搜档网
当前位置:搜档网 › 金属材料的化学成分和力学性能表

金属材料的化学成分和力学性能表

金属材料的化学成分和力学性能表
金属材料的化学成分和力学性能表

?. 铝合金GB/T 15115-94

压铸铝合金的化学成分和力学性能表

铸造铝合金化学成分表

铸造生铁的化学成分表

金属材料力学性能

金属材料力学性能文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

常见的金属材料力学性能一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。 几种常用金属材料力学性能一览表

注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]=σσ σ, σu ={σσσσ 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σs ;对于脆性材料n 为,σu=σb 。 强度条件 σmax=(σ σ)max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ; A ,承受载荷作用的面积,单位mm2; [σ],材料的许用应力,单位MPa ;

金属材料的力学性能

金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 金属材料的机械性能 1、弹性和塑性: 弹性:金属材料受外力作用时产生变形,当外力 去掉后能恢复其原来形状的性能。力和变形同时存在、同时消失。如弹簧:弹簧靠弹性工作。 塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。 塑性变形:在外力消失后留下的这部分不可恢复的变形。 2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。 材料在常温、静载作用下的宏观力学性能。是确定各种工程设计参数的主要依据。这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力- 应变曲线。 对于韧性材料,有弹性和塑性两个阶段。弹性阶段的力学性能有: 比例极限:应力与应变保持成正比关系的应力最高限。当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。 弹性极限:弹性阶段的应力最高限。在弹性阶段内,载荷除去后,变形全部消失。这一阶段内的变形称为弹性变形。绝大多数工程材料的比例极限与弹性极限极为接近,因而可近似认为在全部弹性阶段内应力和应变均满足胡克定律。 塑性阶段的力学性能有: 屈服强度:材料发生屈服时的应力值。又称屈服极限。屈服时应力不增加但应变会继续增加。 屈服点:具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为 N/mm2(MPa)。 上屈服点(Re H):试样发生屈服而力首次下降前 的最大应力; 下屈服点(Re L):当不计初始瞬时效应时,屈服阶段中的最小应力。 条件屈服强度:某些无明显屈服阶段的材料,规定产生一定塑性应变量(例如0.2 %)时的应力值,作为条件屈服强度。应力超过屈服强度后再卸载,弹性变形将全部消失,但仍残留部分不可消失的变形,称为永久变形或塑性变形。 规定非比例延伸强度(Rp):非比例延伸率等于规定的引伸计标距百分率时的应力,例如Rp0.2 表示规定非比例延伸率为0.2%时的应力。 规定总延伸强度(Rt ):总延伸率等于规定的引伸计标距百分率时的应力。例如Rt0.5 表示规定总延伸率为

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

人教版化学金属和金属材料知识点总结

人教版化学九年级第九单元金属和金属材料知识点归纳总结 课题1:金属材料 一、金属材料的发展与利用 1、从化学成分上划分,材料可以分为金属材料、非金属材料、有机材料及复合材料等四大类。 2、金属材料包括纯金属和合金。 (1)金属材料的发展 石器时代→青铜器时代→铁器时代→铝的应用→高分子时代 (2)金属材料的应用 ①最早应用的金属是铜,应用最广泛的金属是铁,公元一世纪最主要的金属是铁 ②现在世界上产量最大的金属依次为铁、铝和铜 ③钛被称为21世纪重要的金属 二、金属的物理性质 1、金属共同的物理性质:常温下金属都是固体(汞除外),有金属光泽,大多数金属是电和热的良导体,有延展性,密度较大,熔沸点较高等。 2、金属的特性: ①纯铁、铝等大多数金属都呈银白色,而铜呈紫红色,金呈黄色; ②常温下,大多数金属都是固体,汞却是液体; ③各种金属的导电性、导热性、密度、熔点、硬度等差异较大。 3、金属之最 地壳中含量最多的金属元素—铝(Al) 人体中含量最多的金属元素—钙(Ca) 导电、导热性最好的金属——银(Ag) 目前世界年产量最高的金属—铁(Fe) 延展性最好的金属———金(Au) 熔点最高的金属————钨(W) 熔点最低的金属————汞(Hg) 硬度最大的金属————铬(Cr) 密度最小的金属————锂(Li) 密度最大的金属————锇(Os) 最贵的金属————锎kāi(Cf) 4、金属的用途:金属在生活、生产中有着非常广泛的应用,不同的用途需要选择不同的金属。【练习】 (1)为什么菜刀、镰刀、锤子等用铁制而不用铅制?答:因为铁的硬度比铅大,且铅有毒。 (2)银的导电性比铜好,为什么电线一般用铜制而不用银制?答:银和铜的导电性相近,但银比铜贵得多,且电线用量大,经济上不划算。 (3)为什么灯泡里的灯丝用钨制而不用锡制?如果用锡制的话,可能会出现什么情况?答:因为钨的熔点(3410℃)高,而锡的熔点(232℃)太低。如果用锡制的话,通电时锡易熔断,减少灯泡的使用寿命,还会造成极大浪费。

