the sales engineer discovers problems that cannot be handled with confidence, he or she must be able to call on the expertise of specialists. The sales engineer may sometimes have to manage a joint effort among researchers from several companies who are working together to solve a problem.

当销售工程师碰到他自己没有把握解决的问题时,他或她必须要请教专家。有时销售工

程师还需组织来自不同公司的研究人员共同努力来解决某个问题。

6.Research

Chemical engineers are engaged in many types of research. They work with the chemist in developing new or improved products. They develop new and improved engineering methods (e.g., better computer programs to simulate chemical processes, better laboratory analysis methods for characterizing chemicals, and new types of reactors ad separation systems). They work on improved sensors for on-line physical property measurements. They study alternative process configurations and equipment.

6.研究

化学工程师能从事多种类型的研究工作。他们与化学家联合开发新的或革新的产品。他们探索新的和改良的工程技术(比如更好的计算机程序以模拟化工工艺,更好的实验室分析方法分析有代表性的化学产品,新型的反应和分离系统。)他们研究改进的传感器以进行物理性质的在线检测,他们还研究单个流程结构和设备。

Research engineers are likely to be found in laboratories or at desks working on problems. They usually work as members of a team of scientists and engineers. Knowledge of the process and common types of process equipment helps the chemical engineer make special contributions to the research effort. The chemical engineer‘s daily activities may sometimes closely r esemble those of the chemist or physicist working on the same team.

研究工程师可能是在实验室或办公桌前钻研难题。他们通常是一组科学家或工程师中的一员。了解生产流程以及通常流程所使用的设备使化学工程师能在研究工作中做出突出的贡献。化学工程师的日常工作有时颇似那些化学家和物理学家。

城市学院英语课文翻译word版本

城市学院英语课文翻 译

Don't Wait Until Death Does Its Part We have but one body. It must last a lifetime. Without it, life ends, and we are done and finished. But do we treat our body fairly, lovingly, like prized possessions? Do we appreciate our body's nonstop efforts to function smoothly? My body asks for little: water to keep hydrated; food for nutrients, energy, and strong bones; rest when I'm tired or sick; and play to lift my spirits. Its ability to self-repair and respond to good care is incredible. But until recently, I have abused my body with excesses of all kinds. Not only did I take its resiliency for granted, I was annoyed when a physical problem, such as a cold or injury, kept me from doing what I want. Moreover, I was harshly critical when it failed to conform to standards of beauty in the media. My overeating, lazy lifestyle, and excessive work had a negative impact on my life, though not fatal. I've also seen friends and family members destroy their body through drugs, alcoholism, or workaholism. For years I had good intentions to change, but I didn't follow through. I could see my future: increased medical expenses, exhausted senses, premature death. Once I understand that it is in my own self-interest to take care of it, I'm struggling to develop a positive relationship with my body. Evidently, I'm not the only one with this awareness now. I begin to make more constructive choices. Instead of asking the question, “What do I want?” I ask, “What does my body need?” And then I respond acc ordingly. Positive actions — exercising, eating mindfully, getting enough rest and water, limiting my work hours, and scheduling recreation — have gradually become regular habits rather than disciplined efforts. After all, each of us gets only one body. So don't wait until death does its part. Appreciate our body and treat it lovingly. It will reward us with a longer, healthier and happier life.

人教版高中英语课文原文与翻译

必修1 第一单元 Reading 阅读 ANNE’S BEST FRIEND Do you want a friend whom you could tell everything to, like your deepest feelings and thoughts? Or are you afraid that your friend would laugh at you, or would not understand what you are going through? Anne Frank wanted the first kind, so she made her diary her best friend. 安妮最好的朋友 你想不想有一位无话不谈能推心置腹的朋友?或者你会不会担心你的朋友会嘲笑你,会不理解你目前的困境呢?安妮?弗兰克想要的是第一种类型的朋友,所以她把的日记视为自己最好的朋友。 Anne lived in Amsterdam in the Netherlands during World War II. Her family was Jewish so the had to hide or they would be caught by the German Nazis. She and her family hide away for two years before they were discovered. During that time the only true friend was her diary. She said, “I don’t want to set down a series of facts in a diary as most people do, but I want this diary itself to be my friend, and I shall call my friend Kitty.”Now read how she felt after being in the hiding place since July 1942. 在第二次世界大战期间,安妮住在荷兰的阿姆斯特丹。她一家人都是犹太人,所以他们不得不躲藏起来,否则就会被德国的纳粹分子抓去。她和她的家人躲藏了25个月之后才被发现。

