搜档网
当前位置:搜档网 › 射频电路实验报告

射频电路实验报告

射频电路实验报告
射频电路实验报告

射频电路实验报告

学院:信息学部

班级: 150273

姓名:于书伟

学号:15027321

指导老师:金冬月

时间:2018年6月

目录

实验一低通滤波器设计 (3)

1.实验目的 (3)

2.实验原理 (3)

3.实验内容 (3)

实验二、偏置电路和匹配电路设计训练 (5)

1.实验目的 (5)

2.实验原理 (5)

3.实验内容 (5)

实验三、低噪声放大器设计训练 (14)

1.实验目的 (14)

2.实验原理 (14)

3.实验内容 (14)

心得体会 (16)

实验一低通滤波器设计

1.实验目的

设计一款应用于2.4GHz的低通滤波器,该低通滤波器的主要性能指标包括:在低频通带的插入损耗(S21)大于-1dB;-3dB截止频率小于3GHz;在低频通带的输入反射系数(S11)小于-10dB。给出该低通滤波器中各元件值及S参数频响曲线。

2.实验原理

低通滤波(Low-pass filter) 是一种过滤方式,规则为低频信号能正常通过,而超过设定临界值的高频信号则被阻隔、减弱。但是阻隔、减弱的幅度则会依据不同的频率以及不同的滤波程序(目的)而改变。它有的时候也被叫做高频去除过滤(high-cut filter)或者最高去除过滤(treble-cut filter)。低通过滤是高通过滤的对立。低通滤波器是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。

3.实验内容

(1)原理图设计

按照实验要求在ADS上添加电容元件C1、C2,电感元件L1、L2,在元件模型下拉框中选择Simulation-S_Param,将模拟控制器和端口添加到原理图中,并对它们进行连接,如图1-6所示。双击S参数控件,将Start设置为0、Stop设置为5、Step-size设置为0.1,单击ok完成设置。搭建原理图如图1-1所示。

图1-1 低通滤波器电路图

(2)模拟仿真

单击【Simulate】/【Simulate】进行仿真,弹出数据显示窗口,选择要显示的S(2,1)参数S(1,1)参数,并在原理图中单击电容、电感元件,改变电感值与电容值的最大值与最小值,上下滑动调节滑块,观察数据显示窗口中S21,S11曲线的变化。最终得到满足要求的电路。仿真结果如下:

图1-2仿真参数设置

图1-3仿真结果

可以看出在低频通带的插入损耗dB(S(2,1))=-0.062dB>-1dB,-3dB截止频率为2.7GHz<3GHz;在低频通带的输入反射系数dB(S(1,1))=-18.500<-10dB。满足实验要求。

实验二、偏置电路和匹配电路设计训练

1.实验目的

请为编号为pb_hp_AT32033_19950105的晶体管设计偏置电路和匹配电路,使得S11、S22均小于-40dB,并给出具体的偏置电路和匹配电路及S参数频响曲线。

2.实验原理

偏置电路晶体管构成的放大器要做到不失真地将信号电压放大,就必须保证晶体管的发射结正偏、集电结反偏。即应该设置它的工作点。所谓工作点就是通过外部电路的设置使晶体管的基极、发射极和集电极处于所要求的电位(可根据计算获得)。这些外部电路就称为偏置电路。

阻抗匹配(impedance matching)信号源内阻与所接传输线的特性阻抗大小相等且相位相同,或传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,分别称为传输线的输入端或输出端处于阻抗匹配状态,简称为阻抗匹配。

3.实验内容

(1)晶体管直流工作点扫描

新建以BJT_curve_tracer为原理图的模板,并插入晶体管pb_hp_AT32033_19950105,添加元件,连线后得到下图所示电路:

图2-1电路原理图

接下来进行仿真,仿真完成后弹出数据显示窗口。在数据显示窗口中可以看出设计模板已经预先设置好了静态工作点,并可以显示出在静态工作点时器件的集电极电流、基极电流、集电极-发射极电压以及静态功耗,如图2-2所示。同时,为了在保证一定增益的情况下,使得BJT的噪声系数较小,我们选取静态工作点为:基极电流IB为50μA,集电极电流IC为5mA,集电极-发射极电压Vce为2.7V。

图2-2完成仿真的数据显示窗口

再次新建原理图,类似的,插入元件模型pb_hp_AT41511_19950125;添加各种元件后,将他们放置于电路图设计窗口中,设置得到电路图如图2-3所示:

图2-3连接完成的电路图

进行仿真,选择要显示的IB.i参数,得到BJT的基极电流随基极电压的变化曲线。选择当基极电流IB约为50μA的点,以获取对应的基极-发射极电压Vbe(约为0.81V),如图2-4所示。

图2-4 基极电流随基极电压的变化曲线

再次新建原理图,添加元件并连线如图所示其中,Vdc设置为5V,R1=(Vdc-Vce)/(基极电流+集电极电流)=(5V-2.7V)/(5mA+50μA)≈455Ω;R2=(Vce-Vbe)/IB=(2.7V-0.8V)/50μA≈38KΩ。

图2-5 偏置电路的搭建

进行仿真,关闭弹出的窗口,回到电路图设计窗口,得到电路各节点的电压与电流如图2-6所示。

图2-9 电路各个节点的电压以及电流

可以看出,采用电阻实现的偏置电路所提供的静态工作点与最初所选择的BJT静态工作点基本吻合。

(2)晶体管S参数的仿真

建立新的Design原理图设计模板选择S_params,将器件加入到原理图中并仿真其S 参数,选择sp_hp_AT-32033_6_19950105,右击选择Place Component,将元件模型(静态工作点为:Vce=2.7V,Ic=5mA)添加到电路中并连接,原理图如图2-10所示

