搜档网
当前位置:搜档网 › --数值计算方法课程设计题目

--数值计算方法课程设计题目

--数值计算方法课程设计题目
--数值计算方法课程设计题目

刘显全 --《数值计算方法》课程设计题目

一、非线性方程(组)的数值解法

(1)研究迭代法的收敛性问题

一、非线性方程(组)的数值解法

(2)不同迭代法的收敛速度比较

一、非线性方程(组)的数值解法

(3)求解非线性方程组的几种方法

实验目的:比较Newton法、Newton法的几种变形格式。

实验内容:分别用Newton 法、下降Newton 法、简化Newton 法、修正Newton 法,选取不同的初值求解下面方程组,对于相同的精度要求,比较这几种方法的运行时间。

二、数值逼近

(1)用Lagrange 插值法

实验目的:掌握Lagrange 插值法。

(2) 用Newton 插值法求解

实验目的:掌握Newton插值法。

二、数值逼近

(3)编程实现求三次样条插值多项式的算法

实验目的:掌握三次样条插值的三弯矩方法。

实验内容:编程实现求三次样条插值多项式的算法,考虑不同的边界条件。计算出各插值节点的弯矩值{M i },绘制样条插值函数曲线。

用Lagrange算法,在同一坐标系中绘制函数f(x)、插值多项式、样条插值函数的曲线,比较插值效果。

三、数值积分与数值微分

(1)编程实现变步长Simpson 方法

实验目的:掌握变步长Simpson 方法。

实验内容:用变步长Simpson方法计算下列各积分,要求误差不超过10-7,并输出积分区间的分割数。

三、数值积分与数值微分

(2)编程实现龙贝格(Romberg)积分法

实验目的:掌握Romberg 积分法。

实验内容:用Romberg 积分法计算下列积分,要求误差不超过10-8,与Simpson 方法比较计算量。

三、数值积分与数值微分

(3)编程实现数值求导的三点公式

实验目的:掌握数值求导的三点公式法。

实验内容:分别用数值求导的三点公式法计算函数f (x)的1 阶和2 阶导数。

并与精确值对比,指出该求导方法的精度。

② f 在结点1.7,1.8,1.9,2.0,.2.1,2.2,2.3 处的函数值分别为

2.46469,2.88065,

3.38557,4,

4.74964,

5.6667,

6.79163 (数据来自函数)求各结点处的1 阶和2 阶导数。

四、线性代数方程组的直接解法

(1)用实例讨论Gauss消去法的数值算法稳定性

实验目的:掌握Gauss 消去法、列主元Gauss 消去法,观察主元素对数值稳定性的影响。实验内容:分别用Gauss 消去法、列主元Gauss 消去法法求解方程组Ax = b ,其中

观察主元素的大小对计算结果的影响。

四、线性代数方程组的直接解法

(2)用平方根法求解线性方程组

实验目的:掌握求解系数矩阵正定的方程组的平方根法、改进的平方根法。

实验内容:分别用平方根法、改进的平方根法求解方程组Ax = b,其中

五、矩阵特征值计算方法

(1)用幂法求矩阵的主特征值

实验目的:研究用幂法求矩阵的特征值的特点。

实验内容:用幂法求下面矩阵的主特征值

,比较迭代次数,分析原因。

五、矩阵特征值计算方法

(2)用Jacobi方法求矩阵的特征值

实验目的:研究求实对称矩阵的特征值的Jacobi 方法。

实验内容:用经典的Jacobi 方法求矩阵

的全部特征值和特征向量。

数值计算方法课程设计(C语言)

数值计算方法课程设计 姓名 学号 成绩

课程实际报告 实验一:秦九韶算法 题目 用选列主元高斯消去法解线性方程组 ???????=+- =-+-=-+-=--02 02 0 21 34343232121x x x x x x x x x x 算法语言: 利用c 语言的知识编写该算法程序 算法步骤叙述: 秦九昭算法的基思路是v[0]=a[0]*x+a[1] v[i]=v[i-1]*x+a[i+1];利用秦九昭算法计算多项式函数。 程序清单: #include void main() { float a[5],x,sum; int i; printf("presase input the value of x="); scanf("%f",&x); for (i =5;i >=0;i --) { printf("please input the value of a%d=",i); scanf("%f",&a[i]); } sum =a[5];

for(i=5;i>=1;i--) {sum=sum*x+a[i-1]; } printf("f(x)=%f/n",sum); } 输出结果计算:

实验总结: 通过运用C 语言,解决了秦九韶算法手写的复杂。为以后的雪地打下基础。 实验二:用选列主元高斯消去法解线性方程组 题目 用选列主元高斯消去法解线性方程组 ???????=+- =-+-=-+-=--02 0 2 0 21 34343232121x x x x x x x x x x 算法步骤叙述 第一步消元——在增广矩阵(A,b )第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A,b )做初等行变换使原方程组的第一列元素除了第一行的全变为0; 第二步消元——在增广矩阵(A,b )中第二列中(从第二行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A,b )做初等行变换使原方程组的第二列元素除了第一和第二行的全变为0; 第三步消元——在增广矩阵(A,b )中第三列中(从第三行开始)找到绝对值最大的元素,将其所在行与第三行交换,再对(A,b )做初等行变换使原方程组的第三列第四行元素为0; 第四,按x4-x3-x2-x1的顺序回代求解出方程组的解,x[n]=b[n]/a[n][n],x[i]=(b[i]-Σa[i][j]x[j])/a[i][i],i=n-1,…,2,1 程序清单: #include #include #define N 4 static double A[N][N] = {-3,-1,0,0,-1,2,-1,0,0,-1,2,-1,0,0,-1,2}; static double B[N]={1,0,0,0};

数值分析上机作业

数值分析上机实验报告 选题:曲线拟合的最小二乘法 指导老师: 专业: 学号: 姓名:

课题八曲线拟合的最小二乘法 一、问题提出 从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。 在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y 与时间t 的拟合曲线。 二、要求 1、用最小二乘法进行曲线拟合; 2、近似解析表达式为()33221t a t a t a t ++=?; 3、打印出拟合函数()t ?,并打印出()j t ?与()j t y 的误差,12,,2,1 =j ; 4、另外选取一个近似表达式,尝试拟合效果的比较; 5、*绘制出曲线拟合图*。 三、目的和意义 1、掌握曲线拟合的最小二乘法; 2、最小二乘法亦可用于解超定线代数方程组; 3、探索拟合函数的选择与拟合精度间的关系。 四、计算公式 对于给定的测量数据(x i ,f i )(i=1,2,…,n ),设函数分布为 ∑==m j j j x a x y 0)()(? 特别的,取)(x j ?为多项式 j j x x =)(? (j=0, 1,…,m )

则根据最小二乘法原理,可以构造泛函 ∑∑==-=n i m j i j j i m x a f a a a H 1 10))((),,,(? 令 0=??k a H (k=0, 1,…,m ) 则可以得到法方程 ???? ??????? ?=????????????????????????),(),(),(),(),(),(),(),(),(),(),(),(1010101111000100m m m m m m m m f f f a a a ????????????????????? 求该解方程组,则可以得到解m a a a ,,,10 ,因此可得到数据的最小二乘解 ∑=≈m j j j x a x f 0)()(? 曲线拟合:实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。 五、结构程序设计 在程序结构方面主要是按照顺序结构进行设计,在进行曲线的拟合时,为了进行比较,在程序设计中,直接调用了最小二乘法的拟合函数polyfit ,并且依次调用了plot 、figure 、hold on 函数进行图象的绘制,最后调用了一个绝对值函数abs 用于计算拟合函数与原有数据的误差,进行拟合效果的比较。