高中英语必修1 课文翻译(人教新课标)

第一单元友谊 Reading 安妮最好的朋友 你是不是想有一位无话不谈能推心置腹的朋友呢?或者你是不是担心你的朋友会嘲笑你,会不理解你目前的困境呢?安妮·弗兰克想要的是第一种类型的朋友,于是她就把日记当成了她最好的朋友。 安妮在第二次世界大战期间住在荷兰的阿姆斯特丹。她一家人都是犹太人,所以他们不得不躲藏起来,否则他们就会被德国纳粹抓去。她和她的家人躲藏了两年之后才被发现。在这段时间里,她唯一的忠实朋友就是她的日记了。她说,“我不愿像大多数人那样在日记中记流水账。我要把这本日记当作我的朋友,我要把我这个朋友称作基蒂”。安妮自从1942年7月起就躲藏在那儿了,现在,来看看她的心情吧。 亲爱的基蒂: 我不知道这是不是因为我长久无法出门的缘故,我变得对一切与大自然有关的事物都无比狂热。我记得非常清楚,以前,湛蓝的天空、鸟儿的歌唱、月光和鲜花,从未令我心迷神往过。自从我来到这里,这一切都变了。 ……比方说,有天晚上天气很暖和,我熬到11点半故意不睡觉,为的是独自好好看看月亮。但是因为月光太亮了,我不敢打开窗户。还有一次,就在五个月以前的一个晚上,我碰巧在楼上,窗户是开着的。我一直等到非关窗不可的时候才下楼去。漆黑的夜晚,风吹雨打,雷电交加,我全然被这种力量镇住了。这是我一年半以来第一次目睹夜晚…… ……令人伤心的是……我只能透过脏兮兮的窗帘观看大自然,窗帘悬挂在沾满灰尘的窗前,但观看这些已经不再是乐趣,因为大自然是你必须亲身体验的。

Using Language Reading, listening and writing 亲爱的王小姐: 我同班上的同学有件麻烦事。我跟我们班里的一位男同学一直相处很好,我们常常一起做家庭作业,而且很乐意相互帮助。我们成了非常好的朋友。可是,其他同学却开始在背后议论起来,他们说我和这位男同学在谈恋爱,这使我很生气。我不想中断这段友谊,但是我又讨厌人家背后说闲话。我该怎么办呢?Reading and writing 尊敬的编辑: 我是苏州高中的一名学生。我有一个难题,我不太善于同人们交际。虽然我的确试着去跟班上的同学交谈,但是我还是发现很难跟他们成为好朋友。因此,有时候我感到十分孤独。我确实想改变这种现状,但是我却不知道该怎么办。如果您能给我提些建议,我会非常感激的。 第二单元世界上的英语 Reading 通向现代英语之路 16世纪末期大约有5百万到7百万人说英语,几乎所有这些人都生活在英国。后来,在17世纪英国人开始航海征服了世界其它地区。于是,许多别的国家开始说英语了。如今说英语的人比以往任何时候都多,他们有的是作为第一语言来说,有的是作为第二语言或外语。 以英语作为母语的人,即使他们所讲的语言不尽相同,也可以互相交流。请看以下例子: 英国人贝蒂:“请到我的公寓(flat)里来看看,好吗?” 美国人艾米:“好的。我很乐意到你的公寓(apartment)去。” 那么,英语在一段时间里为什么会起变化呢?事实上,当不同文化互相交流渗透时,所有的语言都会有所发展,有所变化。首先,在公元450年到1150年间,人们所说的英语跟今天所说的英语就很不一样。当时的英语更多地是以德语