图2-10原理图

双击原理图中S参数控件,将Start设置为0、Stop设置为5、Step-size设置为0.1,单击ok完成设置。进行仿真,仿真完成后弹出数据显示窗口。在数据显示窗口中添加两个矩形,分别显示S11与S22的仿真结果如图2-11。

图2-11仿真结果

测试2.4GHz频点处晶体管的输入阻抗,添加两个阻抗控件Zin1、Zin2,双击第二个端口输入阻抗控件Zin2,在弹出的对话框中将Function修改为Zin2=zin(S22,PortZ2)。然后进行仿真,得到输入阻抗Zin1的仿真结果:

图2-12仿真结果

上图显示的阻抗数据为r/θ形式,将2.4GHz 频点处的输入阻抗换算为a+j*b 形式,换算公式为:

cos sin a r b r θθ==,

查表2.4GHz 处r =50.000,θ=8.008o,计算得到a =49.51Ohm ,b =6.97Ohm 。

在原理图中的元件模型下拉框中选择Passive Circuit DG - Microstrip Circuits ,将微带线自动设计模块和微带参数设置控件放置于原理图中,将模块连接于输入端口和晶体管之间,双击MSUB 控件,设置其参数如下图所示;双击模块,将F 设置为2.4GHz ,Zload 设置为之前计算得到的输入阻抗数值(49.15+j*6.97),单位为Ohm 。如下所示:

图2-12 添加微带线自动设计模块和微带参数设置控件

图2-13设置微带线自动设计模块和微带参数设置控件

选中模块,完成匹配网络的生成。此时返回原理图,选中模块,单击工具栏上的按钮,可以看到生成的匹配电路,单击返回原电路图。

图2-14生成的匹配电路

对原理图进行仿真,可以看到输入匹配后S11的仿真结果。

图2-16 完成匹配后S11仿真结果

在输入匹配完成的电路基础上,进行仿真,在数据显示窗口中添加列表,显示Zin2,得到输出阻抗的仿真结果。

图2-17 输出阻抗的仿真结果

图2-17显示的阻抗数据为r/θ形式,将2.4GHz 频点处的输出阻抗换算为a+j*b 形式,换算公式为:

cos sin a r b r θθ==,

查表2.4GHz 处r =103.686,θ=-45.086o,计算得到a =73.21Ohm ,b =-73.43Ohm 。 将Simth 圆图匹配模块放置到原理图中并连接于晶体管和输出端口之间,如下图所示。

图2-18 在输出端使用Simth Chart Matching

双击模块,将Fp 设置为2.4GHz ,Zg 设置为之前计算得到的输出阻抗数值(53.4-j*75.2),单位为Ohm ,ZL 设置为50Ohm ,如下图所示:

图2-19 设置Simth 匹配模块参数

图2-20Simth 匹配设置窗口

单击DefineSource/Load Network terminations按钮,选中Enable Source Termination 和Enable Load Termination,在Source Impedance和Load Impedance下的下拉菜单中选择Complex Impedance,完成后单击ok按钮。

图2-21 输入输出阻抗设置

在左侧的面板中添加电容电感元件进行阻抗匹配。完成匹配后单击Build ADS Circuit,返回原理图选中模块,单击工具栏上的按钮,可以看到生成的匹配电路,单击返回原电路图。

图2-22 完成匹配后的Simth模块

图2-23 生成的匹配电路

此时对原理图进行仿真,可以看到输出匹配后S22的仿真结果。

图2-17 完成匹配后的S22仿真结果可以看出dB(S(2,2))=-59.034dB<-40dB,满足实验要求。

实验三、低噪声放大器设计训练

1.实验目的

使用编号为sp_hp_AT-32033_6_19950105的晶体管设计低噪声放大器,使得该低噪声放大器在2.4GHz处S21大于5dB,S11小于-10dB,S22小于-10dB,噪声系数小于2dB,在2-5GHz 频带内稳定系数大于1。

2.实验原理

低噪声放大器,噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。

3.实验内容

新建一个模版为S_params的原理图,插入型号为sp_hp_AT-32033_6_19950105的晶体管(静态工作点为:Vce=2.7V,Ic=5mA),再插入各种所需的电路元件,得到的原理图如下:

图3-1 低噪声放大器原理图

其中,PCB板材选用FR-4板材,单击Tools/LineCalc,在弹出的选项中选择Start LineCalc,将其参数设置为:Freq=2.4GHz,Z0=50Ω,H=0.8mm,Er=4.3,Mur=1,Cond=5.88E+7,Hu=1.0e+033mm,T=0.03mm。计算得到微带线宽度约为60mil(即1.524mm)。

接下来设置各段传输线,在对话框中单击Optimization选项卡,将Optimization Status设置为Enable,最小值设置为10mil,最大值设置为2000mil;宽度W设置为60mil。

然后添加控件Optim将Number of iteration值设置为200。随后添加优化目标模块Goal,其设置如上图所示。

最后进行原理图仿真,在数据显示窗口添加S11、S22、nf(2)、StabFact1的矩形图,得到电路的仿真结果,如果仿真结果不合格,则点击Update Optimization Values进行优化,直到最后的仿真结果满足实验要求。

