搜档网
当前位置:搜档网 › 离散数学试题及答案

离散数学试题及答案

离散数学试题及答案
离散数学试题及答案

一、填空题

1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; (A) - (B)=

__________________________ .

2. 设有限集合A, |A| = n, 则|(A×A)| = __________________________.

3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.

4. 已知命题公式G=(PQ)∧R,则G的主析取范式是_______________________________

__________________________________________________________.

5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从AB=_________________________; AB=_________________________;A-B=_____________________ .

7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________,

________________________, _______________________________.

8. 设命题公式G=(P(QR)),则使公式G为真的解释有__________________________,

_____________________________, __________________________.

9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1R2 =

________________________,R2R1 =____________________________, R12

=________________________.

10. 设有限集A, B,|A| = m, |B| = n, 则| |(AB)| = _____________________________.

11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则A-B =

__________________________ , B-A = __________________________ ,

A∩B = __________________________ , .

13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________

_______________________________________________________.

14. 设一阶逻辑公式G = xP(x)xQ(x),则G的前束范式是__________________________ _____.

15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

16. 设谓词的定义域为{a, b},将表达式xR(x)→xS(x)中量词消除,写成与之对应的命题公式是

__________________________________________________________________________.

17. 设集合A={1, 2, 3, 4},A上的二元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。则RS=

_____________________________________________________,

R 2=______________________________________________________. 二、选择题

1 设集合A={2,{a},3,4},B = {{a},3,4,1},E 为全集,则下列命题正确的是( )。

(A){2}A (B){a}A (C){{a}}BE (D){{a},1,3,4}B.

2 设集合A={1,2,3},A 上的关系R ={(1,1),(2,2),(2,3),(3,2),(3,3)},则R 不具备( ).

(A)自反性 (B)传递性 (C)对称性

(D)反对称性

3 设半序集(A,≤)关系≤的哈斯图如下所示,若A 的子集B = {2,3,4,5},则元素6为B 的( )。

(A)下界

(B)上界

(C)最小上界 (D)以上答案都不对

4 下列语句中,( )是命题。

(A)请把门关上 (B)地球外的星球上也有人 (C)x + 5 > 6 (D)下午有会吗 5 设I 是如下一个解释:D ={a,b},

1 0 1b)

P(b,a) P(b,b) P(a,),(a a P

则在解释I 下取真值为1的公式是( ). (A)xyP(x,y) (B)xyP(x,y)

(C)xP(x,x) (D)xyP(x,y).

6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6). 7. 设G 、H 是一阶逻辑公式,P 是一个谓词,G =xP(x), H =xP(x),则一阶逻辑公式GH 是( ). (A)恒真的 (B)恒假的

(C)可满足的 (D)前束范式.

8 设命题公式G =(PQ),H =P(QP),则G 与H 的关系是( )。

(A)GH (B)HG (C)G =H (D)以上都不是. 9 设A, B 为集合,当( )时A -B =B.

(A)A =B

(B)AB

(C)BA

(D)A =B =.

10 设集合A = {1,2,3,4}, A 上的关系R ={(1,1),(2,3),(2,4),(3,4)}, 则R 具有( )。

(A)自反性 (B)传递性 (C)对称性 (D)以上答案都不对 11 下列关于集合的表示中正确的为( )。

(A){a}{a,b,c}

(B){a}{a,b,c}

(C){a,b,c} (D){a,b}{a,b,c}

12 命题xG(x)取真值1的充分必要条件是( ).

(A) 对任意x ,G(x)都取真值1. (B)有一个x 0,使G(x 0)取真值1.

(C)有某些x ,使G(x 0)取真值1. (D)以上答案都不对.

13. 设G 是连通平面图,有5个顶点,6个面,则G 的边数是( ). (A) 9条 (B) 5条 (C) 6条 (D) 11条.

14. 设G 是5个顶点的完全图,则从G 中删去( )条边可以得到树.

