搜档网
当前位置:搜档网 › JIS Z 金属材料拉伸试验方法 中文版

JIS Z 金属材料拉伸试验方法 中文版

JIS Z 金属材料拉伸试验方法 中文版
JIS Z 金属材料拉伸试验方法 中文版

日本工业标准JIS

JIS Z 2241-1998

导言本日本工业标准是基于ISO 6892:1984金属材料――拉伸试验,通过翻译国际标准的相应部分制定而成,对国际标准的技术内容未作修改。在这次修订中,把应力速率的上限规定为50%/min,为的是和国际标准保持一致。本标准也规定了应力速率为>50%/min~80%/min内容,为的是和日本工业标准的材料和产品标准保持一致。

1 适用范围此日本工业标准规定了金属材料拉伸试验方法。

注:以下标准为相应的国际标准:

ISO 6892:1984金属材料――拉伸试验

2 引用标准本标准在条文中适当处引用了下列标准中的条款。应该引用下列标准的最新版本。

JIS B 7721 拉力试验机应力测量系统的校验

JIS B 7741 单轴试验用引伸计的标定

JIS G 0202 铁和钢术语(试验)

JIS Z 2201 金属材料的拉伸试验试样

JIS Z 8401 数字修约规则

3 定义JIS G 0202中规定相关定义和以下定义适用于本标准:

a)标距【gauge length】测量伸长用的试样圆柱或棱柱部分的长度。

1)原始标距【original gauge length(L o)】施力前的试样标距。

2)断后标距【final gauge length(L u)】试样断裂后的标距。

b)引伸计标距【extensometer gauge length(L e)】用引伸计测量试样伸长时所用试样的平行长

度部分长度(这个长度不同于L o,应该比b、d或管状试样的外径大,但是要比试样平行长度部分短。

这里,b:板状试样平行部分的宽度,或从管材轴向上截取的试样的平均宽度,或棒状试样的宽度。

d:圆形截面试样的直径。

c)伸长【elongation】试验期间任一时刻原始标距的增量。

d)伸长率(%)【percentage elongation】原始标距的伸长与原始标距(L o)之比的百分率。

1)残余延伸率(%)【percentage permanent elongation】卸载后原始标距的伸长与原始标距

(L o)之比的百分率。

2)断后伸长率(%)【percentage elongation after fracture(A)】断后标距的残余伸长(L u

-L o)与原始标距(L o)之比的百分率。

备注 1 对于比例试样,若比例系数不为5.65,符号A应附以下脚注说明所使用的比例系数。

2 对于非比例试样,符号A应附以下脚注说明所使用的原始标距,以毫米(mm)表示。

3)断裂总伸长率(%)【percentage total elongation at fracture(A t)】断裂时刻原始标距

的总伸长(弹性伸长加塑性伸长)与原始标距(L o)之比的百分率。

4)最大力伸长率(%)【percentage elongation at maximum force】最大力时原始标距的伸

长与原始标距(L o)之比的百分率。应区分最大力总伸长率(A gt)和最大力非比例伸长率

(A g)。

5)屈服点延伸率(%)【percentage yield point elongation】呈现明显屈服(不连续屈服)

现象的金属材料,屈服开始至均匀加工硬化开始之间引伸计标距的伸长与引伸计标距(L e)之比的百分率。

屈服点延伸率(%)会因材料的时效作用而变化。

e)断面收缩率【percentage reduction of area】断裂后试样横截面面积的最大缩减量与原始横

截面之比的百分率。

f)最大力【maximum force(F m)】试样在屈服阶段之后所能抵抗的最大力。对于无明显屈服(连

续屈服)的金属材料,为试验期间的最大力。

g)应力【stress】试验期间任一时刻的力除以试样原始横截面积(S o)。

1)抗拉强度【tensile strength(R m)】相应最大力(F m)的应力。

2)屈服强度【yield stress】当金属材料呈现屈服现象时,在试验期间达到塑性变形发生而

力不增大的应力点,应区分上屈服强度和下屈服强度。

2.1)上屈服强度【upper yield stress(R eH)】试样发生屈服而力首次下降前的最高应力。

2.2)下屈服强度【lower yield stress(R eL)】在屈服期间,不计初始瞬时效应时的最低应力。

3)非比例延伸强度【proof stress of non proportional elongation(R p)】非比例延伸率

等于规定的引伸计标距百分率时的应力。使用的符号应附以下脚注说明所规定的百分率。

4)规定总延伸强度【proof stress,total elongation(R t)】总延伸等于规定的引伸计标距

百分率时的应力。使用的符号应附以下脚注说明所规定的百分率。

5)规定残余延伸强度【permanent set stress(R r)】卸除应力后残余延伸率等于规定的引伸

计标距百分率时对应的应力。使用的符号应附以下脚注说明所规定的百分率。

4 原理试验系用拉力拉伸试样,一般拉至断裂,测定规定的一项或几项力学性能。

5 试样对拉伸试样的规定如下:

a)除非另有规定,否则拉伸试样应符合JIS Z 2201的规定。

b)试样的取样和制备应该按相关的日本工业标准的规定进行,在试样的取样和制备过程中应避免

变形和温度对试样力学性能的影响,特别是在测量上屈服强度、下屈服强度或延伸强度时注意避免这些因素的影响。

当试样采用剪切或冲压加工时,会存在冷作硬化对性能的影响,所以必须对试样平行部分进行精加工,以除去此影响区。

c)试样要避免校直、但在必要时,也可用一些不会影响试样机械性能的方法来校直。

d)通常,要用冲头在试样表面打出标记,或划细线作标记。然而,对于对划痕敏感或极硬的试样

不宜这样操作,而是在试样表面涂一层漆后划线。

备注:如果用引伸计测量伸长,就没有必要做标距标记。

6 拉伸试验机拉伸试验机应该符合以下规定:

a)拉伸试验所用的试验机应选取日本工业标准JIS B 7721中的1级或以上级别。

b)试验机安装在刚性基础上,使其轴线通过夹头中心。

c)试验机经大修、更换主要部件、检修后,必须按日本工业标准JIS B 7721规定检验后才能使用。

d)一般情况下,根据使用情况,要求每隔一段时间,要对机器的准确度进行校验。

7 试验要求试验应该符合以下规定:

7.1 试验载荷试验时,由于试样是用夹头夹住来加载的,因此,所加载荷一定要在轴线上。

7.2 试验速度加载速度要均匀,试验时应指明加载速率、变形速率及加载所需时间,加载速率的

选择应该符合以下规定:

a)对于加载速度对所测性能影响大的材料,在进行拉伸试验时,加载速度应根据该材料标准中的

要求而定。

在没有特别规定的情况下,加载速度按b)和c)的要求来选择,以对载荷及变形进行精确测量。

b)在测量上屈服强度、下屈服强度、屈服强度时,在各自规定的强度1/2以下,可用任一较合适

的加载速度加载。但当超过规定强度1/2直到达到上屈服点、下屈服点、屈服强度,其平均应力速率,对钢来说应为3N/(mm2·S)~30N/(mm2·S),对于铝及铝合金来说,应不大于30N/(mm2·S)。

c)当不必测量上屈服点、下屈服点或屈服强度时,在测量抗拉强度、断后伸长、断面收缩率过程

中,达到规定的抗拉强值1/2之前,可用任一合适的速度加载;但当超过规定的抗拉强度1/2后,对于钢来说,试样平行部分的平均应变速率应为20%/min~50%/min,对于铝及铝合金,试样平行部分的平均应变速率应不超过50%/min。若在测量上屈服点、下屈服点或屈服强度之后继续测量抗拉强度,后阶段的应变速率应按以前述规定。

备注 1 应变速率>50%/min~80%/min下的试验速度应该符合相应的JIS的材料标准规定。

2 应变速率可以使用引伸计测定。

7.3通常试验温度限制在10℃~35℃。如有特殊要求,可将试验温度限制在23±5℃。但是,对于某些热敏材料,试验温度按相应的JIS的材料标准规定。

8 测定平行部分原始截面积、标距、屈服强度、延伸强度、抗拉强度、屈服延伸、断后伸长和截面收缩面积。

a)试样平行部分原始截面积的测定应该符合以下规定:

1)除管状试样外,试样平行部分原始截面积应在标距的两端和中心部位测量,然后得出平均

值。

但是,对于有锥度的试样,试样的原始截面积应在试样的细端部测量。

对于管状试样,试样的原始截面积应在试样端部测量。

2)对于圆形或管状试样,测定原始截面积时,测得的直径应该是二个相互垂直方向直径的平

均值。

测量管状试样横截面的厚度时,应在管端圆周上测量不少于三个值,然后取其平均值。

备注:管状试样内外直径差的平均值是测量二个相互垂直方向上,四个地方壁厚所得的平均值)

3)为了测定一原始横截面积,测量相应的直径、宽度及厚度时,测量精度至少达到所测尺寸

的0.5%。如2mm的尺寸、至少达到0.01 mm。

4)对于圆形或矩形截面试样,精加工时,也要严格控制尺寸精度,其尺寸变化(最大值减去

最小值)不能超出表1所给出的误差范围。测量原始截面积尺寸时,可以只测一个部位,

而不是按1)中所述,测量三个部位,然后取其平均值。

经精加工后的试样平行部分尺寸与公称尺寸之差不超过表1中所规定的偏差,这时,试样原始横截面积可以用公称尺寸来计算。

表1 试样尺寸的允许偏差

单位:mm 圆形截面试样厚度不小于6mm的矩形截面试样厚度小于6mm的矩形截面试样

公称直径偏差公称厚度偏差公称宽度偏差公称厚度偏差公称宽度偏差10~<12 0.0256~<12 0.0225~<400.050.6~<1.20.002 12.5~<25 0.02 12~<16 0.03 12~<20 0.04≥40 0.10 1.2~<2.50.004 ≥25 0.04≥16 0.04 ≥20 0.05- - 2.5~<6 0.01 - -

b)测量试样标距时,要选用合适的测量仪器,其精度至少要达到公称标距的 0.4%。

当使用标距标记器或引伸计时,要按上述规定对其标距进行校正。如果引伸计的标距不大于公称标距的1.0%,公称标距可以作为原始标距。

c)上屈服强度及下屈服强度的计算应该通过下式计算来求得:

对于上屈服强度

σSU=F SU/A0

对于下屈服强度

σSL=F SL/A0

上式中,σSU :上屈服强度(N/mm2);

σSL:下屈服强度(N/mm2);

F SU: 1)中所述的最大力(N);

F SL: 2)中所述的最小力(N);

A0: a)中所述的试样原始截面积;

如果不担心引起混乱,σSU和σSL可以写成σS。

1)为了测定上屈服强度,需要测出试样平行部分开始屈服时的最大载荷F SU(N)(例如,在装

有测力刻度盘的材料试验机上,发现测力刻度盘上指针停止或往回走时,此时的载荷即为

F SU,可以从刻度盘上读出)。

2)为了测定下屈服强度,需要测出试样平行部分开始屈服时的恒定载荷F SL(N)(例如,在装

有测力刻度盘的材料试验机上,发现测力刻度盘上指针停止或往回走时,此时的载荷即为

F SL,可以从刻度盘上读出)。

d)延伸强度的计算应该通过下列方法求得:

1)规定非比例延伸法

σε=Fε/Ao

上式中,σε:用规定非比例延伸法计算得的伸长强度值(N/mm2);

Fε:使用引伸计绘制载荷—伸长曲线,从表示伸长的轴(横轴)表示规定非比

例延伸(ε%)的点作平行于曲线最初阶段直线部分的直线,此直线与曲线的

交点即可读出Fε(N)(见图1a);

A0:a)中所述的试样原始截面积(mm2);

为了记录,应用引伸计记录纸记录伸长数值。应使用JIS B 7741规定的等级2的引伸计,或更高级别的引伸计。

备注:例如,计算规定非比例延伸ε=0.2%时的延伸强度:

σ0.2=F0.2/Ao

2)规定残余延伸法

规定残余延伸强度的验证:试样施加相应于规定残余延伸强度的力,保持15秒,卸力后验证残余延伸率未超过规定的百分率(见图1b)。

3)规定总延伸法

在规定残余伸长ε%的力(Fλ)产生的总延伸λ%已知的情况下,可用下述方法求得延伸强度(见图1c)。

σε(λ)=Fλ/Ao

上式中,σε(λ):用规定总延伸法计算得的延伸强度值(N/mm2);

