搜档网
当前位置:搜档网 › 根据递推公式,求数列通项公式的常用方法总结归纳

根据递推公式,求数列通项公式的常用方法总结归纳

根据递推公式,求数列通项公式的常用方法总结归纳
根据递推公式,求数列通项公式的常用方法总结归纳

求递推数列通项公式的常用方法归

目录

一、概述··································

二、等差数列通项公式和前n项和公式··································

1、等差数列通项公式的推导过程································

2、等差数列前n项和公式的推导过程··································

三、一般的递推数列通项公式的常用方法··································

1、公式法··································

2、归纳猜想法··································

3、累加法··································

4、累乘法··································

5、构造新函数法(待定系数法)··································

6、倒数变换法··································

7、特征根法··································

8、不动点法·································

9、换元法·································

10、取对数法··································

11、周期法··································

一、概述

在高中数学课程内容中,数列作为离散函数的典型代表之一,不仅在高中数学中具有重要位置,而且,在现实生活中有着非常广泛的作用,同时,数列的教学也是培养观察、分析、归纳、猜想、逻辑推理以及运用数学知识提出问题、分析问题和解决问题的必不可少的重要途径。

数列这一章蕴含着多种数学思想及方法,如函数思想、方程思想,而且在基本概念、公式的教学本身也包含着丰富的数学方法,掌握这些思想方法不仅可以增进对数列概念、公式的理解,而且运用数学思想方法解决问题的过程,往往能诱发知识的迁移,使学生产生举一反三、融会贯通的解决多数列问题。在这一章主要用到了以下几中数学方法:

1、不完全归纳法不完全归纳法不但可以培养学生的数学直观,而且可以帮助学生有效的解决问题,在等差数列以及等比数列通项公式推导的过程就用到了不完全归纳法。

2、倒叙相加法等差数列前n项和公式的推导过程中,就根据等差数列的特点,很好的应用了倒叙相加法,而且在这一章的很多问题都直接或间接地用到了这种方法。

3、错位相减法错位相减法是另一类数列求和的方法,它主要应用于求和的项之间通过一定的变形可以相互转化,并且是多个数求和的问题。等比数列的前n 项和公式的推导就用到了这种思想方法。

4、函数的思想方法数列本身就是一个特殊的函数,而且是离散的函数,因此在解题过程中,尤其在遇到等差数列与等比数列这两类特殊的数列时,可以将它们看成一个函数,进而运用函数的性质和特点来解决问题。

5、方程的思想方法数列这一章涉及了多个关于首项、末项、项数、公差、公比、第n 项和前n 项和这些量的数学公式,而公式本身就是一个等式,因此,在求这些数学量的过程中,可将它们看成相应的已知量和未知数,通过公式建立关于求未知量的方程,可以使解题变得清晰、明了,而且简化了解题过程。

二、等差数列通项公式和前n项和公式

第一节:等差数列前n项和的推导过程

1、等差数列通项公式:

(1)可以从等差数列特点及定义来引入。

定义:n≥2时,有an-a(n-1)=d,则:

a2=a1+d

a3=a2+d=a1+2d

a4=a3+d=a1+3d

a5=a4+d=a1+4d

……

猜测并写出an=

(2)采取累加

a2-a1=d

a3-a2=d

a4-a3=d

……

an-a(n-1)=d

累加后,有:

an-a1=(n-1)d,即:

an=a1+(n-1)d。

2、等差数列前n项和:

方法一:高斯算法(即首尾相加法)

1 +

2 +

3 +…+50+51++98+99+100=

1+100=101,2+99=101,…,50+51=101,所以原式=50?(1+101)=5050则利用高斯算法,容易进行类比,过程如下:

其中

?

......

1

2

3

2

1

=

+

+

+

+

+

+

-

-n

n

n

a

a

a

a

a

a

......