金属材料力学性能

金属材料力学性能 Prepared on 24 November 2020

常见的金属材料力学性能一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面 积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。

几种常用金属材料力学性能一览表 注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]= σu n , σu ={ σs σb 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σ s ;对于脆性材料n 为,σu=σb 。 强度条件 σmax =(F A )max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ;

2019届中考化学真题分类汇编:金属和金属材料_含解析

金属和金属材料 1.(2018天津)人体内含量最高的金属元素是() A.铁 B.锌 C.钾 D.钙 【答案】D 【解析】人体内含量最高的金属元素是钙,故选D。 2.(2018北京)下列含金属元素的物质是() A.H2SO4 B.Al2O3 C.NO2 D.P2O5 答案:B 解析:在答案中只有铝(Al)属于金属元素,其他的H、S、O、N、P均为非金属元素,故B正确。 3.(2018江西)常温下为液态的金属是 A.汞 B.金 C.银 D.铝 【答案】A 【解析】常温下,铝、银、金等大多数金属都是固体,但金属汞熔点最低,常温下为液态。故选A。 点睛:大多数金属具有延展性、具有金属光泽、是热和电的良导体,其中延展性最好的金属是金,导电性最好的金属是银,绝大多数金属的熔沸点高,熔点最高的是钨,绝大多数的金属硬度大,硬度最大的是铬。 4.(2018河北)图3所示的四个图像,分别对应四种过程,其中正确的是() A.①分别向等质量Mg和Cu中加入足量等质量、等浓度的稀硫酸 B.②分别向等质量且足量的Zn中加入等质量、不同浓度的稀硫酸 C.③分别向等质量且Mg和Zn中加入等质量、等浓度的稀硫酸 D.④分别向等质量的Mg和Zn中加入等质量、等浓度且定量的稀硫酸 【答案C 【解析】①Cu不与稀硫酸反应生成氢气;②足量的Zn与20%的稀硫酸反应生成氢气多;③、④Mg比Zn活泼,加入等质量、等浓度的稀硫酸,Mg产生氢气快,最后氢气质量相等。故选C。 5.(2018重庆A)常温下向一定质量的稀盐酸中逐渐加入镁条,充分反应(忽略挥发)。下列图像正确的是()

A.①② B.②③ C.①④ D.②④ 【答案】C 【解析】①常温下向一定质量的稀盐酸中逐渐加入镁条,反应开始前溶液质量大于0,随着反应的进行,溶液质量不断增加,直至稀盐酸反应完,溶液质量达到最大,之后溶液质量不变;②镁与稀盐酸反应放热,随着反应的进行,温度不断升高,稀盐酸反应结束后,溶液温度开始下降;③镁与稀盐酸反应生成氢气,反应开始前氢气质量等于0,随着反应的进行,氢气体积不断增加,直至稀盐酸反应完,氢气体积达到最大,之后氢气体积不变;④根据质量守恒定律可知反应前后氢元素个数、质量均不变,即反应前后氢元素质量不变。故选C。 6.(2018海南)为了探究金属与酸反应的规律,某实验小组进行了如下实验,取等质量的铁片、镁片、锌片,分别与等体积、等浓度的稀盐酸反应,用温度传感器测得反应温度变化曲线如下图所示。 (1)请分析反应中温度升高的原因:_________________; (2)根据曲线总结出金属活动性的相关规律:__________。 【答案】(1).金属与酸反应放出热量(2).相同条件下,金属越活泼,与酸反应放出的热量越多(必须指明条件相同 【解析】(1)金属与酸反应过程中放出热量,使温度升高;(2)根据金属活动性规律可知:相同条件下,金属越活泼,与酸反应放出的热量越多。 7.(2018安徽)废旧电路板中主要含有塑料、铜和锡(Sn)等,为实现对其中锡的绿色回收,某工艺流程如下。