《机械工程专业英语教程》课文翻译

Lesson 1 力学的基本概念 1、词汇: statics [st?tiks] 静力学;dynamics动力学;constraint约束;magnetic [m?ɡ'netik]有磁性的;external [eks't?:nl] 外面的, 外部的;meshing啮合;follower从动件;magnitude ['m?ɡnitju:d] 大小;intensity强度,应力;non-coincident [k?u'insid?nt]不重合;parallel ['p?r?lel]平行;intuitive 直观的;substance物质;proportional [pr?'p?:??n?l]比例的;resist抵抗,对抗;celestial [si'lestj?l]天空的;product乘积;particle质点;elastic [i'l?stik]弹性;deformed变形的;strain拉力;uniform全都相同的;velocity[vi'l?siti]速度;scalar['skeil?]标量;vector['vekt?]矢量;displacement代替;momentum [m?u'ment?m]动量; 2、词组 make up of由……组成;if not要不,不然;even through即使,纵然; Lesson 2 力和力的作用效果 1、词汇: machine 机器;mechanism机构;movable活动的;given 规定的,给定的,已知的;perform执行;application 施用;produce引起,导致;stress压力;applied施加的;individual单独的;muscular ['m?skjul?]]力臂;gravity[ɡr?vti]重力;stretch伸展,拉紧,延伸;tensile[tensail]拉力;tension张力,拉力;squeeze挤;compressive 有压力的,压缩的;torsional扭转的;torque转矩;twist扭,转动;molecule [m likju:l]分子的;slide滑动; 滑行;slip滑,溜;one another 互相;shear剪切;independently独立地,自立地;beam梁;compress压;revolve (使)旋转;exert [iɡ'z?:t]用力,尽力,运用,发挥,施加;principle原则, 原理,准则,规范;spin使…旋转;screw螺丝钉;thread螺纹; 2、词组 a number of 许多;deal with 涉及,处理;result from由什么引起;prevent from阻止,防止;tends to 朝某个方向;in combination结合;fly apart飞散; 3、译文: 任何机器或机构的研究表明每一种机构都是由许多可动的零件组成。这些零件从规定的运动转变到期望的运动。另一方面,这些机器完成工作。当由施力引起的运动时,机器就开始工作了。所以,力和机器的研究涉及在一个物体上的力和力的作用效果。 力是推力或者拉力。力的作用效果要么是改变物体的形状或者运动,要么阻止其他的力发生改变。每一种

outofstep课文全文翻译.doc

Unit 3 Out of Step Bill Bryson 1 After living in England for 20 years, my wife and I decided to move back to the United States. We wanted to live in a town small enough that we could walk to the business district, and settled on Hanover, N.H., a typical New England town—pleasant, sedate and compact. It has a broad central green surrounded by the venerable buildings of Dartmouth College, an old-fashioned Main Street and leafy residential neighborhoods. 2 It is, in short, an agreeable, easy place to go about one’ s business on foot, and ye far as I can tell, virtually no one does. 3 Nearly every day, I walk to the post office or library or bookstore, and sometimes, if I am feeling particu larly debonair, I stop at Rosey Jekes Caféa cappuccino. Occasionally, in the evenings, my wife and I stroll up to the Nugget Theatre for a movie or to Murphy’ s on the Green for a beer, I wouldn’ t dream of going to any of these places by car. People ha ve gotten used to my eccentric behavior, but in the early days acquaintances would often pull up to the curb and ask if I wanted a ride. 4“ I’ m going your way,” they would insist when I politely declined. no bother.”