2

3

1

2

1

=

+

=

+

=

+

-

-n

n

n

a

a

a

a

a

a

q

p

n

m

a

a

a

a

q

p

n

m+

=

+

+

=

+则

若,

这里用到了等差数列的性质:

问题是一共有多少个 ,学生自然想到对n 取奇偶进行讨论。

(1)当n 为偶数时:

(2)当n 为奇数时:

分析到这里发现

2

1+n a “落单”了,似乎遇到了阻碍,此时鼓励学生不能放弃,在

老师的适当引导下,不难发现,2

1+n a 的角标与 角标的关系

从而得到,无论n 取奇数还是偶数, 总结:(1)类比高斯算法将首尾分组进行“配对”,发现需要对n 取奇偶进行讨论,思路自然,容易掌握。

(2)不少资料对n 取奇数时的处理办法是,当讨论进行不下去时转向寻求其它解决办法,进而引出倒序相加求和法。

n a a +1n

n n n a a a a S +++++=+ΛΛ12

21)

(21n n a a n S +=∴n

n n n n a a a a a S ++++++=+++-+ΛΛ12

1211211)(1n a a +2

11)(21

+++-=n n n a a a n S 2)(2121

2

11+++++-=n n n a a a a n )

(21n a a n

+=)

(2

1

n n a a n

S +=

方法二: 对n 的奇偶进行讨论有点麻烦,能否回避对n 的讨论呢接下来给出实际问题:

伐木工人是如何快速计算堆放在木场的木头根数呢由此引入倒序相加求和法。

两式相加得:

总结:(1)数学学习需要最优化的学习,因此引导学生去寻求更有效的解决办法,让学生在解决问题的同时也体会到同一个问题有不同的解决办法,而我们需要的是具备高效率的方法。

(2)倒序相加求和法是重要的数学思想,方法比公式本身更为重要,为以后数列求和的学习做好了铺垫。

(3)在过程中体会数学的对称美。

三、 一般的递推数列通项公式的常用方法

一、公式法

例1、 已知无穷数列{}n a 的前n 项和为n S ,并且*

1()n n a S n N +=∈,求{}n a 的通项公

【解析】:Q 1n n S a =-,∴ 111n n n n n a S S a a +++=-=-,∴ 11

2

n n a a +=

,又112a =,

∴ 12n

n a ??

= ???

.

反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键.

二、归纳猜想法:由数列前几项用不完全归纳猜测出数列的通项公式,再利用数学归纳法证明其正确性,这种方法叫归纳法.

例2、 已知数列{}n a 中,11a =,121(2)n n a a n -=+≥,求数列{}n a 的通项公式.

n

n n a a a a S ++++=-121Λ121a a a a S n n n ++++=-Λ)

(21n

n a a n S +=)

(21n n a a n S +=∴

【解析】:Q 11a =,121(2)n n a a n -=+≥,∴2121a a =+3=,3221a a =+7=????

猜测21n n a =-*

()n N ∈,再用数学归纳法证明.(略)

反思:用归纳法求递推数列,首先要熟悉一般数列的通项公式,再就是一定要用数学归纳法证明其正确性.

三 、累加法:利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和).

例 3 、已知无穷数列{}n a 的的通项公式是12n

n a ??

= ???

,若数列{}n b 满足11b =,

112n

n n b b +??

-= ???

(1)n ≥,求数列{}n b 的通项公式.

【解析】:11b =,112n

n n b b +??-= ???

(1)n ≥,∴1211

()()n n n b b b b b b -=+-+???-=1+1

2+...+ 1

12n -??

???

=1

122n -??- ?

??

.

反思:用累加法求通项公式的关键是将递推公式变形为1()n n a a f n +=+。 四 、累乘法:利用恒等式3

21

121

(0,2)n n n n a a a a a a n a a a -=???≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积)。

例4、 已知11a =,1()n n n a n a a +=-*

()n N ∈,求数列{}n a 通项公式.

【解析】:Q 1()n n n a n a a +=-,∴11n n a n a n ++=,又有321121

(0,2)n n n n a

a a a a a n a a a -=???≠≥= 1×23

n

×××

12n-1

???=n ,当1n =时11a =,满足n a n =,∴n a n =. 反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=.

五、构造新数列(待定系数法): 将递推公式n+1n a qa d =+(,q d 为常数,0q ≠,0d ≠)

通过1()()n n a x q a x ++=+与原递推公式恒等变成1()11

n n d d a q a q q ++=+--的方法叫构造新数列,也即是待定系数法。

例5、已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式. 【解析】:利用1()2()n n a x a x -+=+,求得112(1)n n a a -+=+,∴{}1n a +是首项为

112a +=,公比为2的等比数列,即12n n a +=,21n n a ∴=-

反思:构造新数列的实质是通过1()()n n a x q a x ++=+来构造一个我们所熟知的等差或等比数列.