Fλ:加载过程中,伸长达到总延伸λ%时的延伸强度(N);

A0:a)中所述的试样原始截面积(mm2);

为了记录,应用引伸计记录纸记录延伸数值。应使用JIS B 7741规定的等级2的引伸计,或更高级别的引伸计,精度可以达到测量长度±2%或±10μm。

图1 测定伸长强度的方法

e) 抗拉强度应该通过下式求得:

σB =Fmax/Ao

上式中,σB :抗拉强度(N/mm 2)

; Fmax :最大载荷(N );

A 0:a )中所述的试样原始截面积(mm 2)

; f) 在测量上屈服强度、下屈服强度、延伸强度,抗拉强度时,载荷值读数应精确到测量值的0.5%。

屈服强度,延伸强度、抗拉强度值应符合JIS Z 8401的规定四舍五入成整数。

g) 屈服延伸应该通过下式求得:

λr=λSL -λSU

上式中,λr :屈服延伸(%);

λSU :通过引伸计测得的载荷—应变曲线上的上屈服强度处的总延伸值(%);

λSL :引伸计测得的载荷—应变曲线上,屈服应力开始持续上升并超过上屈服强度

处的总延伸值(%)。

应使用JIS B 7741规定的等级2或更高级别的引伸计,引伸计标距应该等于试样的标距。 应按JIS Z 8401的规定对屈服延伸进行修约,修约到小数点后1位小数。

h) 断后伸长率应该通过下式求得:

δ=(L-Lo )/Lo ×100

上式中,δ:断后伸长率(%);

L :试样断裂后,小心地将其接在一起,中心线在一条直线上,然后测得标记点

间距离值(mm );

Lo :原始标距(mm )。

当用引伸计测量断后伸长率时,如果没有特别规定,断裂时的总的伸长可以等于上述的L

值。

所用引伸计的标距等于试样标距,且测量误差为标距的±0.5%。

应按JIS Z 8401的规定对断后伸长率进行修约,修约为整数。如果标距超过100mm ,应该

保留到更精确的数位。

备注:如果出现如图2所示的断裂,断裂的部分能很好的配合在一起,以标距二标点间的距离(包

括裂口CP 的长度) 计算断后伸长率。

伸长

伸长伸长规定非比例伸长ε%

a) 规定非比例伸长法 规定残余伸长规定总伸长λ% b) 规定残余伸长法c) 规定总伸长法

图2 断后伸长率的测定

i) 按以下规定测定断面收缩率

1) 断面收缩率应该通过下式求得:

φ=(Ao-A )/Ao ×100

上式中,φ:断面收缩率(%);

A :试样断裂后,小心地将其接在一起,中心线在一条直线上,然后按a )中的

规定测得最小截面积(mm 2)

; Ao :按a )中的规定测得原始截面积(mm 2)

。 2) 为了测量断面收缩率,应该应用圆形截面试样。

3) 断面收缩率数值按JISZ8401标准,四舍五入成整数。

j) 为了说明试样断裂部位,必要时,用下列符号对拉伸试验结果作附录补充。

A :表示断裂部位在二标距标记之间,离中心1/4标距之内。(图3中的A 部位)

B :表示断裂部位在二标距标记之间,距中心不在1/4标距之内,(如图3中的B 部位)

C :表示断裂部位在二标距标记点之外(如图3中的C 部位)。

图3 断裂部位的分类

A 、

B 、

C 的具体位置可以在断裂后参照标距的长度标定。

资料性参考:

关于断后伸长率的估算:在断裂发生在试样二标距标记之间的正常断裂情况下,可应用下列方法进行断裂试样的断裂伸长估算。此处是断裂部位j )中所述的B 位置(见资料性参考图1)。

资料性参考图1 断后伸长率的估算

a) 首先把试样标距分成若干合适的等分,并将这些记号划在同一条直线上。

b) 试样断裂后,将断裂部分合起来,求出以断裂处(P)点为对称中心的标距标记(O 1)

的对称点(A),然后测量O 1A 的长度。

c) 观察较长断裂段上标距标记点O 2和A 间的划痕号数(n),找出O 2和A 的中心点B 。若n 为偶数,

则此中点B 为从A 到O 2的第n/2个划痕;若n 为奇数,则以第(n —1)/2和第(n+1)/2号划痕的中心点为B 点,测出AB 长度。

裂口

标距

d)用下式估算断后伸长率。

断后伸长率估算值(%)=(O1A+2AB-标距)/标距×100 上式中,O1A:O1和A点的距离(mm);

AB:A和B点的距离(mm);

标距:原始标距长度(mm)。

9 试验报告当要求试验报告时,相关双方协商同意,应该选择以下内容。

a)本标准的引用标准;

b)试样数目;

c)试样类型;

d)试样的取样位置;

e)试样的取样方向;

f)试验结果;

g)材料类型。

金属拉伸实验报告

金属拉伸实验报告 【实验目的】 1、测定低碳钢的屈服强度R Eh 、R eL及R e 、抗拉强度R m、断后伸长率A和断面收缩率Z。 2、测定铸铁的抗拉强度R m和断后伸长率A。 3、观察并分析两种材料在拉伸过程中的各种现象(包括屈服、强化、冷作硬化和颈缩等现象),并绘制拉伸图。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸机械性能的特点。 【实验设备和器材】 1、电子万能试验机WD-200B型 2、游标卡尺 3、电子引伸计 【实验原理概述】 为了便于比较实验结果,按国家标准 GB228—76中的有关规定,实验材料要按上述标准做成比例试件,即: 圆形截面试件: L 0 =10d (长试件)

式中: L 0 --试件的初始计算长度(即试件的标距); --试件的初始截面面积; d 0 --试件在标距内的初始直径 实验室里使用的金属拉伸试件通常制成标准圆形截面试件,如图1所示 图1拉伸试件 将试样安装在试验机的夹头中,然后开动试验机,使试样受到缓慢增加的拉力(应根据材料性能和试验目的确定拉伸速度),直到拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图(图2-2所示)。应当指出,试验机自动绘 图装置绘出的拉伸变形ΔL 主要是整个试样(不只是标距部分)的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素。由于试样开始受力时,头部在夹头内的滑动较大,故绘出的拉伸图最初一段是曲线。 1、低碳钢(典型的塑性材料) (a )低碳钢拉伸曲线图 (b )铸铁拉伸曲线图