常见金属材料的介绍

常用金属材料 1、钢的分类 钢的分类方法很多,常用的分类方法有以下几种: 1)按化学成分碳素钢可以分为:低碳钢(含碳量<0.25%)、中碳钢(含碳量0.25%?0.6%)、高碳钢(含碳量>0.6%);合金钢可以分为:低合金钢(合金元素总含量<5% )、中合金钢(合金元素总含量5%?10%)、高合金钢(合金元素总含量>10%); 2)按用途分结构钢(主要用于制造各种机械零件和工程构件)、工具钢(主要用于制造各种刀具、量具和模具等)、特殊性能钢(具有特殊的物理、化学性能的钢,可分为不锈钢、耐热钢、耐磨钢等) 3)按品质分普通碳素钢(P W 0.045% S<0.05% )、优质碳素钢(P W 0.035% S <0.035% )、高级优质碳素钢(P W 0.025% S <0.025%) 2、碳素钢的牌号、性能及用途 常见碳素结构钢的牌号用“Q+数字”表示,其中“Q”为屈服点的“屈”字的汉语拼音字首, 数字表示屈服强度的数值。若牌号后标注字母,则表示钢材质量等级不同。 优质碳素结构钢的牌号用两位数字表示钢的平均含碳量的质量分数的万分数,例如,20钢 的平均碳质量分数为0.2%。 表1 —1常见碳素结构钢的牌号、机械性能及其用途 3、合金钢的牌号、性能及用途 为了提高钢的性能,在碳素钢基础上特意加入合金元素所获得的钢种称为合金钢。

合金结构钢的牌号用“两位数(平均碳质量分数的万分之几) +元素符号+数字(该合金元 素质量分数,小于 1.5%不标出;1.5%?2.5%标2; 2.5%?3.5%标3,依次类推)”表示。 对合金工具钢的牌号而言,当碳的质量分数小于 1%,用“一位数(表示碳质量分数的千分 之几)+元素符号+数字”表示;当碳的质量分数大于1%时,用“元素符号+数字”表示。(注: 高速钢碳的质量分数小于 1%,其含碳量也不标出) 表1 — 2常见合金钢的牌号、机械性能及其用途 4、铸钢的牌号、性能及用途 铸钢主要用于制造形状复杂,具有一定强度、塑性和韧性的零件。碳是影响铸钢性能的主要 元素,随着碳质量分数的增加, 屈服强度和抗拉强度均增加, 而且抗拉强度比屈服强度增加 得更快,但当碳的质量分数大于 0.45%时,屈服强度很少增加,而塑性、韧性却显著下降。 所以,在生产中使用最多的是 ZG230-450、ZG270-500、ZG310-570三种。 表1 — 35、铸铁的牌号、性能及用途 铸铁是碳质量分数大于 2.11%,并含有较多Si 、Mn 、S 、P 等元素的铁碳合金。铸铁的生产 工艺和生产设备简单,价格便宜,具有许多优良的使用性能和工艺性能, 所以应用非常广泛, 是工程上最常用的金属材料之一。 铸铁按照碳存在的形式可以分为:白口铸铁、 灰口铸铁、麻口铸铁;按铸铁中石墨的形态可 以分为:灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁。