六 、倒数变换:将递推数列1n n n ca a a d +=

+(0,0)c d ≠≠,取倒数变成

1111

n n d a c a c

+=+ 的形式的方法叫倒数变换。然后就转变为第五种情况,此时将数列1n a ??

????

看成一个新的数列,即再利用“构造新数列”的方法求解。

例6、 已知数列{}n a *

()n N ∈中, 11a =,121

n

n n a a a +=

+,求数列{}n a 的通项公式.

【解析】:将121n n n a a a +=

+取倒数得:

1112n n a a +=+,Q 111

2n n

a a +-=,∴1n a ??????

是以11

1

a =为首项,公差为2的等差数列.

112(1)n n a =+-,∴1

21

n a n =-. 反思:倒数变换有两个要点需要注意:一是取倒数.二是一定要注意新数列的首项,公差或公比

变化了。

七、特征根法:形如递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

对于由递推公式n n n qa pa a +=++12,有βα==21,a a 给出的数列{}n a ,方程

02=--q px x ,叫做数列{}n a 的特征方程。

若21,x x 是特征方程的两个根,

当21x x ≠时,数列{}n a 的通项为1

211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1

211--+=n n n Bx Ax a ,得到关于A 、B 的方程组); 当21x x =时,数列{}n a 的通项为1

1)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即

把2121,,,x x a a 和2,1=n ,代入1

1)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。

例7: 数列{}n a 满足),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a 【解析】:由题可知数列的特征方程是:02532

=+-x x 。 3

2

,121=

=x x Θ, ∴1211--+=n n n Bx Ax a 1

)3

2(-?+=n B A 。又由b a a a ==21,,于是

???-=-=???

?

??+=+=)(32332b a B a b A B A b B

A a 故1)32)((323--+-=n n

b a a b a 反思:本题解题的关键是先求出特征方程的根。再由初始值确定出A,B 的用已知量a,b 表示的值,从而可得数列}a {n 的通项公式。

八、不动点法 若A,B

0≠且AD-BC 0≠,解D

Cx D

Ax x ++=

,设βα,为其两根

I 、若β

α

≠,数列}{

β

α--a

a n

n

是等比数列;

II 、若β

α=,数列}1

{

α

-a n 是等差数列。

例8、已知数列}a {n 满足2a 3

a 22

a 7a 1n n 1n =+-=+,,求数列}a {n 的通项公

式。

【解析】:令3x 22x 7x +-=,得02x 4x 22

=+-,则x=1是函数)