当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过F P 后拉伸曲线将由直变曲。保持直线关系的最大拉力就是材料比例极限的力值F P。 在F P的上方附近有一点是F c,若拉力小于F c而卸载时,卸载后试样立刻恢复原状,若拉力大于F c后再卸载,则试件只能部分恢复,保留的残余变形即为塑性变形,因而F c是代表材料弹性极限的力值。 当拉力增加到一定程度时,试验机的示力指针(主动针)开始摆动或停止不动,拉伸图上出现锯齿状或平台,这说明此时试样所受的拉力几乎不变但变形却在继续,这种现象称为材料的屈服。低碳钢的屈服阶段常呈锯齿状,其上屈服点B′受变形速度及试样形式等因素的影响较大,而下屈服点B则比较稳定(因此工程上常以其下屈服点B所对应的力值F eL作为 材料屈服时的力值)。确定屈服力值时,必须注 意观察读数表盘上测力指针的转动情况,读取测 力度盘指针首次回转前指示的最大力F eH(上屈 服荷载)和不计初瞬时效应时屈服阶段中的最小 力F eL(下屈服荷载)或首次停止转动指示的恒 定力F eL(下屈服荷载),将其分别除以试样的原 图2-3 低碳钢的冷作硬化 始横截面积(S0)便可得到上屈服强度R eH和下屈服强度R eL。即 R = F e H/S0 R e L= F e L/S0 e H 屈服阶段过后,虽然变形仍继续增大,但力值也随之增加,拉伸曲线又继续上升,这说明材料又恢复了抵抗变形的能力,这种现象称为材料的强化。在强化阶段内,试样的变形主要是塑性变形,比弹性阶段内试样的变形大得多,在达到最大力F m之前,试样标距范围内的变形是均匀的,拉伸曲线是一段平缓上升的曲线,这时可明显地看到整个试样的横向尺寸在缩小。此最大力F m为材料的抗拉强度力值,由公式R m=F m/S0即可得到材料的抗拉强度R m。 如果在材料的强化阶段内卸载后再加载,直到试样拉断,则所得到的曲线如图2-3所示。卸载时曲线并不沿原拉伸曲线卸回,而是沿近乎平行于弹性阶

实验一---金属材料的拉伸实验

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 (a) (b) 图1-1 试件的截面形式 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试:

在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。 测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: EA PL L ?= ? 若已知载荷ΔF 及试件尺寸,只要测得试件伸长ΔL 或纵向应变即可得出弹性模量E 。 ε ???=???= 1 )(000A P A L PL E 本实验采用引伸计在试样予拉后,弹性阶段初夹持在试样的中部,过弹性阶段或屈服阶段,弹性模量E 测毕取下,其中塑性材料的拉伸实验不间断。 (二)塑性材料的拉伸(低碳钢): 图1-2所示是典型的低碳钢拉伸图。 当试样开始受力时,因夹持力较小,其夹持部分在夹头内有滑动,故图中开始阶段的曲线斜率较小,它并不反映真实的载荷—变形关系;载荷加大后,滑动消失,材料的拉伸 进入弹性阶段。 σ 1-2b 典型的低碳钢拉伸图 低碳钢的屈服阶段通常为较为水平的锯齿状(图中的B’-C 段),与最高载荷B’对应的应力称上屈服极限,由于它受变形速度等因素的影响较大,一般不作为材料的强度指标;同样,屈服后第一次下降的最低点也不作为材料的强度指标。除此之外的其它最低点中的最小值(B 点)作为屈服强度σs : σs = A P SL 当屈服阶段结束后(C 点),继续加载,载荷—变形曲线开始上升,材料进入强化阶段。若在这一阶段的某一点(如D 点)卸载至零,则可以得到一条与比例阶段曲线基本平行的卸载曲线。此时立即再加载,则加载曲线沿原卸载曲线上升到D 点,以后的曲线基本与未经卸载的曲线重合。可见经过加载、卸载这一过程后,材料的比例极限和屈服极限提高了,而延伸率降低了,这就是冷作硬化。 随着载荷的继续加大,拉伸曲线上升的幅度逐渐减小,当达到最大值(E 点)Rm 后,试样的某一局部开始出现颈缩,而且发展很快,载荷也随之下降,迅速到达F 点后,试样断裂。材料的强度极限σb 为:

金属材料拉伸试验标准试样类型及尺寸

金属材料拉伸试验标准试样类型及尺寸 编制: 审核:________________________ 批准:生效日期:

受控标识处: 分发号: 发布日期:2016年9月27日实施日期:2016年9月27日 制/修订记录

1.0 本文件规定了常温下金属材料拉伸试验标准试样的类型,形状及其尺寸测量。 2.0范围 适用于本公司常温下金属材料的拉伸试验所需的比例试样制备。 3.0规范性应用文件 下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 3.1GB/T 2975钢及钢产品力学性能试验取样位置和试样制备 3.2GB/T 8170数值修约规则与极限数值的表示和判定 3.3GB/T 10623金属材料力学性能试验术语 4.0术语和定义 4.1试件/试样test piece/specimen 通常按照一定形状和尺寸加工制备的用于试样的材料或部分材料。 4.2标距gauge length 用于测量试样尺寸变化部分的长度。 4.3原始标距original gauge length 在施加试验力之前的标距长度。 4.4断后标距final gauge length after fracture 试样断裂后的标距长度。 4.5平行长度parallel length 试样两头部或加持部分(不带头试样)之间平行部分的长度。 4.6断面收缩率percentage reduction of area 断裂后试样横截面积的最大缩减量(S0-S u)与原始横截面积(S0)之比的百分率。 S o-S u Z0=S- S-X100% S0 5.0符号和说明 与试样相关的符号及说明如下:

材料的拉伸试验实验报告

材料的拉伸试验 实验内容及目的 (1)测定低碳钢材料在常温、静载条件下的屈服强度s σ、抗拉强度b σ、伸长率δ和断面收缩率ψ。 (2)掌握万能材料试验机的工作原理和使用方法。 实验材料及设备 低碳钢、游标卡尺、万能试验机。 试样的制备 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 如图1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或 d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例 试样(简称长试样),后者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。