人教版高中英语课文原文和翻译必修

必修4 Unit 1 A STUDENT OF AFRICAN WILDLIFE It is 5:45 am and the sun is just rising over Gombe National Park in East Africa. Following Jane's way of studying chimps, our group are all going to visit them in the forest. Jane has studied these families of chimps for many years and helped people understand how much they behave like humans. Watching a family of chimps wake up is our first activity of the day. This means going back to the place where we left the family sleeping in a tree the night before. Everybody sits and waits in the shade of the trees while the family begins to wake up and move off. Then we follow as they wander into the forest. Most of the time, chimps either feed or clean each other as a way of showing love in their family. Jane warns us that our group is going to be very tired and dirty by the afternoon and she is right. However, the evening makes it all worthwhile. We watch the mother chimp and her babies play in the tree. Then we see them go to sleep together in their nest for the night. We realize that the bond between members of a chimp family is as strong as in a human family. Nobody before Jane fully understood chimp behaviour. She spent years observing and recording their daily activities. Since her childhood she had wanted to work with animals in their own environment. However, this was not easy. When she first arrived in Gombe in 1960, it was unusual for a woman to live in the forest. Only after her mother came to help her for the first few months was she allowed to begin her project. Her work changed the way people think about chimps. For example, one important thing she discovered was that chimps hunt and eat meat. Until then everyone had thought chimps ate only fruit and nuts. She actually observed chimps as a group hunting a monkey and then eating it. She also discovered how chimps communicate with each other, and her study of their body language helped her work out their social system. For forty years Jane Goodall has been outspoken about making the rest of the world understand and respect the life of these animals. She has argued that wild animals should be left in the wild and not used for entertainment or advertisements. She has helped to set up special places where they can live safely. She is leading a busy life but she says: "Once I stop, it all comes crowding in and I remember the chimps in laboratories. It's terrible. It affects me when I watch the wild chimps. I say to myself, 'Aren't they lucky?" And then I think about small chimps in cages though they have done nothing wrong. Once you have seen that you can never forget ..." She has achieved everything she wanted to do: working with animals in their own environment, gaining a doctor's degree and showing that women can live in the forest as men can. She inspires those who want to cheer the achievements of women. WHY NOT CARRY ON HER GOOD WORK? I enjoyed English, biology, and chemistry at school, but which one should I choose to study at university? I did not know the answer until one evening when I sat down at the computer to do some research on great women of China. By chance I came across an article about a doctor called Lin Qiaozhi, a specialist in women's diseases. She lived from 1901 to 1983. It seemed that she had been very busy in her chosen career, travelling abroad to study as well as writing books and articles. One of them

新人教版高中英语必修四完整课文译文

新人教版高中英语课文译文 必修四 第一单元卓有成就的女性 Reading 非洲野生动物研究者 清晨5点45分,太阳刚从东非的贡贝国家公园的上空升起,我们一行人准备按照简研究黑猩猩的方法去森林里拜访它们。简研究这些黑猩猩家族已经很多年了,她帮助人们了解了黑猩猩跟人类的行为是多么的相似。我们当天的首相任务就是观察黑猩猩一家是如何醒来的。这意味着我们要返回前一天晚上我们离开时黑猩猩睡觉的大树旁。大家坐在树荫下等待着,这时候黑猩猩睡醒了,准备离开。然后这群黑猩猩向森林深处漫步而去,我们尾随其后。在大部分时间里,黑猩猩或互相喂食,或彼此擦身,这在它们的家族里是爱的表达方式。简预先提醒我们,到下午的时候我们就会又脏又累。她说对了,但是到了傍晚时分我们就觉得这一切都是值得的。我们看到黑猩猩妈妈跟她的幼子们在树上玩耍,后来看见它们一起回窝里睡觉了。我们明白了黑猩猩家庭成员之间的联系像人类家庭一样紧密。 在简之前没有人完全了解黑猩猩的行为。她花了多年的时间来观察并记录黑猩猩的日常活动。从孩提时代起,简就想在动物生活的环境中研究它们。但是,这不是一件简单的事。当她1960年最初来到贡贝时。对女性来说,住进大森林还是很稀罕的事情。她母亲头几个月来帮过她的忙,这才使她得以开始自己的计划。她的工作改变了人们对黑猩猩的看法。比方说,她的一个重要发现是黑猩猩猎食动物。而在此之前,人们一直认为黑猩猩只吃水果和坚果。她曾经亲眼看到