x (f 7

x 41x 3+-=的不动点。

因为

3

a 25a 513a 22a 71a n n n n 1

n +-=-+-=-+

所以

=-+1a 11n 5

21a 1)1a 251(521a 23a 525a 53a 2n n n n n n +-=-+=-+

?=-+, 所以 数列}1a 1{

n -是以1121

1a 11=-=-为首项,以

5

2为公差的等差数列,则

52)1n (11a 1n ?-+=-,故3

n 28n 2a n ++=。

反思:本题解题的关键是先求出函数7

x 41

x 3)x (f +-=的不动点,即方程3x 22x 7x +-=的

1x =,进而可推出5

2

1a 11a

1

n 1n +-=-+,从而可知数列}1a 1{

n -为等差数列,再求出数列}1

a 1

{n -的通项公式,最后求出数列}a {n 的通项公式。 九、换元法 即是将一复杂的整体用一个新的符号来表示,从而使递推数列看起来更简

单,更易找到解决的方法。

9、 已知数列}a {n 满足1a )a 241a 41(16

1

a 1n n 1n =+++=

+,,求数列}a {n 的通项公式。

【解析】:令n

n a 241b +=,则)1b (24

1

a 2n n -= 故)1

b (24

1

a 21n 1n -=

++

代入)a 241a 41(16

1

a n n 1n +++=

+得 ]b )1b (24

141[161)1b (241n 2n 2

1n +-?+=-+ 即2n 2

1n )3b (b 4+=+

因为0a 241b n n

≥+=,故0a 241b 1n 1n ≥+=++

则3b b 2n 1n +=+,即2

3

b 21b n 1n +=

+, 可化为)3b (2

1

3b n 1

n -=-+,

所以}3b {n -是以2312413a 2413b 11=-?+=-+=-为首项,以

2

1

为公比的等比数列,因此2

n 1n n )2

1()21(23b --=?=-,则2n n )21(b -=+3,即

3)2

1(a 2412

n n

+=+-,得31)21()41(32a n n n

++=。 反思:本题解题的关键是通过将

n

a 241+的换元为n

b ,使得所给递推关系式转化

2

3

b 21b n 1

n +=+形式,从而可知数列}3b {n

-为等比数列,进而求出数列

}3b {n -的通项公式,最后再求出数列}a {n 的通项公式。

十、取对数法: 形如r

n n pa a =+1)0,0(>>n a p

这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用构造新数列(待定系数法)求解。

例10:已知数列{n a }中,2

111,1n n a a

a a ?=

=+)0(>a ,求数列{}

.的通项公式n a 。

【解析】:由211n n a a a ?=

+两边取对数得a

a a n n 1lg lg 2lg 1+=+, 令n n a

b lg =,则a b b n n 1lg 21+=+,再利用构造新数列(待定系数法)解得:1

2)1(-=n n a

a a 。

十一、周期型: 由已知递推式计算出前几项,寻找周期。此题型一般是在不能运用以上各种方法的情况下可考虑到这种方法,具有一定的探索性,虽然比较简单,但也是一种很重要的数学思想,需要好好掌握。

例11:若数列{}n a 满足???

???

?

<≤-≤≤=+)

121(,12)210(,21

n n n n n a a a a a ,若761=a ,则20a 的值为___________。

反思:此题的关键在于观察递推数列的形式,取一些特定的n 的值,求出数列的前几项的值,从而找到其周期,这样问题就迎刃而解了。

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法例1 在数列{n a }中,31=a ,) 1(1 1++=+n n a a n n ,求通项公式n a . 解:原递推式可化为:1111+- + =+n n a a n n 则,211112-+=a a 3 1 2123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故n a n 1 4-=. 二、作商求和法 例2 设数列{n a }是首项为1的正项数列,且0)1(12 2 1=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题) 解:原递推式可化为: )]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n 1 . 三、换元法 例3 已知数列{n a },其中913,3421== a a ,且当n ≥3时,)(3 1 211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编). 解:设11---=n n n a a b ,原递推式可化为: }{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31 .故 n n n n b b )31()31(91)31(2211==?=---.故n n n a a )31(1=--.由逐差法可得:n n a )3 1 (2123-=. 例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。解 由1221=+---n n n a a a 得:1)()(211=------n n n n a a a a ,令11---=n n n a a b ,则上式为 121=---n n b b ,因此}{n b 是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b 又2 ) 1(121-=+++-n n b b b n 所以)1(211-= -n n a n ,即)2(2 1 2+-=n n a n

求数列通项公式方法经典总结.doc

求数列通项公式方法 ( 1).公式法(定义法) 根据等差数列、等比数列的定义求通项 例: 1 已知等差数列 { a n } 满足: a 3 7, a 5 a 7 26 , 求 a n ; 2. 已知数列 { a n } 满足 a 1 2,a n a n 1 1(n 1) ,求数列 { a n } 的通项公式; 3. 数列 a n 满足 a 1 =8,a 4 2,且 a n 2 2a n 1 a n 0 ( n N ),求数列 a n 的 通项公式; 4. 已知数列 { a n } 满足 a 1 2, 1 1 2 ,求数列 a n 的通项公式; a n 1 a n 5. 设数列 { a n } 满足 a 1 0 且 1 1 ,求 { a n } 的通项公式 a n 1 1 1 1 a n 6. 已知数列 { a n } 满足 a n 1 2a n , a 1 1 ,求数列 { a n } 的通项公式。 a n 2 7. 等比数列 { a n } 的各项均为正数,且 2a 1 3a 2 2 9a 2 a 6 ,求数列 { a n } 的通 1, a 3 项公式 8. 已知数列 { a n } 满足 a 1 2, a n 3a n 1 (n 1) ,求数列 { a n } 的通项公式; 9. 已知数列 { a n } 满足 a 1 2,a 2 4且 a n 2 a n 2 N ),求数列 a n 的 a n 1 ( n 通项公式; 10. 已知数列 { a n } 满足 且 a n 1 5n 1 2( a n 5n ) ( n N ),求数列 a n 的通 a 1 2, 项公式;