(a ) (b ) 图1 拉伸试样 (a )圆形截面试样;(b )矩形截面试样 实验原理 进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。低碳钢具有良好的塑性,低碳钢断裂前明显地分成四个阶段: 弹性阶段:试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。 屈服(流动)阶段:应力应变曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点作为材料屈服极限(又称屈服强度),即A F s s = σ,是材料开始进入塑性的标志。结构、零件的应力一旦超过屈服极限,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限作为确定许可应力的基础。 强化阶段:屈服阶段结束后,应力应变曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。D 点是应力应变曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度,即A F b b = σ。对低碳钢来说抗拉强度是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。 颈缩阶段:应力达到强度极限后,塑性变形开始在局部进行。局部截面急剧收缩,承载面积迅速减少,试样承受的载荷很快下降,直到断裂。断裂时,试样的弹性变形消失,塑性变形则遗留在破断的试样上。 材料的塑性通常用试样断裂后的残余变形来衡量,单拉时的塑性指标用断后伸长率δ和断面收缩率ψ来表示。即 %1001?-= l l l δ

《金属材料室温拉伸试验方法》GBT228-2002实施要点

《金属材料室温拉伸试验方法》GBT228-2002实施要点2006-11-04 15:061 引言 国家标准GB/T228-2002《金属材料室温拉伸试验方法》已于2002年颁布实施。这一新国家标准是合并修订国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》三个标准为一个标准,它等效采用了国际标准ISO6892:1998《金属材料室温拉伸试验》,也是GB/T228第三次修订。GB/T228-2002包括的技术内容和要求与原三个标准有较大的不同,尤其在性能名称和符号、抗拉强度定义、试验速率、性能结果数值的修约方面变动较大。而且,新标准中增加了引用标准和关于试验方法准确度方面阐述的内容。为了更好地贯彻实施GB/T228-2002,将该标准的要点和实施中需注意之点说明如下。 2 GB/T228-2002标准的适用范围 标准适用于金属材料(包括黑色和有色金属材料,但不包括金属构件和零件)室温拉伸性能的测定,试样或产品的横截面尺寸≦0.1mm。对于小横截面尺寸的金属产品,例如金属箔、超细丝和毛细管等的拉伸试验需要双方协议。其原因在于:①横截面小的产品,按照标准中建议的量具分辨力要求不能满足附录A和附录C规定横截面测定准确度在±1%和±2%以内的要求。②试样标距采用常规的划细线、打小冲点等方法进行标记不可行。③常用的引伸计不适用于此类型产品试样的试验。试样的夹持方法需要特殊夹头等。 3 室温的温度范围 标准中规定室温的温度范围为10-35℃,超出这一范围不属于室温。对于材料在这一温度范围内性能对温度敏感而采用更严格的温度范围试验时,应采用23±5℃的控制温度。上述10-35℃的温度范围实质是指容许的试样温度范围,只要试样的温度是在这规定的室温范围内便符合标准要求。 4 标准中的引用标准 标准中的第二章引用了6个国家标准,即: GB/T2975-1998钢及钢产品力学性能试验取样位置和试样制备(eqv ISO377:1997) GB/T8170-1987数值修约规则 GB/T12160-2002单轴试验用引伸计的标定(idt ISO9513:1999) GB/T16825-1997拉力试验机的实验(idt ISO7500—1:1986) GB/T17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢(eqv ISO2566—1:1984)GB/T17600.2—1998钢的伸长率换算第2部分:奥氏体钢(eqv ISO2566—2:1984) 标准中通过注日期引用的这6个国家标准是构成GB/T228—2002标准本身不可缺少的部分,应遵照被引用的6个标准中的相关规定和要求,其中被引用的5个标准分别等同和等效相应的国际标准。目前,GB/T8170—1987《数值修约规则》还没有相对应的国际标准。 5 性能和术语定义 5.1性能定义 为了与国际接轨,性能的定义按照国际标准的规定。与原GB/T228—1987相比较,屈服强度与抗拉强度的定义有明显差异,其他性能的定义无实质性差异。 新标准将抗拉强度定义为相应最大力(Fm)的应力,而最大力(Fm)定义为试样在屈服阶段之后所能抵抗的最大力;对于无明显屈服(连续屈服)的金属材料,为试验期间的最大力。按照这一定义,如图1所示的拉伸曲线,最大力应为曲线上的B点,而不是旧标准中的取其A点的力(上屈服力)计算抗拉强度。 新标准中屈服强度这一术语的含义与旧标准中的屈服点有所不同,前者是泛指上、下屈服强度性能;而后者既是泛指屈服点和上、下屈服点性能,也特指单一屈服状态的屈服点性能(ζs)。因为新标准已将旧标准中的屈服点性能ζs归入为下屈服强度ReL(见标准中的图2d)。所以,新标准中不再有与旧标准中的屈服点性能(ζs)相对应的性能定义。也就是说新标

金属材料-拉伸试验-标准试样类型及尺寸

金属材料-拉伸试验-标准试样类型及尺寸

金属材料拉伸试验标准试样类型及尺寸

编制: 审核: 批准: 生效日期: 受控标识处: 分发号: 发布日期:2016年9月27日实施日期:2016年9月27日 制/修订记录

1.0 目的 本文件规定了常温下金属材料拉伸试验标准试样的类型,形状及其尺寸测量。 2.0 范围 适用于本公司常温下金属材料的拉伸试验所需的比例试样制备。 3.0 规范性应用文件

下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 3.1 GB/T 2975 钢及钢产品 力学性能试验取样位置和试样制备 3.2 GB/T 8170 数值修约规则与极限数值的表示和判定 3.3 GB/T 10623 金属材料 力学性能试验术语 4.0 术语和定义 4.1 试件/试样test piece/specimen 通常按照一定形状和尺寸加工制备的用于试样的材料或部分材料。 4.2 标距gauge length 用于测量试样尺寸变化部分的长度。 4.3 原始标距original gauge length 在施加试验力之前的标距长度。 4.4 断后标距final gauge length after fracture 试样断裂后的标距长度。 4.5 平行长度parallel length 试样两头部或加持部分(不带头试样)之间平行部分的长度。 4.6 断面收缩率percentage reduction of area 断裂后试样横截面积的最大缩减量(S 0-S u )与原始横截面积(S 0)之比的百分率。 U S -S =100%Z X S 5.0 符号和说明 与试样相关的符号及说明如下:

拉伸实验报告

abaner 拉伸试验报告 [键入文档副标题] [键入作者姓名] [选取日期] [在此处键入文档的摘要。摘要通常是对文档内容的简短总结。在此处键入文档的摘要。 摘要通常是对文档内容的简短总结。] 拉伸试验报告 一、试验目的 1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能 2、测定低碳钢的应变硬化指数和应变硬化系数 二、试验要求: 按照相关国标标准(gb/t228-2002:金属材料室温拉伸试验方法)要求完成试验测量工 作。 三、引言 低碳钢在不同的热处理状态下的力学性能是不同的。为了测定不同热处理状态的低碳钢 的力学性能,需要进行拉伸试验。 拉伸试验是材料力学性能测试中最常见试验方法之一。试验中的弹性变形、塑性变形、 断裂等各阶段真实反映了材料抵抗外力作用的全过程。它具有简单易行、试样制备方便等特 点。拉伸试验所得到的材料强度和塑性性能数据,对于设计和选材、新材料的研制、材料的 采购和验收、产品的质量控制以及设备的安全和评估都有很重要的应用价值和参考价值 通过拉伸实验测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度和塑形性能, 并根据应力-应变曲线,确定应变硬化指数和系数。用这些数据来进行表征低碳钢的力学性能, 并对不同热处理的低碳钢的相关数据进行对比,从而得到不同热处理对低碳钢的影响。 拉伸实验根据金属材料室温拉伸试验方法的国家标准,制定相关的试验材料和设备,试 验的操作步骤等试验条件。 四、试验准备内容 具体包括以下几个方面。 1、试验材料与试样 (1)试验材料的形状和尺寸的一般要求 试样的形状和尺寸取决于被试验金属产品的形状与尺寸。通过从产品、压制坯或铸件切 取样坯经机加工制成样品。但具有恒定横截面的产品,例如型材、棒材、线材等,和铸造试 样可以不经机加工而进行试验。 试样横截面可以为圆形、矩形、多边形、环形,特殊情况下可以为某些其他形状。原始 标距与横截面积有l?ks0关系的试样称为比例试样。国际上使用的比例系数k的值为5.65。 原始标距应不小于15mm。当试样横截面积太小,以至采用比例系数k=5.65的值不能符合这 一最小标距要求时,可以采用较高的值,或者采用非比例试样。 本试验采用r4试样,标距长度50mm,直径为18mm。 尺寸公差为±0.07mm,形状公差为0.04mm。 (2)机加工的试样 如果试样的夹持端与平行长度的尺寸不同,他们之间应以过渡弧相连,此弧的过渡半径 的尺寸可能很重要。 试样夹持端的形状应适合试验机的夹头。试样轴线应与力的作用线重合。 (5)原始横截面积的测定

实验一金属材料的拉伸实验

实验一金属材料的拉伸 实验 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 夹持 过渡 h 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试: 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。

ASTM E8M-09 中文版 金属材料拉伸试验方法E8-09

金属材料拉伸试验的标准试验方法 1范围 1.1 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 1.2 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 1.3 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 1.4 除非另有规定,室温应定为10—38℃。 1.5 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 1.6 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2参考文件 2.1 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法 E6 力学性能试验方法相关术语

E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 3.1 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL U[%])——在试样出现缩颈、断裂或者二者都出现之前,所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)两条直线与横轴的交点: (a)应力—应变曲线的不连续屈服段,通过最后一个零斜率点的水平正切线; (b)应力—应变曲线的均匀应变硬化段的正切线。 若在屈服的地方或附近没有出现斜率为零的点,则材料的的屈服点延伸率为0%。

金属的拉伸实验(实验报告)

金属的拉伸实验一 一、实验目的 1、测定低碳钢的屈服强度二S、抗拉强度匚b、断后延伸率「?和断面收缩率'■ 2、观察低碳钢在拉伸过程中的各种现象,并绘制拉伸图( F —「丄曲线) 3、分析低碳钢的力学性能特点与试样破坏特征 二、实验设备及测量仪器 1、万能材料试验机 2、游标卡尺、直尺 三、试样的制备 试样可制成圆形截面或矩形截面,采用圆形截面试件,试件中段用于测量拉伸变形,其 长度I。称为“标矩”。两端较粗部分为夹持部分,安装于试验机夹头中,以便夹紧试件。试验表明,试件的尺寸和形状对材料的塑性性质影响很大,为了能正确地比较材料力学性能,国家对试件的尺寸和形状都作了标准化规定。直径d0= 20mm ,标矩 I。=2O0nm(k 1 0或I0 =100mm(l0 =5d0)的圆形截面试件叫做“标准试件”,如因原 料尺寸限制或其他原因不能采用标准试件时,可以用“比例试件”。 四、实验原理 在拉伸试验时,禾U用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图2-11所示的F —△L曲线。图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。拉伸曲 线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材 料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。但同一种材料的 拉伸曲线会因试样尺寸不同而各异。为了使同一种材料不同尺寸试样的拉伸过程及其特性点 便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力F)除以试样原始横 截面面积并将横坐标(伸长△ L)除以试样的原始标距I。得到的曲线便与试样尺寸无关,此曲线称为应力一应变曲线或R —;曲线,如图2 —12所示。从曲线上可以看出,它与拉伸 图曲线相似,也同样表征了材料力学性能。 爲一上屈服力:①一下屈服力'厂最尢力;叫一断裂后塑性伸恰业一彈性佃长 團2—11低碳钢拉伸曲线 拉伸试验过程分为四个阶段,如图2—11和图2-12所示。 (1 )、弹性阶段OC。在此阶段中拉力和伸长成正比关系,表明钢材的应力与应变为线性关系,完全遵循虎克定律,如图2-12所示。若当应力继续增加到C点时,应力和应变的关系不再是线性关系,但变形仍然是弹性的,即卸除拉力后变形完全消失。