心得体会

这次实验总体来说不算难,按照指导书就能快速完成,因此本次试验是我独自完成的。主要复习了ADC软件使用以及smith圆图应用,巩固射频电路的相关知识。实验过程比较快,在做完例题以后再做习题就很快了。

ADS2009射频电路仿真实验实验报告

低通滤波器的设计与仿真报告 一、实验目的 (1)熟悉ADS2009的使用及操作; (2)运用此软件设计一低通录波器,通过改变C2.L1的值,使低通录波器达到预定的要求(dB值以大于—3.0以上为宜); (3)画出输出仿真曲线并标明截止频率的位置与大小。 二、低通滤波器简介 (1)定义:让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。低通滤波器是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。 (2)特点与用途 特点:低损耗高抑制;分割点准确;双铜管保护;频蔽好,防水功能强。 用途:产品用途广泛,使用于很多通讯系统,如 CATV EOC 等系统。并能有效的除掉通频带以外的信号和多余的频段、频率的干扰。 低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数所起的作用;低通滤波器有很多种,其中,最通用的就是巴特沃斯滤波器和切比雪夫滤波器。 三、设计步骤 1,建立新项目 (1)在界面主窗口执行菜单命令【File】/【New Project...】,创建

新项目。在选择保存路径时,在“Name”栏中输入项目的名称“lab1”; (2)单击按钮“确认”,出现电路原理图设计及仿真向导对话框,按照要求进行选择选项。 2,建立一个低通录波器设计 (1)在主界面窗口,单击“New Schematic Window”图标,弹出原理图设计窗口; (2)单击“保存”图标,保存原理图,命名为“lpf1”; (3)在元件模型列表窗口中选择“Lumped-Components”集总参数元件类; (4)在左侧面板中选择电容图标,将其放置到电路图设计窗口中,并进行旋转; (5)用类似的方法将电感放置到电路图设计窗口中,并利用接地图标,把电容器的一端接地,将各个器件连接起来; (6)在元件库列表窗口选择“Simulation-S-Param”项,在该面板中选择S-parameter模拟控制器和端口Term,将其放到原理图中。双击电容“C2”并修改其参数。 低通滤波器原理图如下图1所示: 3,电路仿真 1)设置S参数控件参数 (1)双击S参数控件,打开参数设置窗口,将“Step-size”设置为0.5GHz; (2)选中【Display】选项卡,在此列出了所有可以显示在原理

带通滤波器

四川大学 电子信息专业实验报告 课程射频通信电路 实验题目射频实验 实验人许留留 2012141451075 实验时间周一晚上 带通滤波器

要求: 通带频率:4.8-5.2GHz 通带内波纹:<3dB 阻带抑制:>30dB (5.3GHz 处) 输入输出阻抗:50Ω 介质基板相对介电常数:2.65 计算过程: f 0=2f f L +H =5GHz Ω=??? ? ??f -f -f f f f f 000L H =1.467 按照设计要求,需要选用3dB 等波纹契比雪夫低通滤波电路。在归一化频率Ω=1.467处,需要具有大于30dB 的衰减。因此,要满足设计要求必须选用5阶 滤波电路。 设计电路图如下

采用优化的方式。 仿真步骤: 用微带线连接电路图,参数TL1=TL2,w=2.69mm,l=10.03mm (用ADS自带软件算出)。

由于CLin1=CLin6,CLin2=CLin5,CLin3=CLin4。设置9个变量L1,L2,L3;W1,W2,W3;S1,S2,S3。单位为mm。在V AR 1,中同样添加,初始值w设为1,l设为10,s设为1(l的长度约为 4 w和s大于0.2mm)。调节范围设置,L(9-11),W(0.2-3),S(0.2-3)。 从4GHz开始,到6GHz结束,步长为10MHz。 波形与带通滤波器较为形似则继续。

用OPTM来优化波形,设置两个GOAL,使频率在4.8-5.2GHz 间波纹大于-3dB,同时在5.3-5.4GHz间衰减小于-30dB。 按下仿真键开始仿真出现以下结果 波形图如下

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

RF射频电路设计

RF电路的PCB设计技巧 如今PCB的技术主要按电子产品的特性及要求而改变,在近年来电子产品日趋多功能、精巧并符合环保条例。故此,PCB的精密度日高,其软硬板结合应用也将增加。 PCB是信息产业的基础,从计算机、便携式电子设备等,几乎所有的电子电器产品中都有电路板的存在。随着通信技术的发展,手持无线射频电路技术运用越来越广,这些设备(如手机、无线PDA等)的一个最大特点是:第一、几乎囊括了便携式的所有子系统;第二、小型化,而小型化意味着元器件的密度很大,这使得元器件(包括SMD、SMC、裸片等)的相互干扰十分突出。因此,要设计一个完美的射频电路与音频电路的PCB,以防止并抑制电磁干扰从而提高电磁兼容性就成为一个非常重要的课题。 因为同一电路,不同的PCB设计结构,其性能指标会相差很大。尤其是当今手持式产品的音频功能在持续增加,必须给予音频电路PCB布局更加关注.据此本文对手持式产品RF电路与音频电路的PCB的巧妙设计(即包括元件布局、元件布置、布线与接地等技巧)作分析说明。 1、元件布局 先述布局总原则:元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;由实践所知,元器件间最少要有 0.5mm的间距才能满足元器件的熔锡要求,若PCB板的空间允许,元器件的间距应尽可能宽。对于双面板一般应设计一面为SMD及SMC元件,另一面则为分立元件。 1.1 把PCB划分成数字区和模拟区 任何PCB设计的第一步当然是选择每个元件的PCB摆放位。我们把这一步称为“布板考虑“。仔细的元件布局可以减少信号互连、地线分割、噪音耦合以及占用电路板的面积。 电磁兼容性要求每个电路模块PCB设计时尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此,元器件的布局还直接影响到电路本身的干扰及抗干扰能力,这也直接关系到所设计电路的性能。