过一群黑猩猩捕杀一只猴子,然后把它吃掉。她还发现了黑猩猩是如何交流的,而她对黑猩猩身势语的研究帮助她勾勒出黑猩猩的社会体系。 40年来,简·古道尔一直在呼吁世人了解并尊重这些动物的生活。她主张应该让野生动物留在野外生活,而不是用于娱乐或公告。她还为黑猩猩建起了可以安全生活的专门的保护区,她的生活是忙忙碌碌的,然而,正如她所说的:“我一旦停下来,所有的一切就会涌上心头。我就会想起实验室的黑猩猩,太可怕了。每当我看着野生黑猩猩时,这个念头总是萦绕着我。我会对自己说:…难道它们不幸运吗??然后我就想起了那些没有如何过错却被关在笼子里的小 黑猩猩。一旦你看到这些,你就永远不会忘记……。” 简已经得到了她想要得到的一切:在动物的栖息地工作:获得博士学位;还向世人证明女人和男人一样也能在森林里生活。她激励着人们为妇女们的成就而喝彩。 Using Language 为什么不继承她的事业? 上学时我喜欢英语、生物和化学,但是我进大学该选哪门专业呢?直到有一天晚上坐在电脑旁研究中国的伟大女性时,我才有了答案。 很偶然地,我看到了一篇关于林稚巧大夫的文章。她是妇科专家,1901年生,1983年去世。林稚巧似乎一直都在为自己选择的事业而奔忙,去国外留学,写了很多书和文章。其中有一本书引起了我的注意。这是一本小书,介绍如何从妇女怀孕到护理婴儿的过程中降低死亡率,她提出了一些可以遵循的简单的做法,保持婴儿清洁和健康,让他们远离疾病。她为什么要写这些东西呢?林稚巧认为哪些妇女会需要这些忠告呢?我仔细地看了这篇文章,了解到那是为农村妇女写的。也许是她们在遇到紧急情况时找不到医生。

全新版大学英语[第二版]综合教程2课文翻译

Unit 1 Text A Howard Gardner, a professor of education at Harvard University, reflects on a visit to China and gives his thoughts on different approaches to learning in China and the West. 哈佛大学教育学教授霍华德·加德纳回忆其中国之行,阐述他对中西方不同的学习方式的看法。 Learning, Chinese-Style Howard Gardner 1 For a month in the spring of 1987, my wife Ellen and I lived in the bustling eastern Chinese city of Nanjing with our 18-month-old son Benjamin while studying arts education in Chinese kindergartens and elementary schools. But one of the most telling lessons Ellen and I got in the difference between Chinese and American ideas of education came not in the classroom but in the lobby of the Jinling Hotel where we stayed in Nanjing. 中国式的学习风格 霍华德·加德纳 1987年春,我和妻子埃伦带着我们18个月的儿子本杰明在繁忙的中国东部城市南京住了一个月,同时考察中国幼儿园和小学的艺术教育情况。然而,我和埃伦获得的有关中美教育观念差异的最难忘的体验并非来自课堂,而是来自我们在南京期间寓居的金陵饭店的大堂。 2 The key to our room was attached to a large plastic block with the room number on it. When leaving the hotel, a guest was encouraged to turn in the key, either by handing it to an attendant or by dropping it through a slot into a box. Because the key slot was narrow, the key had to be positioned carefully to fit into it. 我们的房门钥匙系在一块标有房间号的大塑料板上。酒店鼓励客人外出时留下钥匙,可以交给服务员,也可以从一个槽口塞入钥匙箱。由于口子狭小,你得留神将钥匙放准位置才塞得进去。 3 Benjamin loved to carry the key around, shaking it vigorously. He also liked to try to place it into the slot. Because of his tender age and incomplete understanding of the need to position the key just so, he would usually fail. Benjamin was not bothered in the least. He probably got as much pleasure out of the sounds the key made as he did those few times when the key actually found its way into the slot. 本杰明爱拿着钥匙走来走去,边走边用力摇晃着。他还喜欢试着把钥匙往槽口里塞。由于他还年幼,不太明白得把钥匙放准位置才成,因此总塞不进去。本杰明一点也不在意。他从钥匙声响中得到的乐趣大概跟他偶尔把钥匙成功地塞进槽口而获得的乐趣一样多。 4 Now both Ellen and I were perfectly happy to allow Benjamin to bang the key