实验一金属材料的拉伸实验

拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数, 如 弹性模量、强度、塑性等。 一. 实验目的 1. 测定低碳钢拉伸时的强度性能指标:屈服应力 二s 和抗拉强度二b 。 2. 测定低碳钢拉伸时的塑性性能指标:伸长率 和断面收缩率’-:。 3. 测定灰铸铁拉伸时的强度性能指标:抗拉 强度 :「b 。 4. 绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形 式。 二. 实验仪器、设备 1. 电子万能试验机(或液压万能材料试验机)。 2. 钢尺。 3. 数显卡尺。 三. 实验试样 按照国家标准 GB6397 — 86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品 种、规格以及试验目的的不同而分为圆形截面试样、 矩形截面试样、异形截面试样和不经机 加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准 GB6397 — 86。 图1-1试件的截面形式 试样分为夹持部分、过渡部分和待测部分( I )。标距(I 0)是待测部分的主体,其截面 积为A 。。按标距(I 。)与其截面积(A o )之间的关系,拉伸试样可分为比例试样和非比例 试样。按国家标准 GB6397-86的规定,比例试样的有关尺寸如下表 1-1。 表1-1 试样 标距 | I 。, (mm) 截面积A 0 ,(mm 2 ) 圆形试样直径 d (mm ) 延伸率 比例 长 11.3 J A 。或 10 d 任意 任意 短 5.65 JA 。或 5 d 四. 实验原理 (一)塑性材料弹性模量的测试: 实验 金属材料的拉伸实验 夹持过渡 (b

金属材料拉伸试验报告

金属材料拉伸试验报告 一、实验目的 1.观察低碳钢和铸铁在拉伸过程中的各种现象(包括屈服,强化和颈缩等现象),特别是外力和变形间的关系,并绘制拉伸图。 2.测定低碳钢的屈服极限σs,强度极限σb,延伸率δ和截面收缩率ψ。 3.测定铸铁的强度极限σb。 4.观察断口,比较低碳钢和铸铁两种材料的拉伸性能和破坏特点。 二、实验设备和仪器 1.万能材料实验机 2.游标卡尺 三、实验原理 为了便于比较实验结果,按国家标准GB228—76中的有关规定,实验材料要按上述标准做成比例试件,即 圆形截面试件l0 =10d0 (长试件) l0 =5 d0 (短试件) 矩形截面试件 l0 =11.3 A (长试件) O l0 =5.65 A (短试件) O 式中: l0 --试件的初始计算长度(即试件的标距); --试件的初始截面面积; d0 --试件在标距内的初始直径

实验室里使用的金属拉伸试件通常制成标准圆形截面试件,如图1所示 图1拉伸试件 金属拉伸实验是测定金属材料力学性能的一个最基本的实验,是了解材料力学性能最全面,最方便的实验。本试验主要是测定低碳钢和铸铁在轴向静载拉伸过程中的力学性能。在试验过程中,利用实验机的自动绘图装置可绘出低碳钢的拉伸图(如图2所示)和铸铁的拉伸图。由于试件在开始受力时,其两端的夹紧部分在试验机的夹头内有一定的滑动,故绘出的拉伸图最初一段是曲线。 图2 试件拉伸图

对于低碳钢,在确定屈服载荷P S 时,必须注意观察试件屈服时测力度盘上主动针的转动情况,国际规定主动针停止转动时的恒定载荷或第一次回转的最小载荷值为屈服载荷P S ,故材料的屈服极限为 0 s s A P = σ 试件拉伸达到最大载荷之前,在标距范围内的变形是均匀的。从最大载荷开始,试件产生颈缩,截面迅速变细,载荷也随之减小。因此,测测力度盘上主动针开始回转,而从动针则停留在最大载荷的刻度上,给我们指示出最大载荷,则材料的强度极限为:0 A P b b = σ 试件断列后,将试件的断口对齐,测量出断裂后的标距l 1和断口处的直径d 1 ,则材料的延伸率δ和截面收缩率Ψ分别为:0 1l l l -= δ×100% 0 1 0A A A -= ψ×100% ×× 式中,l 0 , A 0分别为试验前的标距和横截面面积; l 1 , A 1分别为试验后的标距和断口处的横截面面积。 如果断口不在试件距中部的三分之一区段内,则应按国家标准规定采用断口移中法来计算试件拉断后的标距l 1 。其具体方法是:试验前先在试件的标距内,用刻线器刻划等间距的标点或圆周11个,即将标距长度分为10等份。试验后将拉断的试件断口对齐,如图3—3所示,以断口O 为起点,在长段上取基本等于短段的格数得B 点.当长段所余格数为偶数时,如图3―3(a )所示,则取所余格数的一半得C 点,于是l 1=AB+2BC

实验1_金属材料拉伸实验

实验一金属材料拉伸实验 拉伸试验是检验金属材料力学性能普遍采用的一种极为重要的基本试验。 金属的力学性能可用强度极限σ b 、屈服极限σs、延伸率δ、断面收缩率Ψ 和冲击韧度α k 五个指标来表示。它是机械设计的主要依据。在机械制造和建筑工程等许多领域,有许多机械零件或建筑构件是处于受拉状态,为了保证构件能够正常工作,必须使材料具有足够的抗拉强度,这就需要测定材料的性能指标是否符合要求,其测定方法就是对材料进行拉伸试验,因此,金属材料的拉伸试验及测得的性能指标,是研究金属材料在各种使用条件下,确定其工作可靠性的主要工具之一,是发展新金属材料不可缺少的重要手段,所以拉伸试验是测定材料力学性能的一个基本试验。 一、实验目的 1、测定低碳钢在拉伸过程中的几个力学性能指标:屈服极限σs、强度极限σb、延伸率δ、断面收缩率Ψ。铸铁的σb 。 2、观察低碳钢、铸铁在拉伸过程中的各种现象,绘制拉伸图(P—ΔL图)由此了解试件变形过程中变形随荷载变化规律,以及有关的一些物理现象。 3、观察断口,比较低碳钢和铸铁两种材料的拉伸性能,及断口形貌。 二、实验设备仪器及量具 万能材料实验机,引伸仪,划线台,游标卡尺;小直尺。 三、试件 金属材料拉伸实验常用圆形试件。为了使实验测得数据可以互相比较,试件形状尺寸必须按国家标准GB228—76的规定制造成标准试件。如因材料尺寸限制等特殊情况下不能做成标准试件时,应按规定做成比例试件。图1为圆形截面标准试件和比例试件的国标规定。对于板材可制成矩形截面。园形试件标距L。和 直径之比,长试件为L 0/d =10,以δ 10 表示,短试件为L /d =5以δs表示。 矩形试件截面面积A 0和标距L 之间关系应为