(A)6 (B)5

(C)10 (D)4.

15. 设图G 的相邻矩阵为???

?

??

?

?

?????

???01101

101011101100101

11110

,则G 的顶点数与边数分别为( ).

(A)4, 5 (B)5, 6

(C)4, 10

(D)5, 8.

三、计算证明题

1.设集合A ={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。

(1) 画出半序集(A,R)的哈斯图;

(2)写出A的子集B = {3,6,9,12}的上界,下界,最小上界,最大下界;

(3)写出A的最大元,最小元,极大元,极小元。

2.设集合A={1, 2, 3, 4},A上的关系R={(x,y) | x, yA 且x y}, 求

(1)画出R的关系图;

(2)写出R的关系矩阵.

3.设R是实数集合,,,是R上的三个映射,(x) = x+3, (x) = 2x, (x) =x/4,试求复合映射,, , ,.

4. 设I是如下一个解释:D = {2, 3},

a b f (2) f (3)P(2, 2)P(2, 3)P(3, 2)P(3, 3)

32320011试求(1) P(a, f (a))∧P(b, f (b));

(2) xy P (y, x).

5. 设集合A={1, 2, 4, 6, 8, 12},R为A上整除关系。

(1)画出半序集(A,R)的哈斯图;

(2)写出A的最大元,最小元,极大元,极小元;

(3)写出A的子集B = {4, 6, 8, 12}的上界,下界,最小上界,最大下界.

6. 设命题公式G = (P→Q)∨(Q∧(P→R)), 求G的主析取范式。

7. (9分)设一阶逻辑公式:G = (xP(x)∨yQ(y))→xR(x),把G化成前束范式.

9. 设R是集合A = {a, b, c, d}. R是A上的二元关系, R = {(a,b), (b,a), (b,c), (c,d)},

(1)求出r(R), s(R), t(R);

(2)画出r(R), s(R), t(R)的关系图.

11. 通过求主析取范式判断下列命题公式是否等价:

(1) G = (P∧Q)∨(P∧Q∧R)

(2) H = (P∨(Q∧R))∧(Q∨(P∧R))

13. 设R和S是集合A={a, b, c, d}上的关系,其中R={(a, a),(a, c),(b, c),(c, d)}, S={(a, b),(b,

c),(b, d),(d, d)}.

(1) 试写出R和S的关系矩阵;

(2) 计算RS, R∪S, R-1, S-1R-1.

四、证明题

1. 利用形式演绎法证明:{P→Q, R→S, P∨R}蕴涵Q∨S。

2. 设A,B为任意集合,证明:(A-B)-C = A-(B∪C).

3. (本题10分)利用形式演绎法证明:{A∨B, C→B, C→D}蕴涵A→D。

4. (本题10分)A, B为两个任意集合,求证:

A-(A∩B) = (A∪B)-B .

参考答案

一、填空题

1. {3}; {{3},{1,3},{2,3},{1,2,3}}.

2. 2

2

n

.

3. 1= {(a ,1), (b ,1)}, 2= {(a ,2), (b ,2)},3= {(a ,1), (b ,2)}, 4= {(a ,2), (b ,1)}; 3,

4. 4. (P ∧Q ∧R).

5. 12, 3.

6. {4}, {1, 2, 3, 4}, {1, 2}.

7. 自反性;对称性;传递性.

8. (1, 0, 0), (1, 0, 1), (1, 1, 0).

9. {(1,3),(2,2),(3,1)}; {(2,4),(3,3),(4,2)}; {(2,2),(3,3)}. 10. 2mn .

11. {x | -1≤x < 0, xR}; {x | 1 < x < 2, xR}; {x | 0≤x ≤1, xR}. 12. 12; 6.

13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}. 14. x(P(x)∨Q(x)). 15. 21.

16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.