射频实验报告一

电子科技大学通信射频电路实验报告 学生姓名: 学号: 指导教师:

实验一选频回路 一、实验内容: 1.测试发放的滤波器实验板的通带。记录在不同频率的输入下输出信号的 幅度,并绘出幅频响应曲线。 2.设计带宽为5MHz,中心频率为39MHz,特征阻抗为50欧姆的5阶带 通滤波器。 3.在ADS软件上对设计出的带通滤波器进行仿真。 二、实验结果: (一)低通滤波器数据记录及幅频响应曲线 频率 1.0k 500k 1M 1.5M 2.0M 2.5M 3.0M 3.5M 4..0M 4.5M 5.0M /Hz Vpp/mv 1000 1010 1020 1020 1020 1050 952 890 832 776 736 频率/Hz 5.5M 6.0M 6.2M 6.4M 6.6M 6.8M 7.0M 7.2M 7.4M 7.6M 7.8M Vpp/mv 704 672 656 640 624 592 568 544 512 480 448 频率/Hz 8.0M 8.2M 8.4M 8.6M 8.8M 9.0M 9.2M 9.4M 9.6M 9.8M 10.0M Vpp/mv 416 400 368 376 320 288 272 256 224 208 192

(二)带通滤波器数据记录及幅频响应曲线 频率 /MHz 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Vpp/mv 0.4 0.8 0.4 0.6 0.8 0.6 0.8 0.8 1.4 1.1 6.0 4.0 23. 8 频率 /MHz 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 Vpp/mv 79. 2 72. 8 66. 4 69. 6 77. 6 90. 4 108. 8 137. 6 183. 2 260 364 442 440 频率/MHz 9.6 9.8 10. 10. 2 10. 4 10. 6 10.8 11.0 11.2 11. 4 11. 6 11. 8 12. Vpp/mv 440 403 378 378 406 468 468 548 548 484 412 356 324 频率/MHz 12. 2 12. 4 12. 6 12. 8 13. 13. 2 13.4 13.6 13.8 14.

通信电路实验报告

实验十一包络检波及同步检波实验 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、掌握二极管峰值包络检波的原理。 3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现 象,分析产生的原因并思考克服的方法。 4、掌握用集成电路实现同步检波的方法。 二、实验内容 1、完成普通调幅波的解调。 2、观察抑制载波的双边带调幅波的解调。 3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波 器不加高频滤波时的现象。 三、实验仪器 1、信号源模块 1 块 2、频率计模块 1 块 3、 4 号板 1 块 4、双踪示波器 1 台

5、万用表 1 块 三、实验原理 检波过程就是一个解调过程,它与调制过程正好相反。检波器的作用就是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。假如输入信号就是高频等幅信号,则输出就就是直流电压。这就是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就就是采用这种检波原理。 若输入信号就是调幅波,则输出就就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。从频谱来瞧,检波就就是将调幅信号频谱由高频搬移到低频。检波过程也就是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波与同步检波两种。全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采 用同步检波方法。 1、二极管包络检波的工作原理 当输入信号较大(大于0、5伏)时,利用二极管单向导电特性对振幅调

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告 (前端设计部分) 课程设计题目:数字频率计 所在专业班级:电子科 作者姓名: 作者学号: 指导老师:

目录 (一)概述 2 2 一、设计要求2 二、设计原理 3 三、参量说明3 四、设计思路3 五、主要模块的功能如下4 六、4 七、程序运行及仿真结果4 八、有关用GW48-PK2中的数码管显示数据的几点说明5(三)方案分析 7 10 11

(一)概述 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。测量频率的方法有多种,数字频率计是其中一种。数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,是一种用十进制数字显示被测信号频率的数字测量仪器。数字频率计基本功能是测量诸如方波等其它各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 频率计的基本原理是应用一个频率稳定度高的时基脉冲,对比测量其它信号的频率。时基脉冲的周期越长,得到的频率值就越准确。通常情况下是计算每秒内待测信号的脉冲个数,此时我们称闸门时间是1秒。闸门时间也可以大于或小于1秒,闸门的时间越长,得到的频率值就越准确,但闸门的时间越长则每测一次频率的间隔就越长,闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。 本文内容粗略讲述了我们小组的整个设计过程及我在这个过程中的收获。讲述了数字频率计的工作原理以及各个组成部分,记述了在整个设计过程中对各个部分的设计思路、程序编写、以及对它们的调试、对调试结果的分析。 (二)设计方案 一、设计要求: ⑴设计一个数字频率计,对方波进行频率测量。 ⑵频率测量可以采用计算每秒内待测信号的脉冲个数的方法实现。

uestc射频模拟电路与系统RFIC_fall2012_lect8_phase_noise_2p

Dr. K. Kang 2 Oscillator output spectrum

Dr. K. Kang 3 Phase noise versus amplitude noise Dr. K. Kang 4 Graphical picture of AM and PM