金属材料力学性能

一.名词解释 1,E,弹性模量,表征材料对弹性变形的抗力, 2,δs:呈现屈服现象的金属拉伸时,试样在外力不增加仍能继续伸长的应力,表征材料对微量塑性变形的抗力。 3,σbb:是灰铸铁的重要力学性能指标,是灰铸铁试样弯曲至断裂前达到的最大弯曲里 (按弹性弯曲应力公式计算的最大弯曲应力) 4δ:延伸率,反应材料均匀变形的能力。 5,韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力(或指材料抵抗裂纹扩展能力)6低温脆性:某些金属及中低强度钢,在实验的温度低于某一温度Tk时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔集聚型变为穿晶解理型,断口特征由纤维状态变为结晶状,这就是低温脆性 7 Kic:断裂韧度,为平面应变的断裂韧度,表示在平面应变条件下材料抵抗裂变失稳扩展的能力 8 弹性比功(弹性比能):表示单位体积金属材料吸收变形功的能力 9σ-1:疲劳极限,表明试样经无限次应力循环也不发生疲劳断裂所对应的能力 10循环韧性(消振性):表示材料吸收不可逆变形功的能力(塑性加载) 11Ψ:断面收缩率,缩经处横截面积的最大缩减量与原始横截面积的百分比, 12Ak:冲击功、,冲击试样消耗的总能量或试样断裂过程中吸收的总能量 13蠕变:材料在长时间的恒温应力作用下,(即使应力低于屈服强度)也会缓慢地产生塑性变形的现象。 14σtて:在规定温度(t)下,达到规定的持续时间(て)而不发生断裂的最大应力。 15:氢致延滞断裂:由于氢的作用而产生的延滞断裂现象。 17.δ0.2:屈服强度 18.△K th:疲劳裂纹扩展门槛值,表征阻止裂纹开始扩展的能力 19δbc:抗拉强度,式样压至破坏过程中的最大应力。 20.包申效应:金属材料经过预加载产生少量塑变,卸载后再同向加载,规定残余伸长应力增加,反向加载,规定残余应力减低的现象,称为包申效应。 21.NSR:缺口敏感度,缺口试样的抗拉强度δbn与等截面尺寸光滑试样的抗拉强度δb之比。 22.力学行为:材料在外加载荷,环境条件及综合作用下所表现出的行为特征。 23.强度 24:应力腐蚀:金属在拉应力和特定化学介质共同作用下,进过一段时间后所产生的应力脆断现象。 25.滞弹性:(弹性后效)在弹性范围内快速加载或卸载后,随时间延长而产生附加弹性应变的现象。 二、填空题 17、断裂可以分为(裂纹形成)与(扩展)两个阶段。静拉伸断裂宏观断口分为(纤维区)、(放射区)、(剪切唇)三个区域。该断口微观特征:(纤维状)对于脆性穿晶断裂断口主要特征:(放射状)和(结晶状) 18、典型疲劳断裂的宏观断口分为三个区(疲劳源)(疲劳区)(瞬间区)疲劳断口宏观特征(贝纹线、海滩花样)、微观特征(疲劳条带) 19、应力腐蚀微观断口可以看到呈(枯树枝状)的微观裂纹,呈(泥状花样)的腐蚀产物和(腐蚀抗) 20微孔聚集型断裂的微观特征(韧窝),解理断裂的微观特征主要有(解理台阶)和(河流花样),沿晶断裂的微观特征(冰糖状) 断口和(晶粒状)断口。 21应力状态系数值越大,表示应力状态越(软),材料越容易产生(塑性)变形和(韧性)断

金属材料检测标准大汇总

金属材料检测标准大汇 总 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属材料化学成分分析 GB/T 222—2006钢的成品化学成分允许偏差 GB/T 系列钢铁及合金X含量的测定 GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 系列海绵钛、钛及钛合金化学分析方法X量的测定 GB/T 系列铜及铜合金化学分析方法第X部分:X含量的测定 GB/T 5678—1985铸造合金光谱分析取样方法 GBT 系列铝及铝合金化学分析方法 GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 GB/T 系列镁及镁合金化学分析方法第X部分X含量测定 金属材料物理冶金试验方法 GB/T 224—2008钢的脱碳层深度测定法 GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 GB/T 227—1991工具钢淬透性试验方法 GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 GB/T 1979—2001结构钢低倍组织缺陷评级图 GB/T 1814—1979钢材断口检验法 GB/T 2971—1982碳素钢和低合金钢断口检验方法 GB/T —2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法

GB/T —2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法GB/T 3488—1983硬质合金显微组织的金相测定 GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 GB/T 4236—1984钢的硫印检验方法 GB/T 4296—2004变形镁合金显微组织检验方法 GB/T 4297—2004变形镁合金低倍组织检验方法 GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 GB/T —2015不锈钢5%硫酸腐蚀试验方法 GB/T 4462—1984高速工具钢大块碳化物评级图 GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) GB/T 5168—2008α-β钛合金高低倍组织检验方法 GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法GB/T 10851—1989铸造铝合金针孔 GB/T 10852—1989铸造铝铜合金晶粒度 GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T 13298—2015金属显微组织检验方法

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测 出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