二、选择题

1. C.

2. D.

3. B.

4. B.

5. D.

6. C.

7. C.

8. A. 9. D. 10. B. 11. B. 13. A. 14. A. 15. D

三、计算证明题 1. (1)

(2) B 无上界,也无最小上界。下界1, 3; 最大下界是3. (3) A 无最大元,最小元是1,极大元8, 12, 90+; 极小元是1. = {(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4)}.

(1)

(2)

1000

1100

1110

1111 R

M

??

??

??

=

??

??

??

3. (1)=((x))=(x)+3=2x+3=2x+3.

(2)=((x))=(x)+3=(x+3)+3=x+6,

(3)=((x))=(x)+3=x/4+3,

(4)=((x))=(x)/4=2x/4 = x/2,

(5)=()=+3=2x/4+3=x/2+3.

4. (1) P(a, f (a))∧P(b, f (b)) = P(3, f (3))∧P(2, f (2))

= P(3, 2)∧P(2,3)

= 1∧0

= 0.

(2) xy P (y, x) = x (P (2, x)∨P (3, x))

= (P (2, 2)∨P (3, 2))∧(P (2, 3)∨P (3, 3))

= (0∨1)∧(0∨1)

= 1∧1

= 1.

5. (1)

(2) 无最大元,最小元1,极大元8, 12; 极小元是1.

(3) B无上界,无最小上界。下界1, 2; 最大下界2.

6. G = (P→Q)∨(Q∧(P→R))

= (P∨Q)∨(Q∧(P∨R))

= (P∧Q)∨(Q∧(P∨R))

= (P∧Q)∨(Q∧P)∨(Q∧R)

= (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R) = (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)

= m3∨m4∨m5∨m6∨m7 = (3, 4, 5, 6, 7).

7. G = (xP(x)∨yQ(y))→xR(x)

= (xP(x)∨yQ(y))∨xR(x)

= (xP(x)∧yQ(y))∨xR(x)

= (xP(x)∧yQ(y))∨zR(z)

= xyz((P(x)∧Q(y))∨R(z))

9. (1) r(R)=R∪I A={(a,b), (b,a), (b,c), (c,d), (a,a), (b,b), (c,c), (d,d)},

s(R)=R∪R-1={(a,b), (b,a), (b,c), (c,b) (c,d), (d,c)},

t(R)=R∪R2∪R3∪R4={(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,d)};

(2)关系图:

11. G=(P∧Q)∨(P∧Q∧R)

=(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)

=m6∨m7∨m3

=(3, 6, 7)

H = (P∨(Q∧R))∧(Q∨(P∧R))

=(P∧Q)∨(Q∧R))∨(P∧Q∧R)

=(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)

=(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)

=m6∨m3∨m7

=(3, 6, 7)

G,H的主析取范式相同,所以G = H.

13. (1)????

?????

???=000010000100

0101R M ?

?

??

?

?

?

??

???=10000000

11000010

S M

(2)RS ={(a , b ),(c , d )},

R ∪S ={(a , a ),(a , b ),(a , c ),(b , c ),(b , d ),(c , d ),(d , d )}, R -

1={(a , a ),(c , a ),(c , b ),(d , c )}, S -

1R -1={(b , a ),(d , c )}. 四 证明题

1. 证明:{P →Q , R →S , P ∨R }蕴涵Q ∨S

(1) P ∨R P

(2) R →P

Q(1) (3) P →Q

P (4) R →Q Q(2)(3) (5) Q →R Q(4) (6) R →S

P

(7) Q →S Q(5)(6) (8) Q ∨S

Q(7)

2. 证明:(A-B)-C = (A ∩~B)∩~C = A ∩(~B ∩~C) = A ∩~(B ∪C)

= A-(B ∪C)

3.

证明:{A ∨B, C →B, C →D}蕴涵A →D (1) A

D(附加) (2) A ∨B P (3) B Q(1)(2) (4) C →B P (5) B →C

Q(4)

(6) C

Q(3)(5) (7) C →D

P

(8) D Q(6)(7)

(9) A→D D(1)(8)

所以{A∨B, C→B, C→D}蕴涵A→D.