东南大学数值分析上机题答案

数值分析上机题 第一章 17.(上机题)舍入误差与有效数 设∑=-= N j N j S 2 2 11 ,其精确值为)111-23(21+-N N 。 (1)编制按从大到小的顺序1 -1 ···1-311-21222N S N +++=,计算N S 的通用 程序; (2)编制按从小到大的顺序1 21 ···1)1(111 222-++--+ -=N N S N ,计算N S 的通用程序; (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数(编制程序时用单精度); (4)通过本上机题,你明白了什么? 解: 程序: (1)从大到小的顺序计算1 -1 ···1-311-21222N S N +++= : function sn1=fromlarge(n) %从大到小计算sn1 format long ; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end (2)从小到大计算1 21 ···1)1(111 2 22 -++--+-= N N S N function sn2=fromsmall(n) %从小到大计算sn2 format long ; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end (3) 总的编程程序为: function p203()

clear all format long; n=input('please enter a number as the n:') sn=1/2*(3/2-1/n-1/(n+1));%精确值为sn fprintf('精确值为%f\n',sn); sn1=fromlarge(n); fprintf('从大到小计算的值为%f\n',sn1); sn2=fromsmall(n); fprintf('从小到大计算的值为%f\n',sn2); function sn1=fromlarge(n) %从大到小计算sn1 format long; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end function sn2=fromsmall(n) %从小到大计算sn2 format long; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end end 运行结果:

数值计算方法课程设计

重庆邮电大学 数学与应用数学 专业 《数值计算方法》课程设计 姓名: 李金徽 王莹 刘姝楠 班级: 1131001 1131002 1131002 学号: 2010213542 2010213570 2010213571 设计时间: 2012-6-4 指导教师: 朱伟

一、课程设计目的 在科学计算与工程设计中,我们常会遇到求解线性方程组的问题,对于系数矩阵为低阶稠密矩阵的线性方程组,可以用直接法进行消元,而对于系数矩阵为大型稀疏矩阵的情况,直接法就显得比较繁琐,而迭代法比较适用。比较常用的迭代法有Jacobi 迭代与Gauss - seidel 迭代。本文基于两种方法设计算法,并比较他们的优劣。 二、课程设计内容 给出Jacobi 迭代法和Gauss-Seidel 迭代法求解线性方程组的算法思想和MATLAB 程序实现,并对比分析这两种算法的优劣。 三、问题的分析(含涉及的理论知识、算法等) Jacobi 迭代法 方程组迭代法的基本思想和求根的迭代法思想类似,即对于线性 方程组Ax = b( 其中n n n R b R R A ∈?∈,),即方程组 )1(2211222221211 1212111?? ???? ?=+?++??=+?++=+?++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 将系数矩阵A 写为 )2(000000 21122 12122 11U L D a a a a a a a a a A n n n n nn --≡??? ?? ? ? ??---- ??????? ??----??????? ??= 若选取D M =,则U L A M N +=-=,方程组)1(转化为等价方程组 b x U L Dx ++=)(

数值分析上机题目详解

第一章 一、题目 设∑ =-= N N j S 2 j 2 1 1,其精确值为)11 123(21+--N N 。 1) 编制按从大到小的顺序1 1 13112122 2-+??+-+-=N S N ,计算S N 的通用程序。 2) 编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 3) 按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) 4) 通过本次上机题,你明白了什么? 二、通用程序 N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0); for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('The value of Sn (N=%d)\n',N); fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2); disp('____________________________________________________')

三、结果 从结果可以看出有效位数是6位。 感想:可以得出,算法对误差的传播有一定的影响,在计算时选一种好的算法可以使结果更为精确。从以上的结果可以看到从大到小的顺序导致大数吃小数的现象,容易产生较大的误差,求和运算从小数到大数所得到的结果才比较准确。