衡量金属材料力学性能的指标名称 符 基本单位及其含义说明

指标 法定计量单位 计算公式 试验仪器 含义说明 名称 符号 名称 单位 弹性 弹性是指金属在外力作用下产生变形,当外力取消后又恢复到原来的形状和大小的一种特性 弹性指标 正弹性模量 E 兆帕〔斯卡〕 MPa 式中 σ──应力 ε──应变 P ──垂直应力(N ) l 0──试样原长(mm ) F 0──试样原来的横截面积(mm 2) Δl ──绝对伸长量(mm ) 拉伸试验机或万能材料试验机 金属在弹性范围内,外力和变形成比例地增长,即应力与应变成正比例关系时(符合虎克定律),这个比例系数就称为弹性模数或弹性模量。根据应力,应变的性质通常又分为:正弹性模数(E )和剪切弹性模数(G ),弹性模数的大小,相当于引起物体单位变形时所需应力之大小,所以,它在工程技术上是衡量材料刚度的指标,弹性模数愈大,刚度也愈大,亦即在一定应力作用下,发生的弹性变形愈小 切变弹性模量 G 兆帕〔斯卡〕 MPa 式中 ──切应力 ──相应的扭转滑移 M ──扭转力矩 l 0──试样计算长度(mm ) ──计算长度l 0两端的扭 转角度(经度) ──扭转时试样截面相对于轴线的极惯性矩(对圆截面 )(mm 4) 扭转试验机或万能材 料试 验机 比例极限 σp 兆帕 〔斯卡〕 MPa 式中 ──比例极限载荷(N ) F ──试样横截面积 (mm 2) 拉伸试验机 或万 能材 料试验机 指伸长与负荷成正比地增加,保持直线关系,当开始偏离直线时的应力称比例极限,但此位置很难精确测定,通常把能引起材料试样产生残余变形量为试样原长的0.001%或0.003%、0.005%、0.02%时的应力,规定为比例极限 弹性极限 σe 兆帕〔斯卡〕 MPa 式中 ──弹性极限载荷(N ) F ──试样横截面积(mm 2) 拉伸试验机或万 能材 料试 验机 这是表示金属最大弹性的指标,即在弹性变形阶段,试样不产生塑性变形时所能承受的最大应力,它和σp 一样也很难精确测定,一般多不进行测定,而以规定的σp 数值代替之 强度 强度指金属在外力作用下,抵抗塑性变形和断裂的能力 强度极限 σ 兆帕〔斯卡〕 MPa 式中 ──最大载荷(N ) F ──试样横截面积(mm 2) 指金属受外力作用,在断裂前,单位面积上所能承受的最大载荷 抗拉强度 σb 兆帕〔斯卡〕 MPa 式中 ──最大拉力(N ) F ──试样横截面积(mm 2) 拉伸试验机 或万 能材 料试验机 指外力是拉力时的强度极限,它时 衡量金属材料强度的主要性能指标

金属材料的力学性能

第1章工程材料 1.1 金属材料的力学性能 金属材料的性能包括使用性能和工艺性能。使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。 金属材料的力学性能是指金属材料在载荷作用时所表现的性能。 1.1.1 强度 金属材料的强度、塑性一般可以通过金属拉伸试验来测定。 1.拉伸试样 图1.1.1拉伸试样与拉伸曲线 2.拉伸曲线 拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力 F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。当载荷不超过 p 成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。 3.强度 强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。

(1) 弹性极限 金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示: (2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度 在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料 承受的应力称为“条件屈服强度”,并以符号 σ0.2 表示。 1.1.2 塑性 金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。常用的塑性指标有伸长率δ 和断面收缩率ψ。 1.伸长率 试样拉断后,标距长度的增加量与原标距长度的百分比称为伸长率,用δ表示: 2.断面收缩率 试样拉断后,标距横截面积的缩减量与原横截面积的百分比称为断面收缩率,,用ψ表示: 1.1.3 硬度