4.证明:A-(A∩B)

= A∩~(A∩B)

=A∩(~A∪~B)

=(A∩~A)∪(A∩~B)

=∪(A∩~B)

=(A∩~B)

=A-B

而(A∪B)-B

= (A∪B)∩~B

= (A∩~B)∪(B∩~B)

= (A∩~B)∪

= A-B

所以:A-(A∩B) = (A∪B)-B.

离散数学古天龙版课后答案(桂电)

P20. 1.解: (1){I,a,m,s,t,u,d,e,n} (2){6,8,10,12} (3)不同的学生可以不同 (4){计算机科学与技术,信息管理与纤细系统,软件工程,信息安全,数字媒体,物联网} (5){±1,±2,±4,±5,±10,±20} (6){6,12,18} 3.解: (1)A=Z (2)B=偶(3)C={1,2,3} (4)D=Z (5)E=偶(6)F={1,2,3} (7)G=Φ (8)H={1,2,3} 解:A=D B=E C=F=H 6.解:(2)设A={x|x=1或x=3或x=6}={1,2,6} 则P(A)={Φ,{1},{3},{6},{1,3},{1,6},{3,6},{1,3,6}}. (8)设A={{Φ,2},{2}},则P(A)={Φ,{{Φ,2}},{{2}},{{Φ,2},{2}}}. 14.解:(1)错。如A=Φ,B={a},C={{a}},则A?B,B∈C,而A?C. (2)错。如A=Φ,B={1},C={Φ},则A?B,B?C,而A∈C. (3)错。如A=Φ,B={Φ},C={Φ},则A∈B,B?C, 而A∈C。 4 错。如A=Ф,B={Φ},C={Ф}。则A B,B C,而A∈C. 5 对。证:由B C知B中的任意元素均在C中,而A∈B, 故A∈C。 6 对。如A=Ф,B={Ф},C={Φ,{Ф}}。 则A∈B,B∈C,而A∈C。

7 对。证对任意x∈A.由A属于或等于B知x∈B.又由B属于或等于C知x∈C。 因此A属于或等于C。 8 对。如A=Ф,B={Ф}。则A属于或等于B,A∈B。 15、解:①A∩(~B)={1,4}∩{3,4}={4}。 ②(A∩B)∪(~C)={1}∪{1,3,5}={1,3,5}. ③(A∩B)∪(A∩C)={1}∪{4}={1,4}. ④~(A∪B)=~(1,2,4,5)={3}. ⑤(~A)∩(~B)={2,3,5}∩{3,4}={3}. ⑥~(C∩B)=~{2}={1,3,4,5}. ⑦A⊕B={2,4,5} ⑧A⊕B⊕C={2,4,5}⊕{2,4}={5}. ⑨P(A)∪P(C)={Φ,{1},{4},{1,4}}∪{Φ,{2},{4},{2,4}} ={Φ,{1},{2},{4},{1,4}{2,4}}。 18、证:③(A-(B∪C))=A∩~(B∪C) =A∩(~B∩~C)=(A∩~C)∩~B=(A-C)∩~B =((A-C)-B). ④((A-C) C ( ) ) ( ~ ( =) ( )) ~ ) (= C B A B~ A C C C A C B =(A ) Bφ ~C =((A ) B- )C 19.证:①A B ⊕ ⊕φ ⊕ = A= B B A ⑦(A C )- ) ⊕) ( = - (( B B)) B A A C =(( C ( ) ~ ~ A B B A))

离散数学图论与系中有图题目

离散数学图论与系中有图题目

————————————————————————————————作者:————————————————————————————————日期:

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8个结点的三次正则图 (2) (1) (3) (2)(1)

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学测验题--图论部分(优选.)

