搜档网
当前位置:搜档网 › 物理化学~

物理化学~

物理化学~
物理化学~

第一章 气体的pVT 关系

物质的聚集状态: 气态 gas 流体 结构最简单 液态 liquid 结构最复杂

固态 solid 凝聚体

另外还有:等离子态、超固态、中子态等

§1.1 理想气体 ideal /perfect gas 状态方程

一、

理想气体状态方程

三个经验定律:波义耳定律:恒温下一定量气体 V ∞1/p 盖-吕萨克定律:恒压下一定量气体 V ∞T 阿伏加德罗定律:同温同压同体积气体分子数相同

理想气体状态方程: pV = nRT

SI 单位:Pa m 3

mol K R=8.3145J ?K -1

?mol -1

V m = V/n n = m/M ρ = m/V

(P8)例:用管道输送天然气,当输送压力为200kPa ,温度为25℃时,管道内天然气(可视为纯甲烷)的密度是多

少?

二、

理想气体模型

E = E 吸引 + E 排斥 = -A/r 6

+ B/r 12

两大假设:

①分子之间无相互作用 ②分子本身不占有体积

三、

摩尔气体常数

R=pV m /T ;对实际气体,R=(pV m /T)p →0

§1.2 理想气体混合物

一、混合物的组成

三种表示法:摩尔分数x,质量分数w,体积分数φ (混合前,某纯组分的体积与各纯组分体积总和之比)

二、理想气体混合物的状态方程

pV = nRT =m

M

RT

如M

空气=∑x i M i = 0.21M O2 + 0.79M N2 = 28.851g/mol

三、道尔顿分压定律 Dalton’s law of partial pressure

分压,即某组分气体它对混合气体总压的贡献,显然

p B = p总.x B∑p B = p总

对混合理想气体,

p B = p总.x B = p总.n B /∑n B = n B RT / V

(P13)例:今有300K,104.365kPa的含水蒸气的湿烃,其中水蒸气的分压3.167kPa,现欲得到除去水蒸气的1000mol干烃,试求:(1)应从湿烃中除去的水蒸气的量;

(2)所需湿烃的初始体积。

四、阿马加分体积定律

某组分的分体积即该组分单独在混合气体的T,p条件下所具有的体积,显然,V总=∑V B,x B=V B / V总=p B /p总

§1.3 气体的液化 liquefaction及临界参数

一、液体的饱和蒸气压 saturated vapor pressure

气液平衡、饱和蒸气压、沸点boiling point、正常沸点

二、临界参数 critical constant

临界温度T C、临界压力p C、临界(摩尔)体积、临界状态

三、实际气体的p-V m图及气体的液化

p

m c c c

在临界点c 处,2200C C m m T T p p V V ????

??== ? ???????

§1.4 实际气体状态方程

一、实际气体的pV m -p 图及波义耳温度 Boyle ’s temperature

二、范德华方程 van der Waals equation(1873)

()22

m m m m

a p V

b RT

V RT a

or p V b V ??

+-= ??

?=--

,2

2283,,27272727,,8648m c c c c c c B c c

a a

V b T p Rb b T R T RT a

T a b Rb p p ===

====

三、维里方程(卡末林?昂尼斯于20世纪初提出)

()

221...1''...m m m m B C

pV RT V V pV RT B p C p ??=+++ ?

??=+++

第二、第三……维里系数 §1.5 对应状态原理及普遍化压缩因子图

pV m

()0lim 0B

m p T pV p →???

=?????

一、压缩因子 compressibility factor

pV m = ZRT

Z = pV m / RT = V m(实际) / V m(理想)

Z c = p c V m,c / RT c

Z-p 等温线的形状与pV m -p 等温线相同。大多数物质的实测Z c 值在0.27~0.29之间,若将临界参数与范德华常数的

关系代入则得Z c = 3/8 = 0.375。

二、对应状态原理 principle of corresponding state 三个对比参数:p r = p / p c ,V r = V m / V m,c ,T r = T / T c

普遍化范德华方程:

2

83

31r r r r

T p V V =--

对应状态原理:各种不同的气体,若有两个对比参数相同,则第三个对比参数必(大致)相同。

三、普遍化压缩因子图

,c m c m r r r r

c c r r

p V pV p V p V

Z Z RT RT T T ==?=?