Dr. K. Kang 5 Phase noise? Dr. K. Kang 6 Phase noise measurement

Dr. K. Kang 7 Phase noise in TX chain Dr. K. Kang 8 Phase noise in RX chain

Dr. K. Kang 9 Phase noise in digital communication Dr. K. Kang 10

§??“Perfectly efficient” RLC oscillator §??Signal energy stored in the tank §??Mean square signal (carrier) voltage is Dr. K. Kang 11 General RLC oscillator §??Total mean-square noise voltage §??Noise to Signal ratio §??Resonator Q §??Therefore Dr. K. Kang 12 General RLC oscillator (con’t) N/S?=V↓n?↓↑2 /?V↓sig?↓↑2 = kT/?E↓stored

射频电路基础期末试题

西安电子科技大学 教师教学工作一览 年下学期 课程名称: 课程性质(必、限、任): 课程学时数: 主讲教师姓名: 填表时间:

教学任务书 老师: 根据学年学期教学计划的安排,经研究,决定请您担任教学班课程的主讲,该课程学时为学时,请做好教学实施计划安排和备课等环节的工作。 西安电子科技大学 (教学单位盖章) 年月日

课程内容实施进度 注:1课次为2学时课次内容 1 第一章绪论§1.1非线性电子线路§1.2非线性电子线路的应用 2 第二章谐振功率放大器§2.1谐振功放的工作原理和能量关系 3 §2.2谐振功放的动特性曲线和工作状态§2.3谐振功放的工作特性 4 §2.4谐振功放的电路设计和输出匹配网络第二章习题课 5 第三章正弦波振荡器§3.1反馈式振荡器的工作原理(一) 6 §3.1反馈式振荡器的工作原理(二) 7 §3.2 LC正弦波振荡器—变压器耦合式振荡器、三端式振荡器(一) 8 §3.2 LC正弦波振荡器—三端式振荡器(二)、差分对振荡器 9 §3.2 LC正弦波振荡器—频率稳定度分析和改进措施 10 §3.3并联型石英晶体振荡器和串联型石英晶体振荡器 11 §3.4 RC正弦波振荡器第三章习题课 12 第五章振幅调制与解调§5.1 调幅信号分析(一) 13 §5.1调幅信号分析(二) 14 §5.2非线性器件调幅原理、失真和平衡对消技术 15 §5.3线性时变电路调幅原理和电路分析(一) 16 §5.3线性时变电路调幅原理和电路分析(二) 17 §5.4包络检波和同步检波原理和电路分析(一) 18 §5.4包络检波和同步检波原理和电路分析(二)第五章习题课 19 第六章混频§6.1晶体管混频器原理

彩灯控制器电路设计报告

西安科技大学高新学院 毕业设计(论文) 题目彩灯控制器电路设计 院(系、部) 机电信息学院 专业及班级电专1202班 姓名张森 指导教师田晓萍 日期 2015年5月28日

摘要 随着微电子技术的发展,人民的生活水平不断提高,人们对周围环境的美化和照明已不仅限于单调的白炽灯,彩灯已成为时尚的潮流。彩灯控制器的实用价值在日常生产实践,日常生活中的作用也日益突出。基于各种器件的彩灯也都出现,单片机因其价格低廉、使用方便、控制简单而成为控制彩灯的主要器件。 目前市场上更多用全硬件电路实现,电路结构复杂,结构单一,一旦制成成品就只能按固定模式,不能根据不同场合,不同时段调节亮度时间,模式和闪烁频率等动态参数,而且一些电路存在芯片过多,电路复杂,功率损耗大,亮灯样式单调缺乏可操作性等缺点,设计一种新型彩灯已迫不及待。 近年来,彩灯对于美化、亮化城市有着不可轻视的重要作用。因此作为城市装饰的彩灯需求量越来越大,对于彩灯的技术和花样也越来越高。目前市场上各种式样的LED彩灯多半是采用全硬件电路实现,存在电路结构复杂、功能单一等局限性,因此有必要对现有的彩灯控制器进行改进。 关键词:LED彩灯;STC-89C52单片机;彩灯控制器。

目录 1前言 (1) 1.1设计目的 (1) 1.2设计要求 (1) 1.3总体方案设计与选择的论证 (2) 2节日彩灯控制器的设计 (4) 2.1核心芯片及主要元件功能介绍 (4) 2.1.1 AT89S52芯片 (4) 表1 (5) 2.1.2 74HC377芯片 (5) 2.1.3 74HC138芯片 (6) 2.2硬件设计 (7) 2.2.1直流电源电路 (7) 2.2.2按键电路 (8) 2.2.3时钟复位电路 (8) 2.2.4 LED显示电路 (9) 2.2.5硬件调试 (9) 2.3软件设计 (10) 3 总结 (15) 3.1实验方案设计的可行性、有效性 (15) 3.2设计内容的实用性 (15) 3.3心得 (16) 附录 (16) 参考文献 (18) 致谢 (19)

通信电路实验报告

第一次实验报告 实验一高频小信号放大器 一、实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 二、实验内容 (1)单调谐高频小信号放大器仿真

图1.1 单调谐高频小信号放大器(2)双调谐高频小信号放大器

(a) (b) 图1.2 双调谐高频小信号放大器

三、实验结果 (1)单调谐高频小信号放大器仿真 1、仿真电路图 2、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp ==2.94Mrad/s fp 467kHz 由于三极管的电容会对谐振回路造成影响,因此我适当增大了谐振回路 中的电容值(减小电感),ωp的误差减小,仿真中实际fp464kHz 3、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