离散数学图论单元测验题 一、单项选择题(本大题共10小题,每小题2分,共20分) 1、在图G =中,结点总度数与边数的关系是( ) (A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=V v E v )deg( 2、设D 是n 个结点的无向简单完全图,则图D 的边数为( ) (A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/2 3、 设G =为无向简单图,∣V ∣=n ,?(G )为G 的最大度数,则有 (A) ?(G )n (D) ?(G )≥n 4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( ) (A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件 5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( ) (A) },,,,,,,,,{><><><><><=c d b c d b a b d a E (B) },,,,,,,,,{><><><><><=c d d b c b a b d a E (C) },,,,,,,,,{><><><><><=c d a d c b a b c a E 6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的( ) (A)度数 (B) 出度 (C)最大度数 (D) 入度 7、设图G 的邻接矩阵为 ?? ?? ?? ? ? ????????0101010010000011100000100 则G 的边数为( ). A .5 B .6 C .3 D .4 8、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( ) (A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +2 9、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。 (A) 2 (B) 3 (C) 5 (D) 4 10、图2是( ) (A) 完全图 (B)欧拉图 (C) 平面图 (D) 哈密顿图

离散数学古天龙_1_4章答案

P20 1.用枚举法写出下列集合。 ○2大于5小于13的所有偶数。 A={6,8,10,12} ○520的所有因数 A={1,2,4,5,10,20} ○6小于20的6的正倍数 A={6,12,18} 2.用描述法写出下列集合 ○3能被5整除的整数集合 A{5x|x是整数} ○4平面直角坐标系中单位圆的点集 A{|x2+y2≤1} 4.求下列集合的基数 ○19 ○3 1 ○7 3 ○8 2 ○10 1 6.求下列集合的幂集 ○6{1,{2}} 解:{空集,{1},{{2}},{1,{2}}} ○7解:{空集,{空集},{a},{空集,a}} ○9解:{空集,{{1,2}},{{2}},{{1,2},{2}}} 15.设全集U={1,2,3,4,5},集合A={1,4},B={1,2,5},C={2,4},确定下列集合。 ○2{1,3,5} ○3{1,4,}

○8{5} ○9{空集,{1},{2},{4},{1,4},{2,4}} 18.对任意集合A,B和C,证明下列各式 ○2(A-(BUC))=((A-B)-C) 证:(A-(BUC))=A∩~(BUC)=A∩(~B∩~C) ((A-B)-C)=(A∩~B)∩~C=A∩~B∩~C 所以(A-(BUC))=((A-B)-C) ○3(A-(BUC))=((A-C)-B 证:(A-(BUC))=A∩~(BUC)=A∩~B∩~C ((A-C)-B)=(A∩~C)∩~B 所以(A-(BUC))=((A-C)-B ○5P(A)UP(B)≤P(A UB) 原题有错(注这里○5○6中的“≤”代表包含于符号)证:任取C∈P(A)U P(B)由定义 C∈P(A)或C∈P(B) 若C∈P(A),则C≤A,则C≤A UB 若C∈P(B),则C≤B,则C≤A UB 故C≤A UB,即C∈P(A U B) 证毕 ○6P(A)∩P(B)=P(A∩B) 证:先证P(A)∩P(B)≤P(A∩B) 任取C∈P(A)∩P(B),且C∈P(A), C∈P(B) 由定义C≤A且C≤B,得C≤A∩B,即C∈P(A∩B) 所以P(A)∩P(B)≤P(A∩B) 再证P(A∩B)≤P(A)∩P(B) 任取C∈P(A∩B),即C=A∩B C≤A,且C≤B,C∈P(A)且C∈P(B) 所以C∈P(A)∩P(B) 得证

【浙江工商大学】《离散数学》期末考试题(B)

《离散数学》期末考试题(B) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为 ( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二、单选题(每小题3分,共15分) 1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1 -?R R 是A 上的 (A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立 2.由2个命题变元p 和q 组成的不等值的命题公式的个数有 (A)2 (B)4 (C)8 (D)16 3.设p 是素数且n 是正整数,则任意有限域的元素个数为 (A)n p + (B)pn (C)n p (D)p n 4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是 (A)有界格 (B)分配格 (C)有补格 (D)布尔格 5.3阶完全无向图3K 的不同构的生成子图有 (A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”. 1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( ) 2.命题联结词→不满足结合律. ( ) 3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“?8”的逆元为 4. ( ) 4.整环不一定是域. ( )