必修5 人教版高中英语课文原文和翻译

必修5 Unit 1 Great scientists Reading JOHH SHOW DEFEATS “KING CHOLERA” 约翰·斯洛击败“霍乱王 John Snow was a famous doctor in London - so expert, indeed, that he attended Queen Victoria as her personal physician. But he became inspired when he thought about helping ordinary people exposed to cholera. This was the deadly disease of its day. Neither its cause nor its cure was understood. So many thousands of terrified people died every time there was an outbreak. John Snow wanted to face the challenge and solve this problem. He knew that cholera would never be controlled until its cause was found. 约翰·斯洛是伦敦一位著名的医生——他的确医术精湛,因而成为照料维多利亚女王的私人医生。但他一想到要帮助那些得了霍乱的普通百姓时,他就感到很振奋。霍乱在当时是最致命的疾病,人们既不知

道它的病源,也不了解它的治疗方法。每次霍乱暴发时,就有大批惊恐的老百姓死去。约翰·斯洛想面对这个挑战,解决这个问题。他知道,在找到病源之前,霍乱疫情是无法控制的。 He became interested in two theories that possibly explained how cholera killed people. The first suggested that cholera multiplied in the air. A cloud of dangerous gas floated around until it found its victims. The second suggested that people absorbed this disease into their bodies with their meals. From the stomach the disease quickly attacked the body and soon the affected person died. 斯洛对霍乱致人死地的两种推测都很感兴趣。一种看法是霍乱病毒在空气中繁殖着,像一股危险的气体到处漂浮,直到找到病毒的受害者为止。第二种看法是人们在吃饭的时候把这种病毒引入体内的。病从胃里发作而迅速殃及全身,患者就会很快地死去。 1 / 23 John Snow suspected that the second theory was correct but he needed evidence. So when another outbreak hit London in 1854, he was ready to begin his enquiry. As the disease spread quickly through poor neighbourhoods, he

新人教版高中英语必修五完整课文译文

新人教版高中英语课文译文 必修五 第一单元伟大的科学家 Reading约翰.斯诺击败“霍乱王” 约翰 .斯诺是伦敦一位著名的医生—他的确医术精湛,因而成为照料维多利亚女皇的私人医生。但当他一想到要帮助那些得了霍乱的普通百姓时,他就感到 很振奋。霍乱在当时是最致命的疾病,人们既不知道它的病源,也不了解它的治 疗方法。每次暴发霍乱时,就有大批惊恐的老百姓病死。约翰.斯诺想面对这个 挑战,解决这个问题。他知道,在找到病源之前,霍乱疫情是无法控制的。 斯诺对霍乱致人死地的两种推测都很感兴趣。一种看法是霍乱病毒在空气中 腐殖着,像一股危险的气流到处漂浮,直到找到病毒的受害者为止。第二种看法 是在吃饭的时候人们把这种病毒引入体内的。病从胃里发作而迅速殃及全身,患者就会很快地死去。 斯诺推测第二种说法是正确的,但是他需要证据。因此,在1854 年伦敦再次暴发霍乱的时候,约翰.斯诺着手准备对此调研。当霍乱在贫民区迅速蔓延的 时候,约翰 .斯诺就开始收集资料。他发现特别在两条街道上霍乱流行的很严重, 在 10 天之内就死去了 500 多人。他决心要查明其原因。 首先,他在一张地图上标明了所有死者住过的地方。这提供了一条说明霍乱起因的很有价值的线索。许多死者是住在宽街的水泵附近(特别是这条街上16、 37、38、 40 号)。他发现有些住宅(如宽街上20 号和 21 号以及剑桥上的 8 号 和 9 号)却无人死亡。他以前没预料到这种情况,所以他决定深入调查。他发现,