金属力学性能测试及复习答案

金属力学性能复习 一、填空题 1.静载荷下边的力学性能试验方法主要有拉伸试验、弯曲试验、扭转试验和压缩试验等。 2. 一般的拉伸曲线可以分为四个阶段:弹性变形阶段、屈服阶段、均匀塑性变形阶段和非均匀塑性变形阶段。 3. 屈服现象标志着金属材料屈服阶段的开始,屈服强度则标志着金属材料对开始塑性变形或小量塑性变形能力的抵抗。 4. 屈强比:是指屈服强度和抗拉强度的比值,提高屈强比可提高金属材料抵抗开始塑性变形的能力,有利于减轻机件和重量,但是屈强比过高又极易导致脆性断裂。 5. 一般常用的的塑性指标有屈服点延伸率、最大力下的总延伸率、最大力下的非比例延伸率、断后伸长率、断面收缩率等,其中最为常用的是断后伸长率和断面收缩率 。 6. 金属材料在断裂前吸收塑性变形功和断裂功的能力称为金属材料的韧性。一般来说,韧性包括静力韧性、冲击韧性和断裂韧性。 7. 硬度测试的方法很多,最常用的有三种方法:布氏硬度测试方法、络氏硬度的试验方法和维氏硬度实验法。 8. 金属材料制成机件后,机件对弹性变形的抗力称为刚度。它的大小和机件的截面积及其弹性模量成正比,机件刚度=E 〃S. 9. 金属强化的方式主要有:单晶体强化、晶界强化、固溶强化、以及有序强化、位错强化、分散强化等(写出任意3种强化方式即可)。 10. 于光滑的圆柱试样,在静拉伸下的韧性端口的典型断口,它由三个区域组成:纤维区、放射区、剪切唇区。 11. 变形速率可以分为位移速度和应变速度。 二、判断题 1.在弹性变形阶段,拉力F 与绝对变形量之间成正比例线性关系;(√) 若不成比例原因,写虎克定律。 2.在有屈服现象的金属材料中,其试样在拉伸试验过程中力不断增加(保持恒定)仍能继续伸长的应力,也称为抗服强度。(×) 不增加,称为屈服强度。 3.一般来讲,随着温度升高,强度降低,塑性减小。(×) 金属内部原子间结合力减小,所以强度降低塑性增大。 4.络氏硬度试验采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后卸除主实验力,以测量压痕的深度来计算络氏硬度。压入深度越深,硬度越大,反之,硬度越小。(×) 络氏硬度公式 5.金属抗拉强度b σ与布氏硬度HB 之间有以下关系式:b σ=K ?HB ,这说明布氏硬度越大,其抗拉强度也越大。(√) 6.弹性模量E 是一个比例常数,对于某种金属来说,它是一种固有的特性。(√) 7.使用含碳量高(含碳量为0.5-0.7%)的钢,不能提高机件吸收弹性变形功。(×) 8.脆性断裂前不产生明显的塑性变形,即断裂产生在弹性变形阶段,吸收的能量很小,这种断裂是可预见的。(×)

初三化学知识点复习金属和金属材料

金属和金属材料 【单元分析】 本单元知识中金属活动性顺序表的应用,以及金属的保护和利用是中考的热点,其中金属活动性顺序也是本单元复习的难点 【复习目标】 1.了解一些常见的金属的性质和用途 2.理解,并会应用金属活动性顺序表 3.了解和掌握金属的保护和利用 4.知道金属材料及合金的特性 5.知道金属锈蚀的条件及防护方法。 【重点】:金属活动性顺序表;知道金属锈蚀的条件及防护方法。 【难点】:金属活动性顺序表的应用。 【考点透视】 命题落点 根据金属的性质推断其应用, 根据金属活动性顺序判断金属的化学性质。 由金属锈蚀的条件对金属进行保护和利用。 【考点清单】 一、基本考点 考点1.几种重要的金属及合金 (1)金属的物理特性:常温下除汞(液体)外都是固体,有金属光泽,大多数为电和热的优良导体,有延展性、密度较大、熔点较高。 (2)合金:①概念:在一种金属中加热熔合其他金属或非金属,而形成的具有金属特性的物质称为合金。②合金的性质能:合金的很多性能与组成它们的纯金属不同,使合金更易适合不同的用途,日常生活中使用的金属材料,大多数为合金。③重要的铁合金:生铁和钢都是铁的合金,其区别是含碳量不同。④生铁的含铁量为2%~4.3%,钢的含碳量为0.03%~2%。考点2.金属与氧气的反应 大多数金属都能与氧气反应,但反应的难易和剧烈程度不同,越活泼的金属,越容易与氧气发生化学反应,反应越剧烈。