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析上机题目

数值分析上机题目 1、 分别用不动点迭代与Newton 法求解方程250x x e -+=的正根与负根。 2、 Use each of the following methods to find a solution in [0.1,1] accurate to within 10^-4 for 4326005502002010x x x x -+--= a. Bisection method b. Newton’s method c. Secant method d. Method of False Position e. Muller’s method 3、 应用Newton 法求f (x )的零点,e=10^-6,这里f (x )=x-sin (x )。 再用求重根的两种方法求f (x )的零点。 4、 应用Newton 法求f (x )的零点,e=10^-6,f(x)=x-sin(x) 再用Steffensen’s method 加速其收敛。 5、 用Neville’s 迭代差值算法,对于函数2 1 (),11125f x x x = -≤≤+进行lagrange 插值。取不同的等分数n=5,10,将区间[-1,1]n 等分,取等距节点。把f(x)和插值多项式的曲线画在同一张图上进行比较。 6、 画狗的轮廓图 7、 Use Romberg integration to compute the following approximations to ? a 、 Determine R1,1,R2,1,R3,1,R4,1and R5,1,and use these approximations to predict the value of the integral. b 、 Determine R2,2 ,R3,3 ,R4,4 ,and R5,5,and modify your prediction. c 、 Determine R6,1 ,R6,2 ,R6,3 ,R6,4 ,R6,5 and R6,6,and modify your prediction.

数值分析课程设计

淮海工学院计算机工程学院课程设计报告书 课程名:《数值分析》 题目:数值分析课程设计 班级: 学号: 姓名:

数值分析课程设计 课程设计要求 1、研究第一导丝盘速度y与电流周波x的关系。 2、数据拟合问题运用样条差值方法求出温度变化的拟合曲线。 课程设计目的 1、通过编程加深对三次样条插值及曲线拟合的最小二乘法的理解; 2、学习用计算机解决工程问题,主要包括数据处理与分析。 课程设计环境 visual C++ 6.0 课程设计内容 课程设计题目1: 合成纤维抽丝工段中第一导丝盘的速度对丝的质量有很大的影响,第一丝盘的速度和电流周波有重要关系。下面是一组实例数据: 其中x代表电流周波,y代表第一导丝盘的速度 课程设计题目3: 在天气预报网站上获得你家乡所在城市当天24小时温度变化的数据,认真观察分析其变化趋势,在此基础上运用样条差值方法求出温度变化的拟合曲线。然后将该函数曲线打印出来并与原来的温度变化数据形成的曲线进行比较,给出结论。写出你研究的心得体会。 课程设计步骤 1、利用最小二乘法写出题1的公式和算法; 2、利用excel表格画出数据拟合后题1的图像; 3、在Visual C++ 6.0中编写出相应的代码; 4、搜索11月12日南通当地一天的温度变化数据; 5、在Visual C++ 6.0中编写出相应的代码; 6、利用excel表格画出数据拟合后题3的图像 课程设计结果 课程设计题目1 数值拟合

解:根据所给数据,在excel窗口运行: x=[49.2 50.0 49.3 49.0 49.0 49.5 49.8 49.9 50.2 50.2] y=[16.7 17.0 16.8 16.6 16.7 16.8 16.9 17.0 17.0 17.1] 课程设计题目3 数据为:X=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]; Y=[12,12,11,12,12,12,12,12,13,15,16,17,17,18,17,17,17,16,15,15,15,15,14,14]; 源代码为: 第一题: #include #include"math.h" using namespace std; //double x[100],y[100]; int main(){ int i; double k,b; double sum1=0,sum2=0,sum3=0,sum4=0; double x[10]={49.2,50.0,49.3,49.0,49.0,49.5,49.8,49.9,50.2,50.2}; double y[10]={16.7,17.0,16.8,16.6,16.7,16.8,16.9,17.0,17.0,17.1}; for(i=0;i<10;i++){ sum1+=x[i]*y[i]; sum2+=x[i];