A = = 11.08 db v0 4、利用软件中的波特图仪观察通频带,并计算矩形系数。 f0.7 : 446kHz~481kHz f0.1 : 327kHz~657kHz 矩形系数约为:9.4 5、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输 出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。

通频带:446kHz~481kHz 带宽:35kHZ 6、 在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作用。 二次谐波: 加入四次谐波 f 0(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 U 0(mv) 0.012 9 0.0155 0.0404 0.0858 0.2150 1.274 0.0526 0.0301 0.0216 0.0173 0.0144 0.0126 A V (db) -28.8 9 -27.38 -19.06 -12.60 -4.894 11.43 -16.46 -21.36 -24.22 -26.22 -27.73 -28.93

高频设计性实验及考查任务书

通信电路实验设计性实验及考查任务书 题目一、集成模拟乘法器在通信中的应用设计 1.设计目的:掌握模拟乘法器的功能及应用;综合运用射频通信电路的理论知识,加 强电路设计、仿真和调试能力。 2.设计任务:用集成模拟乘法器MC1496设计其应用电路。 3.设计要求: (1) 进行电路设计、并用multisim进行电路仿真和电路调试。至少实现如下功能: a)单音普通调幅波,调制度可调;双边带调幅波。 b)混频功能 c)二倍频。 d)自行设计其他功能 (仿真时,必须充分仿真电路的各个指标和参数,如静态工作点的影响,温度特性、 频率特性、重要元件对电路的影响、交流分析等等。) (2) 在设计电路的基础上,自行设计实验步骤,测出试验数据和指标,并与仿真数据比较,写出调试碰到的问题和体会 (3)自行设计实现其他功能,要求实用合理. (4)写出实验报告,实验报告必须符合设计(综合)性实验要求,有原理图,设计思想,方案比较或可行性,设计指标仿真与实验的比较等 报告要求 报告包括以下几个部分内容: 1.概述,论述你所做的设计的内容,技术要求,难点或者特色等等 2.给出整体方案,简述优势 3.设计模块电路,给出参数计算和分析,性能指标, 4.给出仿真内容或者实验数据,包括静态工作点的计算,交流分析,功能仿真等等 5.总结 6.参考书目和文章

通信电路实验设计性实验及考查任务书 题目二 .调幅系统实验 1. 设计目的:掌握高频系统设计的概念,掌握调幅发射接收和整机组成原理,加强电路 设计和仿真能力,掌握系统联调的方法,培养解决实际设计问题的能力 1. 任务:设计一调幅发射接收系统 2. 设计要求 (1)进行电路设计、并用multisim进行电路仿真和电路调试。至少实现如下功能: a)自行设计产生载波,发射载波频率任意 b)设计调幅发射和接收模块,并联合仿真。 c)调制信号可以自行产生,也可以用音频信号,, d)发射功率最好在50mW以内。 e)自行设计仿真其它功能 (仿真时,必须充分仿真电路的各个指标和参数,如静态工作点的影响,温度特性、频率特性、重要元件对电路的影响、交流分析等等。) (2) 在设计电路的基础上,自行设计实验步骤,实现发射与接收联调,测出试验数据和 指标,并与仿真数据比较,写出调试碰到的问题和体会 (3)自行设计实现其他功能,要求实用合理. (4)写出实验报告,实验报告必须符合设计(综合)性实验要求,有原理图,设计思想,方 案比较或可行性,设计指标仿真与实验的比较等 报告要求 报告包括以下几个部分内容: 1.概述,论述你所做的设计的内容,技术要求,难点或者特色等等 2.给出整体方案,简述优势 3.设计模块电路,给出参数计算和分析,性能指标, 4.给出仿真内容或者实验数据,包括静态工作点的计算,交流分析,功能仿真等等 5.总结 6.参考书目和文章

cmos模拟集成电路设计实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (14) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

RLC串联谐振电路(Multisim仿真实训)

新疆大学 实习(实训)报告 实习(实训)名称: __________ 电工电子实习(EDA __________ 学院: __________________ 专业班级_________________________________ 指导教师______________________ 报告人____________________________ 学号 ______ 时间: 实习主要内容: 1. 运用Multisim仿真软件自行设计一个RLC串联电路,并自选合适的参数。 2. 用调节频率法测量RLC串联谐振电路的谐振频率f 0 ,观测谐振现象。 3. 用波特图示仪观察幅频特性。 4?得出结论并思考本次实验的收获与体会。 主要收获体会与存在的问题: 本次实验用Multisim 仿真软件对RLC串联谐振电路进行分析,设计出了准确的电路模型,也仿真出了正确的结果。通过本次实验加深了自己对RLC振荡电路的理解与应用,更学习熟悉了Multisim 仿真软件,达到了实验的目

的。存在的问题主要表现在一些测量仪器不熟悉,连接时会出现一些错误,但最终都实验成功了。 指导教师意见: 指导教师签字: 年月日 备注: 绪论 Multisim仿真软件的简要介绍 Multisim是In terctive Image Tech no logies公司推出的一个专门用于电子电 路仿真和设计的软件,目前在电路分析、仿真与设计等应用中较为广泛。该软件以图形界面为主,采用菜单栏、工具栏和热键相结合的方式,具有一般Windows 应用软件的界面风格,用户可以根据自己的习惯和熟练程度自如使用。尤其是多种可放置到设计电路中的虚拟仪表,使电路的仿真分析操作更符合工程技术人员的工作习惯。下面主要针对Multisim11.0软件中基本的仿真与分析方法做简单介绍。 EDA就是“ Electronic Design Automation ”的缩写技术已经在电子设计领 域得到广泛应用。发达国家目前已经基本上不存在电子产品的手工设计。一台电子产品的设计过程,从概念的确立,到包括电路原理、PCB版图、单片 机程序、机内结构、FPGA的构建及仿真、外观界面、热稳定分析、电磁兼容分析在内的物理级设计再到PCB钻孔图、自动贴片、焊膏漏印、元器件清 单、总装配图等生产所需资料等等全部在计算机上完成。EDA已经成为集成 电路、印制电路板、电子整机系统设计的主要技术手段。 功能: 1. 直观的图形界面 整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的;