考点3.金属活动性顺序及置换反应 (1)金属活动性顺序:K Ca Na Mg Al Zn Fe Sn Pb(H) Cu Hg Ag Pt Au (2)金属活动性顺序的作用:①判断金属与酸的反应:a. 一般说来,排在氢前面的金属能 置换出酸中的氢,排在氢后面的金属不能置换出酸中的氢;b. 酸不包括浓硫酸和硝酸,因 为它们有很强的氧化性,与金属反应不能生成氢气,而生成水。②判断金属与盐溶液反应。 在金属活动性顺序里,只有排在前面的金属,才能把排在后面的金属从它们的盐溶液中置换 出来。③判断金属活动性强弱:在金属活动性顺序里,金属的位置越靠前,它的活动性就越 强。 考点4.金属矿物及铁的冶炼 (1)金属矿物(矿石):①概念:工业上把能用来提炼金属的矿物叫做矿石。②常见的矿 石:赤铁矿(Fe 2O 3)、黄铁矿(FeS 2)、菱铁矿(FeCO 3)、铝土矿(Al 2O 3)、黄铜矿(CuFeS 2)、 辉铜矿(Cu 2S )。 (2)铁的冶炼:①原理:利用高温条件下,焦炭与氧气反应生成的一氧化碳把铁从铁矿石中还原出来。如用赤铁矿石炼铁的化学方程式为: 。②原料:铁矿 石、焦炭、石灰石及空气。③设备:高炉。④炼铁时选择铁矿石的标准:a.铁矿石中铁元素 的质量分数大(即含铁量高);b.炼铁过程中产物对空气不能造成污染;满足以上两个条件 的矿石是理想的绿色矿石。 考点5.金属的腐蚀和防护 (1)铁生锈的条件:铁生锈的主要条件是与空气和水蒸气直接接触。铁制品锈蚀的过程, 实际上是铁与空气中的氧气、水蒸气等发生复杂的化学反应,铁锈的主要成分是 Fe2O3·xH2O 。 (2)铁的防锈:原理是隔绝空气或水,使铁失去生锈的条件。防锈措施:防止铁制品生锈, 一是保持铁制品表面的洁净和干燥,二是在铁制品表面涂上一层保护膜,防止铁与氧气和水 的反应,例如:①刷一层油漆;②涂上一层机油;③电镀一层不易生锈的金属,如镀锌等; ④经加工使金属表面生成一层致密的氧化膜,如烤蓝;⑤在金属表面覆盖搪瓷、塑料等。 考点6.金属资源的保护 (1)矿物的储量有限,而且不能再生。(2)废旧金属的回收和利用可以减少对环境的污染, 还可以节约金属资源。(3)保护金属资源的有效途径:①防止金属腐蚀;②回收利用废旧 金属;③合理有效地开采矿物;④寻找金属的替代品。 二、能力与综合考点 Fe 2O 3+CO====2Fe+3CO 2 高温

常用金属材料汇总

液位 计、压力 管道、化 工设备的 常用金属 材料 2007-08-0 3 10:01:49 常用金属材料 介绍压力管道中常用的金属材料的分类、特点、用途和表示方法 金属材料:黑色金属:通常指铁和铁的合金 有色金属:指铁及铁合金以外的金属及其合金。 黑色金属根据它的元素组成和性能特点分为三大类,即铸铁、碳素钢及合金钢。 1铸铁 铸铁:含碳量大于2.06%的铁碳合金。 ◆真正有工业应用价值的铸铁其含碳量一般为2.5%~6.67%。 ◆铸铁的主要成分除铁之外,碳和硅的含量也比较高。由于铸铁中的含碳量较 高,使得其中的大部分碳元素已不再以Fe3C化合物存在,而是以游离的石墨存 在。 性能特点:是可焊性、塑性、韧性和强度均比较差,一般不能锻,但它却具有优 良的铸造性、减摩性、切削加工性能,价格便宜。 用途:常用作泵机座、低压阀体等材料;地下低压管网的管子和管件。 根据铸铁中石墨的形状不同将铸铁分为灰口铸铁、可锻铸铁和球墨铸铁。 1.1灰口铸铁:石墨以片状形式存在于组织中的铸铁称之为灰口铸铁。 ◆灰口铸铁浇铸后缓冷得到的组织为铁素体和游离石墨共存,断口呈灰色,灰 口铸铁也因此而得名。灰口铸铁的各项机械性能均较差,工程上很少使用。 1.2可锻铸铁:经过长时间石墨化退火,使石墨以团絮状存在于铸铁组织中,此 类铸铁称为可锻铸铁。 性能特点:强度、塑性、韧性均优于灰口铸铁,其延伸率可达12%;但可锻铸 铁制造工艺复杂,价格比较高。 ◆由于可锻铸铁具有一定的塑性,故"可锻"的名称也由此而出,其实它仍为不 可锻。 用途:可锻铸铁在工程上常用作阀门手轮以及低压阀门阀体等。 根据断面颜色或组织的不同,可锻铸铁又分为黑心可锻铸铁、白心可锻铸铁和 珠光体可锻铸铁三种。常用的是黑心可锻铸铁。 1.3球墨铸铁:是通过在浇注前向铁水中加入一定量的球化剂进行球化处理, 并加入少量的孕育剂以促进石墨化,在浇注后直接获得具有球状石墨结晶的铸