数值计算方法I上机实验考试题

数值计算方法I 上机实验考试题(两题任选一题) 1.小型火箭初始质量为900千克,其中包括600千克燃料。火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生30000牛顿的恒定推力.当燃料用尽时引擎关闭。设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数为0.4(千克/米).重力加速度取9.8米/秒2. A. 建立火箭升空过程的数学模型(微分方程); B. 求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时间和高度. 2.小型火箭初始质量为1200千克,其中包括900千克燃料。火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生40000牛顿的恒定推力.当燃料用尽时引擎关闭。设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数记作k ,火箭升空过程的数学模型为 0)0(,0,01222==≤≤-+?? ? ??-==t dt dx x t t mg T dt dx k dt x d m 其中)(t x 为火箭在时刻t 的高度,m =1200-15t 为火箭在时刻t 的质量,T (=30000牛顿)为推力,g (=9.8米/秒2)为重力加速度, t 1 (=900/15=60秒)为引擎关闭时刻. 今测得一组数据如下(t ~时间(秒),x ~高度(米),v ~速度(米/秒)): 现有两种估计比例系数k 的方法: 1.用每一个数据(t,x,v )计算一个k 的估计值(共11个),再用它们来估计k 。 2.用这组数据拟合一个k . 请你分别用这两种方法给出k 的估计值,对方法进行评价,并且回答,能否认为空气阻力系数k=0.5(说明理由).

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。 由于 n i i i n n n n n i n x x x x x x x x x x V ...1...1... ......... ...... 1 )(21110 20 0---= ,.1,...,1,0-=n i 故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。又)(x V n 的最高 次幂 n x 的系数为 )(...1...1... ...... .........1),...,,(101 1 21 11 2 2221 02001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -== ∏-≤<≤-----------。 故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V 6、解:(1)设 .)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n 对 )(x f 构造Lagrange 插值多项式, ),()(0 x l x x L j n j k j n ∑== 其 0)()! 1() ()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ, ξ介于j x 之间,.,...,1,0n j = 故 ),()(x L x f n =即 .,...,1,0,)(0 n k x x l x k j n j k j ==∑= 特别地,当0=k 时, 10) (=∑=n j x j l 。 (2) 0)()1(1) ()1()()(0000=-=??? ? ??-??? ? ??-=--=-===∑∑∑∑k j j i j i k j k i i j i i k j n j k i i j k n j j x x x x i k x l x x i k x l x x )利用(。 7、证明:以b a ,为节点进行线性插值,得 )()()(1 b f a b a x a f b a b x x P --+--= 因 0)()(==b f a f ,故0)(1=x P 。而 ))()(("2 1 )()(1b x a x f x P x f --= -ξ,b a <<ξ。 故)("max )(8 122)("max )(max 2 2 x f a b a b x f x f b x a b x a b x a ≤≤≤≤≤≤-=??? ??-≤。 14、解:设 ))...()(()(21n n x x x x x x a x f ---=, k x x g =)(,记)() (1 ∏=-=n j j n x x x w ,则 ),()(x w a x f n n =).()(' j n n j x w a x f = 由差商的性质知 [])! 1()(1,..,,1) (' 1 )(')('1 211 11 -== ==-===∑∑∑ n g a x x x g a x w x a x w a x x f x n n n n n j j n k j n n j j n n k j n j j k j ξ, ξ介于n x x ,...,1之间。 当20-≤≤ n k 时,0)()1(=-ξn g , 当 1-=n k 时,)!1()(1-=-n g n ξ, 故 ???-=-≤≤=-= --=∑1,,20,0)!1()(1) ('1 11 n k a n k n g a x f x n n n n j j k j ξ 16、解:根据差商与微商的关系,有 [] 1! 7! 7!7)(2,...,2,2)7(7 10===ξf f , [ ] 0! 80 !8)(2,...,2,2)8(8 1 ===ξf f 。 ( 13)(47+++=x x x x f 是7次多项式, 故 ,!7)()7(=x f 0)()8(=x f )。 25、解:(1) 右边= [][]dx x S x f x S dx x S x f b a b a ??-+-)(")(")("2)(")("2 = [] d x x S x f x S x S x S x f x f b a ?-++-)("2)(")("2)(")(")("2)(" 222 = [] d x x S x f b a ?-)(")(" 22 = [][]dx x S dx x f b a b a 2 2 )(")("??- =左边。 (2)左边= ? -b a dx x S x f x S ))(")(")(("

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学 实验名称数值il?算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一. 各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程 *对于非线性方程,若已知根的一个近似值,将在处展开成一阶 xxfx ()0, fx ()xkk 泰勒公式 "f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2! 忽略高次项,有 ,fxfxfxxx 0 ()()(),,, kkk 右端是直线方程,用这个直线方程来近似非线性方程。将非线性方程的 **根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkk fx 0 fx 0 0,