九类常见递推数列求通项公式方法

递推数列通项求解方法举隅 类型一:1n n a pa q +=+(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ……121(1n p a q p p -=++++…211)11n n q q p a p p p --??+=+ ?+ ? --??。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--?? ,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=??…… 1223(122n -=++++ (211) 332)12232112n n n --+??+=+?+=- ? --?? 。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则1 1342 2n n n a -++=?=,即123n n a +=-。 类型二:1()n n a a f n +=+ 思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+ ∑。

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

常见递推数列通项公式的求法

数列复习课(3)———常见递推数列通项公式的求法 主备人:刘莉苹 组长:李英 时间:2013-9-16 教学目标: 1.通过求出数列前几项,了解递推公式是给出数列的一种方法,并能根据特殊的递推公式求出数列的通项公式. 2.掌握把一些简单的数列变形转化为等差数列、等比数列的方法,体验解决数列问题的基本方法及理解运用的过程. 教学重点:处理递推关系的基本方法. 教学难点:通过变形转化成等差、等比数列的有关问题. 研讨互助 问题生成 引入新课: 由递推公式求数列的通项公式的类型: (1) (2) (3) (4)()n f pa a n n +=+1型数列(p 为常数) (5)n n n qa pa a +=++12(其中p ,q 均为常数)。 (6)递推公式为n S 与n a 的关系式()n n S f a = 即n a 与n s 的关系11(1)(2)n n n s n a s s n -=?=?-≥? (7)r n n pa a =+1)0,0(>>n a p (8)) ()()(1n h a n g a n f a n n n +=+ (9)周期型 思考:各类型通项公式的求法? 合作探究 问题解决 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 1() n n a a f n +=+1() n n a a f n +=?1(0,1) n n a pa q p p +=+≠≠

变式: 1. 已知数列{}n a 满足211=a ,112 n n a a +=+,求n a . 2.若数列{}n b 满足11b =,112n n n b b +??-= ???(1)n ≥,求数列{}n b 的通项公式. 3.已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 变式: 1. 已知31=a ,132n n a a += ,求n a 。 2.已知31=a ,n n a n n a 23131 +-=+ )1(≥n ,求n a 。

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

求数列通项公式方法经典总结

求数列通项公式方法 (1).公式法(定义法) 根据等差数列、等比数列的定义求通项 例:1已知等差数列}{n a 满足:26,7753=+=a a a , 求n a ; 2.已知数列}{n a 满足)1(1,211≥=-=-n a a a n n ,求数列}{n a 的通项公式; 3.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (* ∈N n ),求数列{}n a 的 通项公式; 4. 已知数列}{n a 满足21 1, 21 1=- =+n n a a a ,求数列{}n a 的通项公式; 5.设数列}{n a 满足01=a 且 111 111=---+n n a a ,求}{n a 的通项公式 6. 已知数列{}n a 满足112,12 n n n a a a a += =+,求数列{}n a 的通项公式。 7.等比数列}{n a 的各项均为正数,且13221=+a a ,622 39a a a =,求数列}{n a 的通项公式 8. 已知数列}{n a 满足)1(3,211≥===n a a a n n ,求数列}{n a 的通项公式; 9.已知数列}{n a 满足2 122142++=?==n n n a a a a a 且, (* ∈N n ),求数列{}n a 的 通项公式; 10.已知数列}{n a 满足,21=a 且1152(5)n n n n a a ++-=-(*∈N n ),求数列{}n a 的通 项公式; 11. 已知数列}{n a 满足,21=a 且115223(522)n n n n a a +++?+=+?+(*∈N n ),求 数列{}n a 的通项公式;

专题由递推关系求数列的通项公式(含答案)

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a =,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

数列通项公式求法大全(配练习及答案)