金属材料力学性能代 含义

金属材料力学性能代号含义 名称代号单位含义 抗拉强度σb MPa 或 N/mm^2材料试样受拉力时,在拉断前所承受的最大应力.抗压强度σbc MPa 或 N/mm^2材料试样受压力时,在压坏前所承受的最大应力.抗弯强度σbb MPa 或 N/mm^2材料试样受弯曲力时,在破坏前所承受的最大应力.抗剪强度τMPa 或 N/mm^2材料试样受剪力时,在剪断前所承受的最大剪应力. 抗扭强度τb MPa 或 N/mm^2材料试样受扭转力时,在扭断前所承受的最大剪应力 屈服点σs MPa 或 N/mm^2材料试样在拉伸过程中,负荷不增加或开始有所降低而变形继续发生的现象称为屈服. 屈服时的最小应力称为屈服点和屈服极限. 屈服强度σ0.2MPa 或 N/mm^2材料试样在拉伸过程中, 负荷不增加或开始有所降低而变形继续发生的现象称为屈服. 对某些屈服现象不明显的金属材料, 测定屈服点比较困难,为便于测量,通常按其产生永久变形量等于试样原长0.2%时的应力称为屈服度或条件屈服强度. 弹性极限σcσc 材料能保持弹性变形的最大应力. 真实弹性极限难以测定, 实际规定按永久变形为原长的0.005%时的应力值表示. 比例极限σp MPa 或 N/mm^2在弹性变形阶段, 材料所承受的和应变能保持正比的最大应力,称比例极限. σp与σc两数值很接近,一般常互相通用. 弹性模量E MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标. E=σ/ε ε——试样纵向线应变. 切变模量G MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标. G=τ/γ γ——试样切应变. 泊松比μ在弹性范围内, 试样横向线应变与纵向线应变的比值. μ=|ε/ε'| ε'= -με, ε'——试样横向线应变.

最新人教版化学金属和金属材料知识点总结

金属和金属材料 金属材料 一、金属材料的发展与利用 1、从化学成分上划分,材料可以分为金属材料、非金属材料、有机材料及复合材料等四大类。 2、金属材料包括纯金属和合金。 金属材料:纯金属(90多种);合金(几千种) 黑色金属:通常指铁、锰、铬及它们的合金。 纯金属重金属:如铜、锌、铅等 有色金属 轻金属:如钠、镁、铝等; 有色金属:通常是指除黑色金属以外的其他金属。 (1)金属材料的发展 石器时代→青铜器时代→铁器时代→铝的应用→高分子时代 (2)金属材料的应用 ①最早应用的金属是铜,应用最广泛的金属是铁,公元一世纪最主要的金属是铁 ②现在世界上产量最大的金属依次为铁、铝和铜 ③钛被称为21世纪重要的金属 二、金属的物理性质 1、金属共同的物理性质:常温下金属都是固体(汞除外),有金属光泽,大多数金属是电和热的良导体,有延展性(又称可塑性→金属所具有的展性和延性:在外力的作用下能够变形,而且在外力停止作用以后仍能保持已经变成的形状和性质。各种金属的可塑性有差别;金属的可塑性一般是随着温度的升高而增大。),密度较大,熔沸点较高等。 2、金属的特性: ①纯铁、铝等大多数金属都呈银白色,而铜呈紫红色,金呈黄色; ②常温下,大多数金属都是固体,汞却是液体; ③各种金属的导电性、导热性、密度、熔点、硬度等差异较大。 3、金属之最 地壳中含量最多的金属元素—铝(Al)人体中含量最多的金属元素—钙(Ca) 导电、导热性最好的金属——银(Ag)目前世界年产量最高的金属—铁(Fe) 延展性最好的金属———金(Au)熔点最高的金属————钨(W) 熔点最低的金属————汞(Hg)硬度最大的金属————铬(Cr) 密度最小的金属————锂(Li)密度最大的金属————锇(Os) 最贵的金属————锎kāi(Cf)

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 1.生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe 形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS 化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S <0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 2)磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢: P <0.025%;优质钢: P<0.04%;

相关主题