金属材料拉伸试验报告

塑料力学性能实验(拉伸实验、弯曲实验) 一、实验目的: 1、通过等速应变实验得到聚合物材料大形变的应力-应变曲线,正确理解杨氏模量、屈服强度、弯曲强度、拉伸强度和断裂伸长率等评价材料力学性能的特征参数的物理意义; 2、观察聚合物材料特有的应变软化现象和塑性不稳定性--细颈; 3、了解聚合物应力-应变曲线的各种类型和屈服点特症; 4、掌握材料试验机的使用方法。 二、实验原理: 图 14-1所示的棒,在它的两个端头A 0上受到两个大小相等、方向相反的正向拉力P ,则拉伸应力为 σt =A p 0 。如果力P 把棒从原长l 0拉长到l ,拉 伸应变ε1=l l l 00 -=l l 0 ?,σt 、ε1 之比就是杨氏模量E= ε σ1 t 。单向拉伸时,不仅在拉伸方向有外形 尺寸的变化,而且在垂直于拉力p 的方向上也 图14-1单向拉伸 伴有尺寸的变化(横向收缩)。如果横向尺寸分别出b 0、d 0变为b 、d ,则横 向应变为b b b 0 2 -= ε和d d d 0 3 -= ε。泊松比γ是将这此外形尺寸的变化相互 联系起来的常数,它定义为横向收缩对纵向拉伸之比,γ= ε ε εε1 31 2=。由此可见, 材料受力时,在外形尺寸改变的同时它的体积也发生了变化。一般来说,当材料处于拉应力下其体积增加,此时泊松比小于1/2。可以证明,如果拉伸时材料体积不变,则泊松比等于1/2。橡胶和流体的泊松比接近1/2,即它们拉伸时体积几乎不变。实验表明,对大多数聚合物,在拉伸时的体积变化相对于其形状改变来说是可以忽略不计的。因此,由单向拉伸实验得到的资料可以与简单剪切实验得到的资料相比较。在小形变时,剪切模量(G )和杨氏模量E≈3G 的近似关系。拉伸实验是很容易实现的,从聚合物材料的拉伸图上可以得到很多有用的

金属材料的拉伸与压缩实验

机械学基础实验 指导书 力学实验中心 金属材料的拉伸与压缩实验 1.1 金属材料的拉伸实验 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式: 图1-1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S = 045 S d 0——试验前试件计算部分的直径;

ASTM E8M-09 中文版 金属材料拉伸试验方法

金属材料拉伸试验的标准试验方法 1 范围 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 除非另有规定,室温应定为10—38℃。 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2 参考文件 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法

E6 力学性能试验方法相关术语 E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL [%])——在试样出现缩颈、断裂或者二者都出现之前, U 所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)

金属材料的拉伸与压缩实验

实验四金属材料的拉伸实验(二)一.实验目的 1.测定低碳钢材料在常温、静载条件下的屈服极限σ s ,强度极限σ b ,延伸率δ和断面 收缩率ψ。 2.测定铸铁材料在常温静载下的强度极限σ b 。 3.观察低碳钢﹑铸铁在拉伸过程中出现的各种现象,分析P-△L图的特征。 4.比较低碳钢与铸铁力学性能的特点和试件断口情况分析其破坏原因。 5.了解微机控制电子万能材料试验机的构造原理,学习其使用方法。 二.仪器设备 1.微机控制电子万能材料试验机 2.数显游标卡尺 三.试件 在测试某一力学性能参数时,为了避免试件的尺寸和形状对实验结果的影响,便于各种材料力学性能的测试结果的互相比较,采用国家标准规定的比例试件。国家标准规 定比例试件应符合以下关系:L0=K A。对于圆形截面试件,K值通常取5.65或11.3。即直径为d0的圆形截面试件标距长度分别为5d0和10d0。本试验采用L0=10d0的比例试件。 图 3-4-1 四.测试原理

实验时,实验软件能够实时的绘出实验时力与变形的关系曲线,如图3-4-2所示。 图3-4-2 1.低碳钢拉伸 ⑴.弹性阶段 弹性阶段为拉伸曲线中的OB段。在此阶段,试件上的变形为弹性变形。OA段直线为线弹性阶段,表明载荷与变形之间满足正比例关系。接下来的AB段是一非线弹性阶段,但仍满足弹性变形的性质。 ⑵.屈服阶段 过弹性阶段后,试件进入屈服阶段,其力与曲线为锯齿状曲线BC段。此时,材料丧失了抵抗变形的能力。从图形可看出此阶段载荷虽没明显的增加,但变形继续增加;如果试件足够光亮,在试件表面可看到与试件轴线成45°方向的条纹,即滑移线。在此阶段试件上的最小载荷即为屈服载荷P s. ⑶.强化阶段 材料经过屈服后,要使试件继续变形,必须增加拉力,这是因为晶体滑移后增加了抗剪能力,同时散乱的晶体开始变得细长,并以长轴向试件纵向转动,趋于纤维状呈现方向性,从而增加了变形的抵抗力,使材料处于强化状态,我们称此阶段为材料的强化阶段(曲线CD部分)。强化阶段在拉伸图上为一缓慢上升的曲线,若在强化阶段中停止加载并逐步卸载,可以发现一种现象——卸载规律,卸载时载荷与伸长量之间仍遵循直线关系,如果卸载后立即加载,则载荷与变形之间基本上还是遵循卸载时的直线规律沿卸载直线上升至开始卸载时的M点。我们称此现象为冷作硬化现象。从图可知,卸载时试件的伸长不能完全恢复,还残留了OQ一段塑性伸长。 ⑷.颈缩阶段 当试件上的载荷达到最大值后,试件的变形沿长度方向不再是均匀的了,在试件某

相关主题