解出 fX 0 *k XX,, k' fx 0 k 水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ik fx ()k 八XX, Ikk* fx()k 这就是牛顿迭代公式。 ,2,计算机程序框图:,见, ,3,输入变量、输出变量说明: X输入变量:迭代初值,迭代精度,迭代最大次数,\0 输出变量:当前迭代次数,当前迭代值xkl ,4,具体算例及求解结果: 2/16 华北电力大学实验报吿 开始 读入 l>k /fx()0?,0 fx 0 Oxx,,01* fx ()0 XX,,,?10 kk, ,1,kN, ?xx, 10 输出迭代输出X输出奇异标志1失败标志

,3,输入变量、输出变量说明: 结束 例:导出计算的牛顿迭代公式,并il ?算。(课本P39例2-16) 115cc (0), 求解结果: 10. 750000 10.723837 10. 723805 10. 723805 2、列主元素消去法求解线性方程组,1,算法原理: 高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角 3/16 华北电力大学实验报告方程组求解。 列选主元是当高斯消元到第步时,从列的以下(包括)的各元素中选出绝 aakkkkkk 对值最大的,然后通过行交换将其交换到的位置上。交换系数矩阵中的 两行(包括常ekk 数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结 ,2,计算机程序框图:,见下页, 输入变量:系数矩阵元素,常向量元素baiji 输出变量:解向量元素bbb,,12n

东南大学《数值分析》-上机题

数值分析上机题1 设2 21 1N N j S j ==-∑ ,其精确值为1311221N N ??-- ?+?? 。 (1)编制按从大到小的顺序222 111 21311 N S N = +++---,计算N S 的通用程序。 (2)编制按从小到大的顺序22 21111(1)121 N S N N =+++----,计算N S 的通用程序。 (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数。(编制程序时用单精度) (4)通过本上机题,你明白了什么? 程序代码(matlab 编程): clc clear a=single(1./([2:10^7].^2-1)); S1(1)=single(0); S1(2)=1/(2^2-1); for N=3:10^2 S1(N)=a(1); for i=2:N-1 S1(N)=S1(N)+a(i); end end S2(1)=single(0); S2(2)=1/(2^2-1); for N=3:10^2 S2(N)=a(N-1); for i=linspace(N-2,1,N-2) S2(N)=S2(N)+a(i); end end S1表示按从大到小的顺序的S N S2表示按从小到大的顺序的S N 计算结果

通过本上机题,看出按两种不同的顺序计算的结果是不相同的,按从大到小的顺序计算的值与精确值有较大的误差,而按从小到大的顺序计算的值与精确值吻合。从大到小的顺序计算得到的结果的有效位数少。计算机在进行数值计算时会出现“大数吃小数”的现象,导致计算结果的精度有所降低,我们在计算机中进行同号数的加法时,采用绝对值较小者先加的算法,其结果的相对误差较小。

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

《数值分析》课程设计报告

《数值分析》课程设计实验报告 龙格—库塔法分析Lorenz 方程 200820302033 胡涛 一、问题叙述 考虑著名的Lorenz 方程 () dx s y x dt dy rx y xz dt dz xy bz dt ?=-???=--???=-?? 其中s ,r ,b 为变化区域内有一定限制的实参数,该方程形式简单,表面上看并无惊人之处,但由该方程揭示出的许多现象,促使“混沌”成为数学研究的崭新领域,在实际应用中也产生了巨大的影响。 二、问题分析 Lorenz 方程实际上是一个四元一阶常微分方程,用解析法精确求解是不可能的,只能用数值计算,最主要的有欧拉法、亚当法和龙格- 库塔法等。为了得到较高精度的,我们采用经典四阶龙格—库塔方法求解该问题。 三、实验程序及注释 (1)算法程序 function [T]=Runge_Kutta(f,x0,y0,h,n) %定义算法,其中f 为待解方程组, x0是初始自变量,y0是初始函数 值,h 是步长,n 为步数 if nargin<5 n=100; %如果输入参数个数小于5,则步数 n=100 end r=size(y0);r=r(1); %返回初始输出矩阵的行列数,并将 值赋给r(1) s=size(x0);s=s(1); %返回初始输入矩阵的行列数,并 将值赋给s(1) r=r+s; T=zeros(r,n+1); T(:,1)=[y0;x0]; for t=2:n+1 %以下是具体的求解过程 k1=feval(f,T(1:r-1,t-1)); k2=feval(f,[k1*(h/2)+T(1:r-1,t-1);x0+h/2]); k3=feval(f,[k2*(h/2)+T(1:r-1,t-1);x0+h/2]); k4=feval(f,[k3*h+T(1:r-1,t-1);x0+h]); x0=x0+h; T(:,t)=[T(1:r-1,t-1)+(k1+k2*2+k3*2+k4)*(h/6);x0]; end