数列通项公式的几种求法 注:一道题中往往会同时用到几种方法求解,要学会灵活运用。 一、公式法 二、累加法 三、累乘法 四、构造法 五、倒数法 六、递推公式为n S 与n a 的关系式(或()n n S f a = (七)、对数变换法 (当通项公式中含幂指数时适用) (八)、迭代法 (九)、数学归纳法 已知数列的类型 一、公式法 *11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 已知递推公式 二、累加法 )(1n f a a n n +=+ (1)()f n d = (2)()f n n = (3)()2n f n =

例 1 已知数列{} n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。(3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ (1)()f n d = (2)()f n n =, 1 n n +,2n 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 13211221 n n n n a a a a a a a a a ---?????L ,即得数列{}n a 的通项公式。 例4 (20XX 年全国I 第15题,原题是填空题) 已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。(! .2 n n a = ) 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 132122 n n n n a a a a a a a ---????L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

考点20 递推公式求通项(第2课时)——2021年高考数学专题复习真题练习

考点20 递推公式求通项(第二课时) 【题组一 构造等差数列】 1.在数列中,若,,则 。 {}n a 12a =()*121 n n n a a n a += ∈+N n a = 2.若数列中,,则这个数列的 。 {}n a 11113n n n a a a a ,+== +n a = 3.已知数列满足 ,则数列的通项公式_______. {}n a ()* 112,222,n n n a a a n n N -==+≥ò{}n a n a =

4.在数列中,,且满足,则=________ {}n a 13 2a = 11 3(2)32n n n a a n a --=≥+n a 【题组二 构造等比数列】 1.已知数列中,,则数列通项公式为_____. {}n a () * 111,34,2n n a a a n N n -==+∈≥且{}n a

2.在数列{a n}中,a1=3,且点P n(a n,a n+1)(n∈N*)在直线4x-y+1=0上,则数列{a n}的通项公式为________. 3.在数列{a n}中,a1=3,a n+1=2a n﹣1(n∈N*),则数列{a n}的通项公式为。

4.已知数列满足,,则等于 。 {}n a 1a 1=n 1n a 3a 4+=+n a 【题组三 周期数列】 1.已知数列中,, (),则等于 。 {}n a 12a =11 1n n a a -=- 2n ≥2018a

2.已知数列满足,且 ,则 。 {}n a 1(1)1n n a a +?-=11 2a =- 2020a = 3.设数列满足:,,则______. {}n a 112a = ()1 111n n n a a n a ++=≥-2016a = 4.数列中,,,(),则______. {}n a 11a =25a =21n n n a a a ++=-N n *∈2012a =

常见递推数列通项公式的求法典型例题及习题

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

递推公式求通项公式的几种方

由递推公式求通项公式的常用方法 由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 方法一:累加法 形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。有时若不能直接用,可变形成这种形式,然后利用这种方法求解。 例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列 (1)求c 的值 (2)求{a n }的通项公式 解:(1)a1,a2,a3成公比不为1的等比数列 2 022)2(2)() ,3,2,1(111113 12 2===++?=+∴=+=?=∴+c c a c c a a c a n cn a a a a a n n 因此(舍去)或解得又 (2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 ) 1(2322 2121342312-=-?=-?=-?=--n a a a a a a a a n n 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2 -n 又a 1=2,a n =n 2 -n +2 方法二:累乘法 形如 a n +1 a n =g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。

备战2020数学高考三大类递推数列通项公式的求法

三大类递推数列通项公式的求法 湖北省竹溪县第一高级中学徐鸿 一、一阶线性递推数列求通项问题 一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时, 则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式. 3.; 这类数列通常可转化为,或消去常数转化为二阶递推式 . 例1已知数列中,,求的通项公式. 解析:解法一:转化为型递推数列. ∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即. 解法二:转化为型递推数列. ∵=2x n-1+1(n≥2) ①∴=2x n+1 ② ②-①,得(n≥2),故{}是首项为x 2-x 1 =2, 公比为2的等比数列,即,再用累加法得.解法三:用迭代法. 当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.

例2已知函数的反函数为 求数列的通项公式. 解析:由已知得,则. 令=,则.比较系数,得. 即有.∴数列{}是以为首项,为 公比的等比数列,∴,故. 评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4) 若取倒数,得,令,从而转化为(1)型而求之. (5); 这类数列可变换成,令,则转化为(1)型一阶线性递推公式. 例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式. 解析:设用代入,可解出.