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) P

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

《离散数学》期末考试试题

《离散数学》期末考试试题 一、 填空题(每空2分,合计20分) 1. 设个体域为{2,3,6}D =-, ():3F x x ≤,():0G x x >。则在此解释下公式 ()(()())x F x G x ?∧的真值为______。 2. 设:p 我是大学生,:q 我喜欢数学。命题“我是喜欢数学的大学生”为可符合化 为 。 3. 设{1,2,3,4}A =,{2,4,6}B =,则A B -=________,A B ⊕=________。 4. 合式公式()Q P P ?→∧是永______式。 5. 给定集合{1,2,3,4,5}A =,在集合A 上定义两种关系: {1,3,3,4,2,2}R =<><><>, {4,2,3,1,2,3}S =<><><>, 则_______________S R =ο,_______________R S =ο。 6. 设e 是群G 上的幺元,若a G ∈且2a e =,则1a -=____ , 2a -=__________。 7. 公式))(()(S Q P Q P ?∧?∨∧∨?的对偶公式为 。 8. 设{2,3,6,12}A =, p 是A 上的整除关系,则偏序集,A <>p 的最大元是________,极小元是_ _。 9. 一棵有6个叶结点的完全二叉树,有_____个内点;而若一棵树有2个结点度数为2,一 个结点度数为3,3个结点度数为4,其余是叶结点,则该树有_____个叶结点。 10. 设图,G V E =<>, 1234{v ,v ,v ,v }V =,若G 的邻接矩阵????????????=0001001111011010A ,则1()deg v -=________, 4()deg v +=____________。 二、选择题(每题2分,合计20分) 1.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨? ; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。

离散数学图论练习题

图论练习题 一.选择题 1、设G是一个哈密尔顿图,则G一定是( )。 (1) 欧拉图(2) 树(3) 平面图(4)连通图 2、下面给出的集合中,哪一个是前缀码?() (1) {0,10,110,101111}(2) {01,001,000,1} (3) {b,c,aa,ab,aba}(4) {1,11,101,001,0011} 3、一个图的哈密尔顿路是一条通过图中()的路。 4、设G是一棵树,则G 的生成树有( )棵。 (1) 0(2) 1(3) 2(4) 不能确定 5、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。 6、一棵无向树的顶点数n与边数m关系是()。 7、一个图的欧拉回路是一条通过图中( )的回路。 8、有n个结点的树,其结点度数之和是()。 9、下面给出的集合中,哪一个不是前缀码( )。 (1) {a,ab,110,a1b11} (2) {01,001,000,1} (3) {1,2,00,01,0210} (4) {12,11,101,002,0011} 10、n个结点的有向完全图边数是( ),每个结点的度数是( )。 11、一个无向图有生成树的充分必要条件是( )。 12、设G是一棵树,n,m分别表示顶点数和边数,则 (1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。 13、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。 14、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。 15、设G是有n个结点m条边的连通平面图,且有k个面,则k等于: (1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。 16、设T是一棵树,则T是一个连通且( )图。 17、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 16 18、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 12

离散数学-期末考试卷-A卷

离散数学-期末考试卷-A卷

东莞理工学院城市学院(本科)试卷(A卷) 2013-2014学年第一学期 开课单位:计算机与信息科学系,考试形式:闭卷,允许带入场 科目:离散数学,班级:软工本2012-1、2、3 姓名:学号: 题序一二三四总分 得分 A评 卷人 一、单项选择题(每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。 1. 下述不是命题的是( ) A. 做人真难啊! B. 后天是阴天。 C. 2是偶数。 D. 地球是方的。 2. 命题公式P→(P∨Q∨R)是( ) A. 永假的 B. 永真的 C. 可满足的