射频ADS微波HFSS相关 射频电路基础实验教学大纲改

《射频电路基础实验》教学大纲 一、课程名称 射频电路基础实验 Experiment of Basis of RF Circuit 二、学时与学分 32学时;2学分 三、授课对象 电信系四年级本科生 四、先修课程 微波技术基础 五、教学目的 本实验课是一门独立设置实验课,旨在通过课堂的讲解和现场实验操作,使学生了解射频电路设计的基础知识,掌握主要射频器件的基本原理和工作特性及其测试方法,熟悉射频测试仪器矢量网络分析仪和频谱仪的工作原理和使用方法。通过实验,培养学生的实践动手能力,促进对专业理论知识的理解,提高学生的综合技术素质,培养其创新能力。 六、主要内容、基本要求及学时分配 实验一网络分析仪和频谱仪的原理及其使用 主要内容:了解网络分析仪和频谱仪的工作原理及熟悉使用操作方法。 基本要求:了解矢量网络分析仪工作原理,掌握正确的操作步骤,并理解网络分析仪测量的射频电路的S参数的物理意义;了解频谱分析仪的一般功能原理,初步掌握 AT5011频谱分析仪的使用方法,学会使用AT5011频谱分析仪观察简单信号的频 谱特性。 学时分配:4学时 实验二射频电路设计辅助软件ADS的使用方法 主要内容:学习射频电路仿真软件ADS(Advance Design System)的初步使用、构造原理图及仿真的方法。 基本要求:学会使用射频电路仿真软件ADS进行基本射频电路设计与仿真的操作方法。

学时分配:4学时 实验三射频滤波器实验 主要内容:学习射频低通、带通滤波器的工作原理和使用ADS软件设计滤波器的方法,并使用网络分析仪测量射频滤波器的幅频特性参数。 基本要求:掌握微带线低通和带通滤波器的工作原理、设计方法与测量方法。 学时分配:4学时 实验四射频功率分配器实验 主要内容:学习射频功率分配器的工作原理和使用ADS软件设计功率分配器的方法,并使用网络分析仪测量功率分配器的特性参数。 基本要求:掌握射频功率分配器的工作原理、设计方法与测量方法。 学时分配:4学时 实验五GSM可调增益放大器实验 主要内容:学习射频放大器的工作原理和使用ADS软件设计射频放大器的方法,介绍GSM 标准对射频放大器的设计要求以及可调增益放大器的设计方法,并使用网络分析 仪测量已有的GSM可调增益放大器的性能参数。 基本要求:掌握射频放大器的工作原理,并初步掌握射频放大器的设计方法和测量方法,并了解GSM标准的射频放大器的要求以及可调增益放大器的设计方法。 学时分配:4学时 实验六CDMA频段平衡式放大器实验 主要内容:学习射频平衡放大器的工作原理,介绍CDMA-IS95标准对射频放大器的设计要求以及平衡放大器的设计方法,并使用网络分析仪测量已有的CDMA频段平 衡放大器的性能参数。 基本要求:掌握射频平衡放大器的工作原理,并初步掌握射频放大器的设计方法和测量方法,并了解CDMA-IS95标准的射频放大器的要求。 学时分配:4学时 实验七射频PLL锁相环实验 主要内容:学习射频PLL锁相环的工作原理,并利用频谱仪测试射频PLL锁相环的主要性能

收音机实验报告..

《高频电子线路》课程设计报告 题目SD-105 七管半导体收音机 学院(部)信息学院 专业通信工程 班级2011240401 学生姓名张静 学号33 指导教师宋蓓蓓,利骏

目录 一、概括……………………………………页码 二、收音机工作原理……………………………………页码 三、各部分设计及原理分析……………………页码 四、实验仿真及结果……………………………页码 五、结论…………………………………………页码 六、心得体会……………………………………页码 七、参考文献……………………………………页码

调幅半导体收音机原理及其调试 一概述:收音机的发明人类自从发现能利用电波传递信息以来,就不断研究出不同的方法来增加通信的可靠性、通信的距离、设备的微形化、省电化、轻巧化等。接收信息所用的接收机,俗称为收音机。目前的无线电接收机不单只能收音,且还有可以接收影像的电视机、数字信息的电报机等。 随着广播技术的发展,收音机也在不断更新换代。自1920年开发了无线电广播的半个多世纪中,收音机经历了电子管收音机、晶体管收音机、集成电路收音机的三代变化,功能日趋增多,质量日益提高。20世纪80年代开始,收音机又朝着电路集成化、显示数字化、声音立体化、功能电脑化、结构小型化等方向发展。 1947年、美国贝尔实验室发明了世界上第一个晶体管,从此以后.开始了收音机的晶体管时代.并且逐步结束了以矿石收音机、电子管收音机为代表的收音机的初级阶段。 调幅收音机:由输入回路、本振回路、混频电路、检波电路、自动增益控制电路(AGC)及音频功率放大电路组成输入回路由天线线圈和可变电容构成,本振回路由本振线圈和可变电容构成,本振信号经内部混频器,与输入信号相混合。混频信号经中周和455kHz陶瓷滤波器构成的中频选择回路得到中频信号。至此,电台的信号就变成了以