数值计算方法上机实习题

数值计算方法上机实习题 1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+ -=-,从I 0=0.1824, 0=0.1823I 出发,计算20I ; (2) 20=0I ,20=10000I , 用n I I n n 51 5111+- =--,计算0I ; (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 答:第一个算法可得出 e 0=|I 0?I 0 ?| e n =|I n ?I n ?|=5n |e 0| 易知第一个算法每一步计算都把误差放大了5倍,n 次计算后更是放大了5n 倍,可靠性低。 第二个算法可得出 e n =|I n ?I n ?| e 0=(15 )n |e n | 可以看出第二个算法每一步计算就把误差缩小5倍,n 次后缩小了5n 倍,可靠性高。

2. 求方程0210=-+x e x 的近似根,要求41105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 计算根与步数程序: fplot(@(x) exp(x)+10*x-2,[0,1]); grid on; syms x; f=exp(x)+10*x-2; [root,n]=EFF3(f,0,1); fprintf('root=%6.8f ,n=%d \n',root,n); 计算结果显示: root=0.09057617 ,n=11 (2) 取初值00=x ,并用迭代10 21 x k e x -=+;

(3) 加速迭代的结果; (4) 取初值00 x ,并用牛顿迭代法;

数值分析上机题参考答案.docx

如有帮助欢迎下载支持 数值分析上机题 姓名:陈作添 学号: 040816 习题 1 20.(上机题)舍入误差与有效数 N 1 1 3 1 1 设 S N ,其精确值为 。 2 2 2 N N 1 j 2 j 1 (1)编制按从大到小的顺序 1 1 1 ,计算 S 的通用程序。 S N 1 32 1 N 2 1 N 2 2 (2)编制按从小到大的顺序 1 1 1 ,计算 S 的通用程序。 S N 1 (N 1)2 1 22 1 N N 2 (3)按两种顺序分别计算 S 102 , S 104 , S 106 ,并指出有效位数。 (编制程序时用单精度) (4)通过本上机题,你明白了什么? 按从大到小的顺序计算 S N 的通用程序为: 按从小到大的顺序计算 S N 的通用程序为: #include #include float sum(float N) float sum(float N) { { float j,s,sum=0; float j,s,sum=0; for(j=2;j<=N;j++) for(j=N;j>=2;j--) { { s=1/(j*j-1); s=1/(j*j-1); sum+=s; sum+=s; } } return sum; return sum; } } 从大到小的顺序的值 从小到大的顺序的值 精确值 有效位数 从大到小 从小到大 0.740049 0.74005 0.740049 6 5 S 102 0.749852 0.7499 0.7499 4 4 S 104 0.749852 0.749999 0.749999 3 6 S 106 通过本上机题, 看出按两种不同的顺序计算的结果是不相同的, 按从大到小的顺序计算 的值与精确值有较大的误差, 而按从小到大的顺序计算的值与精确值吻合。 从大到小的顺序 计算得到的结果的有效位数少。 计算机在进行数值计算时会出现“大数吃小数”的现象,导 致计算结果的精度有所降低, 我们在计算机中进行同号数的加法时, 采用绝对值较小者先加 的算法,其结果的相对误差较小。

相关主题