这些人都在剑桥街7 号的酒馆里打工,而酒馆为他们免费提供啤酒喝,因此他们没有喝从宽街水泵抽上来的水。看来水是罪魁祸首。 接下来,约翰 .斯诺调查了这两条街的水源情况。他发现,水是从河里来的,而河水被伦敦排出的脏水污染了。他马上叫宽街上惊慌失措的老百姓拆掉水泵上 的把手。这样,水泵就用不成了。不久,疫情就开始得到了缓解。他证明了,霍 乱是由病菌而不是由气团传播的。 在伦敦的另一个地区,他从两个与宽街暴发的霍乱有关联的死亡病例中发现了有力的证据。有一位妇女是从宽街搬进来的,她特备喜欢那里的水,每天都要派人从水泵打水运到家里来。她和她的女儿喝了这种水,都得了霍乱而死去。有了这个特别的证据,约翰.斯诺就能够肯定地宣布,这种被污染了的水携带着病 菌。 为了防止这种情况的再度发生,约翰.斯诺建议所有水源都要经过检测。自来水公司也接到指令,不能再让人们接触被污染的水了。最终,“霍乱王”被打败 了。 Using Language 哥白尼的革命性理论 尼古拉 .哥白尼被吓得心烦意乱。虽然他曾经试着不去理睬那些数字,然而他所有的数学计算都得出了一个相同的结论:地球不是太阳系的中心。只有当你把太阳放在中心位置上,天空中其他行星的运动才能说得清楚。他的这个理论可 不能告诉任何人,因为即使他只暗示有这种想法,他都会收到强大的基督教教会 势力的惩罚。教会认为世界是上帝创造的,正因为如此,地球就具有特殊的意义, 它必定要成为太阳系的中心。 这样,问题就来了,因为天文学家以前发现过,天上有些行星停顿下来,往

计算机专业英语课文翻译部分(第四版)

1.2 总线互连 总线是连接两个或多个设备的通信通路。总线的关键特征是,它是一条共享传输介质。多个设备连接到总线上,任一个设备发出的信号可以为其他所有连接到总线上的设备所接收。如果两个设备同时传送,它们的信号将会重叠,引起混淆。因此,一次只能有一个设备成功地(利用总线)发送数据。 典型的情况是,总线由多条通信通路或线路组成,每条线(路)能够传送代表二进制1和0的信号。一段时间里,一条线能传送一串二进制数字。总线的几条线放在一起能同时并行传送二进制数字。例如, 一个8位的数据能在8条总线线上传送。 计算机系统包含有多种不同的总线,它们在计算机系统层次结构的各个层次提供部件之间的通路。连接主要计算机部件(处理机, 存储器, I/O)的总线称为系统总线。系统总线通常由50~100条分立的(导)线组成。每条线被赋予一个特定的含义或功能。虽然有许多不同的总线设计,但任何总线上的线都可以分成三个功能组:数据线、地址线和控制线。此外可能还有为连接的模块提供电源的电源线。 数据线提供系统模块间传送数据的路径,这些线组合在一起称为数据总线。典型的数据总线包含8、16或32根线,线的数量称为数据总线的宽度。因为每条线每次传送1位,所以线的数目决定了每次能同时传送多少位。数据总线的宽度是决定系统总体性能的关键因素。 地址线用于指定数据总线上数据的来源和去向。例如,如果处理机希望从存储器中读一个字的数据,它将所需要字的地址放在地址线上。显然,地址总线的宽度决定了系统最大可能的存储器容量。 控制线用来控制对数据线和地址线的访问和使用。由于数据线和地址线被所有部件共享,因此必须用一种方法来控制它们的使用。控制信号在系统模块之间传送命令和定时信息。定时信息指定了数据和地址信息的有效性,命令信号指定了要执行的操作。 大多数计算机系统使用多总线,这些总线通常设计成层次结构。图1.3显示了一个典型的高性能体系结构。一条局部总线把处理机连接到高速缓存控制器,而高速缓存控制器又连接到支持主存储器的系统总线上。高速缓存控制器集成到连接高速总线的桥中。这一总线支持连接到:高速LAN、视频和图形工作站控制器,以及包括SCSI 和FireWire的局部外设总线的接口控制器。低速设备仍然由分开的扩充总线支持,用一个接口来缓冲该扩充总线和高速总线之间的通信流量。 PCI 外部设备互连是流行的高带宽的、独立于处理机的总线,它能够作为中间层或外围设备总线。当前的标准允许在66MHz频率下使用多达64根数据线,其原始传输速率为528MB/s, 或4.224Gbps。PCI被设计成支持各种各样基于微处理机的配置,包括单处理机和多处理机的系统。因此,它提供了一组通用的功能。PCI使用同步时序以及集中式仲裁方案。 在多处理机系统中,一个或多个PCI配置可通过桥接器连接到处理机的系统总线上。系统总线只支持处理机/高速缓存单元、主存储器以及PCI桥接器。使用桥接器使得PCI独立于处理机速度,又提供快速接收和传送数据的能力。 2.1 光存储介质:高密度存储器 2.1.1 光盘 光盘技术最终可能使磁盘和磁带存储淘汰。用这种技术,磁存储器所用的读/写头被两束激光代替。一束激光通过在光盘上刻制微小的凹点,对记录表面进行写;而另一束激光用来从光敏感的记录表面读取数据。由于光束容易被偏转到光盘上所需要的位置,所以不需要存取臂。 对用户而言,光盘正成为最有吸引力的选择。它们(光盘)对环境变化不太敏感,并且它们以每兆字节比磁盘低得多的存储器价格提供更多的直接存取存储器。光盘技术仍在出现,并且还需要稳定;然而,目前有三种主要类型的光盘。它们是CD-ROM、WORM盘和磁光盘。 CD-ROM 1980年引入的,非常成功的CD,或紧密盘是设计来提高音乐的录音重放质量的光盘。为了制作一张CD,把音乐的模拟声音转换成等价的数字声音,并且存储在一张4.72英寸的光盘上。在每张光盘上可以用数字格式(用20亿数字位)记录74分钟的音乐。因为它的巨大存储容量,计算机工业的企业家们立刻认