D. 析取范式 3. 命题公式﹁B→﹁A等价于( ) A. ﹁A∨﹁ B B. ﹁(A∨B) C. ﹁A∧﹁ B D. A→B 4.设P:他聪明,Q:他用功,命题“他虽聪明但不用功”的符号化正确的是()A.?P∧Q B.P∧?Q C.P→?Q D.P∨?Q 5.设A(x):x是人,B(x):x犯错误,命题“没有不犯错误的人”符号化为()A.?x(A(x))∧B(x) B.??x( A(x)→?B(x) ) C.??x( A(x)∧B(X)) D.??x( A(x)∧?B(x) ) 6. 设有A={a,b,c}上的关系R={,,,},则R具有( ) A. 自反性 B. 反自反性 C. 传递性 D. 反对称性

7. 设A={1,2,3,4,5,6},B={a,b,c,d,e},以下哪一个关系是从A到B的满射函数( ) A. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>} B. f={<1,e>,<2,d>,<3,c>,<4,b>,<5,a>,<6,e>} C. f={<1,a>,<2,b>,<3,c>,<4,a>,<5,b>,<6,c>} D. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>,<1,b>} 8.设简单图G所有结点的度数之和为10,则G一定有() A.3条边B.4条边C.5条边 D.6条边 9.下列不.一定是树的是() A.每对结点之间都有通路的图 B.有n个结点,n-1条边的连通图 C.无回路的连通图D.连通但删去一条边则不连通的图 10.下列各图中既是欧拉图,又是哈密顿图的是()

离散数学期末考试题

《离散数学》复习题 一、单项选择题(每小题2分,共20分) 1、下列命题中是命题的是( ) A 、 7>+y x B 、雪是黑色的 C 、严禁吸烟 D 、我正在说谎 2下列命题联结词集合中,哪个不是极小全功能集( )。 A 、{,}刭 B 、{,}刳 C 、{}- D 、{,}佼 3、下列公式中哪个不是简单析取式( )。 A 、p B 、p q ∨ C 、()p q ?∨ D 、p q ?∨? 4、设个体域{,}A c d =,公式()()x P x x S x ?∧?在A 中消去量词后应为( ) A ()()P x S x ∧ B (()())(()( P c P d S c S d ∧∧∨ C ()()P c S d ∧ D ()() () (P c P d S c S d ∧ ∧∨ 5、下列是命题公式p ∧(q ∨┓r)的成真指派的是( ) A.110,111,100 B.110,101,011 C.所有指派 D.无 6、下列命题中( )是正确的。 A. 若图G 有n 个顶点,则G 的各顶点的度和为2n; B. 无向树中任意两点之间均相互可达; C. 若有向图G 是弱连通的,则它必定也是单向连通; D. 若无向带权图G 是连通的,则其最小生成树存在且唯一。

7、正整数集合Z +的以下四个划分中,划分块最多的是( ) A .1π={{x }︱x ∈Z + } B .2π= {Z + } C. 3π={12,S S },1S 为素数集,21S Z S + =- D .3π={12,S S ,3S },i S 为Z +中元素除以3的余数 8、给定下列各图: ⑴G 1=,其中V 1=(a ,b ,c ,d ,e), E 1={(a 、b ),(b 、c ),(c 、d ),(a 、e )} ⑵G 2=,其中V 2=V 1, E 2={(a 、b ),(b 、e ),(e 、b ),(d 、e )} ⑶G 3=,其中V 3=V 1, E 3={(a 、b ),(b 、e ),(e 、d ),(c 、c ), (e 、d )} ⑷D 4=,其中V 4=V 1, E 4={} 在以上4个图中A ( )为简单图,B ( )为多重图。 供选答案:A : a: ⑴⑶ b :⑶⑷ c :⑴⑷ B : a :⑵⑶ b :⑴⑵ c :⑴⑷ 9、设X={1, 2, 3, 4},Y={a, b, c, d},则下列关系中为函数的是( )。 A 、{<1, a><1, b><2, c>} B 、{<1, a><2, d><3, c><4, b>} C 、 {<1, a><2, a><3, b>} D 、{<1, a><1, b><2, b><4, b>} 10、设,G V E =<>为无向图,u,v ?V ,u ≠v ,若u,v 连通,则( )。 A 、(,)0d u v > B 、(,)0d u v = C 、(,)0d u v < D 、(,)0d u v 3 二、填空题(每空3分,共30分) 1、设P :我有钱,Q :我去看电影。命题“虽然我有钱,但我不去看电影”符号化为 。