常见递推数列通项公式的求法典型例题及习题

.. . 常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -= ---n n a a n n ……

.. . 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- = (2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-= k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-1 1)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n

求数列通项公式方法经典总结

求数列通项公式方法 (1).公式法(定义法) 根据等差数列、等比数列的定义求通项 1..数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式; 2.设数列}{n a 满足01=a 且 111 111=---+n n a a ,求}{n a 的通项公式 3. 已知数列{}n a 满足112,12 n n n a a a a += =+,求数列{}n a 的通项公式。 4.已知数列}{n a 满足2 122142++=?==n n n a a a a a 且, (*∈N n ),求数列{}n a 的通项公式; 5.已知数列}{n a 满足,21=a 且1 152(5)n n n n a a ++-=-(*∈N n ),求数列{}n a 的通项 公式; — 6. 已知数列}{n a 满足,21=a 且1 15223(522)n n n n a a +++?+=+?+(*∈N n ),求 数列{}n a 的通项公式; 7.数列已知数列{}n a 满足111 ,41(1).2 n n a a a n -= =+>则数列{}n a 的通项公式= (2)累加法 累加法 适用于:1()n n a a f n +=+ 若1()n n a a f n +-=,则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-=∑ 例:1.已知数列{}n a 满足1 41,2 1211-+ == +n a a a n n ,求数列{}n a 的通项公式。 2. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

常见递推数列通项公式求法(教案)

问题 1:已知数列{a } , a 1 = 1 , a n +1 = n + 2 ,求{a n }的通项公式。 2 常见递推数列通项公式的求法 一、课题:常见递推数列通项公式的求法 二、教学目标 (1)会根据递推公式求出数列中的项,并能运用叠加法、叠乘法、待定系数 法求数列的通项公式。 (2) 根据等差数列通项公式的推导总结出叠加法的基本题型,引导学生分 组合作并讨论完成叠乘法及待定系数法的基本题型。 (3)通过互助合作、自主探究培养学生细心观察、认真分析、善于总结的良 好思维习惯,以及积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课时: 1 课时 六、教学手段:黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、区别递推公式与通项公式,从而引入课题 (二)新知探究: a n 变式: 已知数列 {a n } , a 1 = 1 , a n +1 = a n + 2n ,求{a n }的通项公式。 活动 1:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学 生细致讲解整个解题过程。 解:由条件知: a n +1 - a = 2n n 分别令 n = 1,2,3,? ? ? ? ??,(n - 1) ,代入上式得 (n - 1) 个 等式叠加之, 即 (a 2 - a 1 ) + (a 3 - a 2 ) + (a 4 - a 3 ) + ? ? ? ? ? ? +(a n - a n -1 ) = 2 + 2 ? 2 + 2 ? 3 + 2 ? (n - 2) + 2 ? (n - 1) 所以 a - a = (n - 1)[2 + 2 ? (n - 1)] n 1 a = 1,∴ a = n 2 - n + 1 1 n

求通项公式的几种方法与总结

睿博教育学科教师讲义讲义编号: LH-rbjy0002 副校长/组长签字:签字日期:

问题转化为求数列{c n }的前2010项和的平均数. 所以12010∑=+20101 i i i )b (a =12010×2010×?3+4021? 2=2012. ? 探究点四 数列的特殊求和方法 数列的特殊求和方法中以错位相减法较为难掌握,其中通项公式{a n b n }的特征为{a n }是等差数列,{b n }是等比数列. 例4 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列. (1)求数列{a n }的通项公式; (2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 【解答】 (1)设{a n }公比为q ,由题意得q >0, 且?? ? a 2=2a 1+3,3a 2+5a 3=2a 4, 即??? a 1?q -2?=3,2q 2 -5q -3=0, 解得?? ? a 1=3,q =3 或? ?? ?? a 1 =-6 5,q =-12(舍去), 所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *. (2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+3·34+…+n ·3n +1.② ②-①得,2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1, =-3?1-3n ?1-3+n ·3n +1=32 (1-3n )+n ·3n +1 =32+? ? ???n -123n +1. 所以数列{a n b n }的前n 项和为S n =34+2n -14 3n +1 .

相关主题