数字集成电路设计实验报告

哈尔滨理工大学数字集成电路设计实验报告 学院:应用科学学院 专业班级:电科12 - 1班 学号:32 姓名:周龙 指导教师:刘倩 2015年5月20日

实验一、反相器版图设计 1.实验目的 1)、熟悉mos晶体管版图结构及绘制步骤; 2)、熟悉反相器版图结构及版图仿真; 2. 实验内容 1)绘制PMOS布局图; 2)绘制NMOS布局图; 3)绘制反相器布局图并仿真; 3. 实验步骤 1、绘制PMOS布局图: (1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层; (4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层; (7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察; 2、绘制NMOS布局图: (1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览; 3、绘制反相器布局图: (1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟; 4. 实验结果 nmos版图

射频电路基础复习题答案word精品

、选择 传输线输入阻抗是指传输线上该点的( B ) 入射电压与电流比 B ?电压与电流之比 入射电压波之比 D ?入射电流波之比 传输线的无色散是指( C )与频率无关。 波的速度 B ?波的能量流动的速度 波的相速 D ?波的群速 当传输线处于行波工作状态时,传输线的反射系数为( C ) 1 B . -1 C .0 D .无法判断 面哪一种不能构成纯驻波状态的传输条件是( D ) Z L =O B . Z L =X C . Z L =jX 驻波系数p 的取值范围是(D )。 p =1 B . 0< p < 1 C . 0< p< 1 在史密斯圆图中坐标原点表示( C )。 开路 点 B .短路点 C .匹配点 均匀无耗传输线终端开路时对应于史密斯圆图的( A ) 右端点 B .左端点 C .原点 D .上顶点 无耗均匀传输线的特性阻抗为 50?,终端负载阻抗为32 ?,距离终端入/4 处的输入阻抗为( D ) ?。 50 B .32 C .40 D . 78.125 当终端反射系数为 0.2时,传输线的驻波比为( B )。 2 B .1.5 C .0.67 D .无法判断 微带传输线传输的电磁波是( B )。 TEM 波 B .准 TEM 波 C . TE 波 D . TM 波 判断题 无耗均匀传输线上各点的电压反射系数幅值都相等。对 已知无耗均匀传输线的负载,求距负载一段距离的输入阻抗,在利用史密斯 圆图时,找到负载的归一化电抗,再顺时针旋转对应的电长度得到。错 当均匀无耗传输线终端接感性负载时,传输线工作在行驻波工作状态下。错 在史密斯圆图上左半实轴部分是电压的波节点。对 为了消除传输线上的反射,通常要在传输线的终端进行阻抗匹配。对 微带线可以作为传输线,用在大功率传输系统中。错 在无耗互易二端口网络中,S l2=S 21。对 二端口转移参量都是有单位的参量,都可以表示明确的物理意义。错 1. A . C . 2. A . C . 3. A . 4. A . 5. A . 6. A . 7. A . 8. A . 9. A . 10. A . 二、 11. 12. 13. 14. 15. 16. 17. 18. Z L = Z 0 D . 1W p

自动控制原理实验报告31418

实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的 正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较 为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: 1 TS K )s (R )s (C +-=

阻抗匹配ADS设计

燕山大学 课程设计说明书 题目:80Mhz分立LC阻抗匹配网络的设计 学院(系):理学院 年级专业: 11级电子信息科学与技术 学号: 110108040056 学生姓名:赵昆 指导教师:杜会静徐天赋 教师职称:副教授副教授

燕山大学课程设计说明书 燕山大学课程设计(论文)任务书 院(系):理学院基层教学单位:电子信息科学与技术 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份 年月日

燕山大学课程设计评审意见表

80Mhz分立LC阻抗匹配网络的设计 摘要: 在射频电路设计中,阻抗匹配是很重要的一环。阻抗匹配的目的就是使负载阻抗与源阻抗共轭匹配,从而获得最大的功率传输,并使馈线上功率损耗最小。实现以上匹配的通常做法是在源和负载之间插入一个无源网络,这种网络通常被称为匹配网络。实现匹配网络时,Simth圆图是应用最广泛的匹配电路设计工具之一,它直观的描述了匹配设计的全过程。在频率不是很高的应用场合,可以使用分立电感电容器件进行不同阻抗之间的匹配。如果频率不高,分立器件的寄生参数对整体性能的影响可以忽略。 关键词:射频分立LC 阻抗匹配匹配网络 Abstract The impedance matching is important one annulus in rf circuit design.The purpose of impedance matching is to make the load impedance and the conjugate source impedance matching, so as to achieve maximum power transfer, and minimize the power loss on the feeder. Achieve the above the common way of matching is inserted between the source and load a passive network, this network is often referred to as matching network. To achieve the matching network, the Simth chart is applied to one of the most widely used matching circuit design tools, its intuitive description of the whole process of matching design. In is not very high frequency applications, you can use the discrete inductance capacitor between different impedance matching. If the frequency is not high, discrete device parasitic parameters influence on the overall performance can be ignored. Keywords:RF discrete impedance matching network of LC

相关主题