离散数学期末考试试题(配答案)

广东技术师范学院 模拟试题 科 目:离散数学 考试形式:闭卷 考试时间: 120 分钟 系别、班级: 姓名: 学号: 一.填空题(每小题2分,共10分) 1. 谓词公式)()(x xQ x xP ?→?的前束范式是__ ?x ?y?P(x)∨Q(y) __________。 2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =__{2}__,=A _{4,5}____, =B A __ {1,3,4,5} _____ 3. 设{}{}b a B c b a A ,,,,==,则=-)()(B A ρρ__ {{c},{a,c},{b,c},{a,b,c}} __________, =-)()(A B ρρ_____Φ_______。 4. 在代数系统(N ,+)中,其单位元是0,仅有 _1___ 有逆元。 5.如果连通平面图G 有n 个顶点,e 条边,则G 有___e+2-n ____个面。 二.选择题(每小题2分,共10分) 1. 与命题公式)(R Q P →→等价的公式是( ) (A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=,A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 3. 在图>=

离散数学图论部分经典试题及答案

离散数学图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??? ???? ? ????? ???0101 010******* 11100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2?E ? B .deg(V )=?E ? C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 ? ? ? ? ? c a b e d ? f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ). 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结 点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 ? ? ? ? ? c a b e d ? f 图四

大学《离散数学》期末考试试卷及答案-(1)

安徽大学2006-2007学年第1学期 《离散数学》期末考试试卷(A卷) (时间120分钟) 开课院(系、部)姓名学号. 一、选择题(每小题2分,共20分)1.下列语句中,哪个是真命题()A、 4 2= + x; B、我们要努力学习; C、如果ab为奇数,那么a是奇数,或b是偶数; D、如果时间流逝不止,你就可以长生不老。 2.下列命题公式中,永真式的是() A、P Q P→ →) (; B、P P Q∧ → ?) (; C、Q P P? ? ∧) (; D、) (Q P P∨ →。3.在谓词逻辑中,令) (x F表示x是火车;) (y G表示y是汽车;) , (y x L表示x比y快。 命题“并不是所有的火车比所有的汽车快”的符号表示中哪些是正确的()

I.)),()()((y x L y G x F y x →∧??? II.)),()()((y x L y G x F y x ?∧∧?? III. )),()()((y x L y G x F y x ?→∧?? A 、仅I ; B 、仅III ; C 、I 和II ; D 、都不对。 4.下列结论正确的是:( ) A 、若C A B A =,则 C B =; B 、若B A B A ?,则B A =; C 、若C A B A =,则C B =; D 、若B A ?且D C ?,则D B C A ?。 5.设φ=1A ,}{2φ=A ,})({3φρ=A ,)(4φρ=A ,以下命题为假的是( ) A 、42A A ∈; B 、31A A ?; C 、24A A ?; D 、34A A ∈。 6.设R 是集合},,,{d c b a A =上的二元关系, },,,,,,,,,,,{><><><><><><=b d d b a c c a a d d a R 。下列哪些命题为真( ) I.R R ?是对称的 II. R R ?是自反的 III. R R ?不是传递的 A 、仅I ; B 、仅II ; C 、I 和II ; D 、全真。

相关主题