高中英语必修一课文原文和翻译

必修1第一单元Reading 阅读 ANNE’S BEST FRIEND Do you want a friend whom you could tell everything to, like your deepest feelings and thoughts? Or are you afraid that your friend would laugh at you, or would not understand what you are going through? Anne Frank wanted the first kind, so she made her diary her best friend. Anne lived in Amsterdam in the Netherlands during World War II. Her family was Jewish so the had to hide or they would be caught by the German Nazis. She and her family hide away for two years before they were discovered. During that time the only true friend was her diary. She said, “I don’t want to set down a series of facts in a diary as most people do, but I want this diary itself to be my friend, and I shall call my friend Kitty.” Now r ead how she felt after being in the hiding place since July 1942. Thursday 15, June, 1944 Dear kitty, I wonder if it’s because I haven’t been able to be outdoors for so long that I’ve grown so crazy about everything to do with nature. I can well remember that there was a time when a deep blue sky, the song of the birds, moonlight and flowers could never have kept me spellbound. That’s changed since I was here.…For example, when it was so warm, I stayed awake on purpose until half past eleven one evening in order to have a good look at the moon for once by myself. But as the moon gave far too much light, I didn’t dare open a window. Another time some months ago, I happened to be upstairs one evening when the window was open. I didn’t go downstairs until the window had to be shut. The dark, rainy evening, the wind, the thundering clouds held me entirely in their power; it was the first time in a year and a half that I’d seen the night face to face… …Sadly…I am only able to look at nature through dirty curtains hanging before very dusty windows. It’s no pleasure looking through these any longer because nature is one thing that really must be experienced. Yours, Anne Using Language 语言运用 Reading and listening 读与听 1 Read the letter that Lisa wrote to Miss Wang of Radio for Teenagers and predict what Miss Wang will say. After listening, check and discuss her advice. Dear Miss Wang, I am having some trouble with my classmates at the moment. I’m getting along well with a boy in my class. We often do homework together and we enjoy helping each other. We have become really good friends. But other students have started gossiping. They say that this boy and I have fallen in love. This has made me angry. I don’t want to end the friendship, but I hate other s gossiping. What should I do? Yours, Lisa Reading and writing 读与写 Miss Wang has received a letter from Xiaodong. He is also asking for some advice. Read the letter on the right carefully and help Miss Wang answer it.

相关主题