因Z c 大多在0.27~0.29(可视为常数),故处在相同对应状态的气体具有(大致)相同的压缩因子,偏离临界状态程

度相同的气体它们偏离理想气体的程度也相同。

Z = f (p r ,T r )

绘成图(等T r 线),即得普遍化压缩因子图。

第二章 热力学第一定律与热化学

一、重要概念

系统与环境,隔离系统,封闭系统,广延性质(加和性:V ,U ,H ,S ,A ,G ),强度性质(摩尔量,T ,p ),功,热,内能,焓,热容,状态与状态函数,平衡态,过程函数(Q ,W ),可逆过程,节流过程,真空膨胀过程,标准态,标准反应焓,标准生成焓,标准燃烧焓 二、重要公式与定义式 1. 体积功:

dV p W amb -=δ

2. 热力学第一定律:W

Q U +=?,

W Q dU δδ+=

3. 焓的定义:

pV U H +=

4. 热容:

定容摩尔热容

V m

m

V m v T U dT

Q C )(

,,??==

δ 定压摩尔热容 p m

m

p m p T U dT Q C )(

,,??==

δ

理性气体:

R

C C m V m

p =-,,;凝聚态:0

,,≈-m V m p C C

5. 标准摩尔反应焓Θ

?m r H :由标准生成焓)(B H m f Θ

?或标准燃烧焓

)(B H m c Θ?计算 )

()(B H B H H m c B m f B m r Θ

ΘΘ?∑-=?∑=?νν

6. 基希霍夫公式(适用于相变和化学反应过程)

?∑+?=?ΘΘ2

1)()()(,12T T m p B m

m r dT

B C T H T H ν

7. 恒压摩尔反应热与恒容摩尔反应热的关系式

RT

g T U T H Q Q B m r m

r V p

)()()(ν∑=?-?=-

8. 理想气体的可逆绝热过程方程:

C

pV =γ

,

m V m p C

C ,,=

γ 三、各种过程Q 、W 、? U 、? H 的计算 1.解题时可能要用到的内容

(1)对于气体,题目没有特别声明,一般可认为是理想气体,如N 2,O 2,H 2等。 恒温过程dT =0, ? U =? H =0, Q =W ;

非恒温过程,? U = n C V ,m ? T , ? H = n C p ,m ? T , 单原子气体C V ,m =3R /2,C p ,m = C V ,m +R = 5R /2

(2)对于凝聚相,状态函数通常近似认为与温度有关,而与压力或体积无关,即 ? U ≈? H = n C p ,m ? T

2. 恒压过程:p 外=p =常数,无其他功W '=0

W = -p 外(V 2-V 1), ? H = Q p =

?

n C p ,m d T , ? U =? H -p ?V

3. 恒容过程 :d V =0,无其他功W '=0 W =0,Q V =? U =?

n C V ,m d T , ? H =? U +V ? p

4.绝热过程:Q =0

(1)绝热可逆过程 W =

?

p d V = ? U =

?

n C V ,m d T ,? H =? U +? pV

(2)绝热一般过程:由方程W =?

p 外d V = ? U 建立方程求解。 5.节流过程(等焓过程):? H =0,Q =0

焦耳-汤姆逊系数 ?J -T = (? T /?p )H ,理想气体?J -T =0,实际气体?J -T ≠0 6. 相变过程

(1)可逆相变(正常相变或平衡相变):在温度T 对应的饱和蒸气压下的相变,如水在常压下的0℃ 结冰或冰溶解,100 ℃ 时的汽化或凝结等过程。

由温度T 1下的相变焓计算另一温度下的相变焓T

?∑+?=?ΘΘ2

1

)()()(,12T T m p B m

m r dT

B C T H T H ν

(2)不可逆相变:利用状态函数与路径无关的特点,根据题目所给的条件,设计成题目给定或根据常识知道的

(比如水的正常相变点)若干个可逆过程,然后进行计算。(包括)

,,G S H ???

例如水在 -5℃ 的结冰过程为不可逆过程,计算时要利用0℃ 结冰的可逆相变过程,即 △H 1

H 2O (l ,1 mol ,-5℃ ,p O - ) H 2O (s ,1 mol ,-5℃,p O - ) △H 3

↓△H 2 ↑△H 4

H 2O (l ,1 mol , 0℃,p O - ) H 2O (s ,1 mol ,0℃,p O - )

7.化学过程:标准反应焓的计算

(1)由298.15K时的标准摩尔生成焓或标准摩尔燃烧焓计算标准摩尔反应焓,然后利用基希霍夫公式计算另一温度T时的标准反应焓。

注意:生成反应和燃烧反应的定义,以及标准摩尔生成焓或标准摩尔燃烧焓存在的联系。例如H2O(l)的生成焓与H2的燃烧焓,CO2的生成焓与C(石墨)的燃烧焓数值等同。

(2)一般过程焓的计算:基本思想是(1),再加上相变焓等。

(3)燃烧反应系统的最高温度计算:整个系统作为绝热系统看待处理由系统焓变

?H=0 建立方程计算。

第三章热力学第二定律

一、重要概念

熵,摩尔规定熵,标准熵,标准反应熵,亥姆霍兹函数,吉布斯函数

二、主要公式与定义式

1.熵的定义式:dS = δQ r / T

2.亥姆霍兹(helmholtz)函数的定义式:A=U-TS

3.吉布斯(Gibbs)函数的定义式:G=H-TS,G=A+pV

4.热力学第三定律:S*(0K,完美晶体)= 0

5.过程方向的判据:

(1)恒温恒压不做非体积功过程(最常用):

d G<0,自发(不可逆);d G=0,平衡(可逆)。

(2)一般过程用熵判据:

?S(隔离系统)>0,自发(不可逆);? S(隔离系统)=0,平衡(可逆)。

(3)恒温恒容不做非体积功过程:

d A<0,自发(不可逆);d A=0,平衡(可逆)。

8.可逆过程非体积功的计算

(1)恒温可逆过程功:W r = ?T A,W r ' = ?T,V A,

(2)恒温恒压过程非体积功:W r' =?T,p G

9. 热力学基本方程与麦克斯韦关系式

关键式:d U =T d S-p d V

(源由:d U =δQ +δW,可逆过程:δQ r = T d S,δW r = -p d V )

其他式可推导:

d H =d(U + pV)= T d S + V d p

d A = d(U- TS)= -S d T–p d V

d G = d(H- TS)= -S d T + V d p

在上系列式,应重点掌握d G= -S d T–V d p

在恒压下的关系式d G= -S d T和恒温时的关系式d G= -V d p。

麦克斯韦关系式(了解内容):若d F = M d x + N d y,则(?M/?y)x = (?N/?x)y

即:利用d U =T d S-p d V关系有:-(?T/?V)S = (?p/?S)V

d H = T d S + V d p关系有:(?T/?p)S = (?V/?S)p

d A =-S d T - p d V关系有:(?S/?V)T = (?p/?T)V

d G =-S d T + V d p关系有:-(?S/?p)T = (?V/?T)p

10. 克拉佩龙方程与克劳修斯-克拉佩龙方程:

相变过程的压力(蒸气压)与温度的关系

(1)克拉佩龙方程:d p/d T =?H m* / (T?V m* )

(2)克劳修斯-克拉佩龙方程:一相为气相且认为是理想气体;凝聚相为固相(升华过程)或液相(蒸发过程)的体积忽略,?H m*近似与温度无关,则

ln (p2/p1)=?H m*(T2-T1)/ RT1T2

(3)对于同一物质的相变,相变焓有如下的近似关系:

?升华H m* = ?熔化H m* + ?蒸发H m*

三、?S、?A、?G的计算

1.?S的计算

(1)理想气体pVT过程的计算

dS=δQ r / T =(dU-δW r)/T =(nC V,m d T-p d V)/T(状态函数与路径无关,理想气体:p=nRT/V)

积分结果:?S = nC V,m ln(T2/T1)+nR ln(V2/V1)(代入:V=nRT/p)

= nC p,m ln(T2/T1)+ nR ln(p1/p2)(C p,m = C V,m +R)

特例:恒温过程:?S = nR ln(V2/V1)

恒容过程:?S =nC V,m ln(T2/T1)

恒压过程:?S =nC p,m ln(T2/T1)

(2)恒容过程:?S =?

(nC V,m/T)d T

(3)恒压过程:?S =?

(nC p,m/T)d T

(4)相变过程:可逆相变?S =?H/T

(5)环境过程:认为是恒温的大热源,过程为可逆

?S = Q r(环)/T(环)= -Q(系)/T(环)

(6)绝对熵的计算:利用热力学第三定律计算的熵为绝对熵,过程通常涉及多个相变过程,是一个综合计算过程。具体看书126页。

(7)标准摩尔反应熵的计算

?r S mθ = ∑v B S mθ(B,T)

2.?G的计算

(1)平衡相变过程:?G=0

(2)恒温过程:?G=?H-T? S

(3)非恒温过程:?G=?H-?T S =?H-(T2S2-T1S1)=?H-(T2? S- S1?T)

诀窍:题目若要计算?G,一般是恒温过程;若不是恒温,题目必然会给出绝对熵。

3.?A的计算

(1)恒温恒容不做非体积功可逆过程:?A=0

(2)恒温:?A=?U-T? S=? G-?(pV)

(3)非恒温过程:?G=?U-?T S =?U-(T2S2-T1S1)=?U-(T2? S- S1?T)

诀窍:题目若要计算?A,一般是恒温过程;若不是恒温,题目必然会给出绝对熵。

第四章多组分系统热力学

一、重要概念

混合物(各组分标准态相同)与溶液(分溶剂和溶质,标准态不同),

组成表示:物质B的摩尔分数x B、质量分数w B、(物质的量)浓度c B、质量摩尔浓度b B,

理想稀溶液,理想液态混合物,偏摩尔量,化学势,稀溶液的依数性,逸度与逸度系数,活度与活度系数二、重要定理与公式

1.拉乌尔定律:稀溶液溶剂A的蒸气压与纯溶剂的蒸气压关系p A = p A*x A

2.亨利定律:稀溶液挥发性溶质B的蒸气压p A = k x A,k为亨利常数

3.稀溶液的依数性:

(1)蒸气压下降:?p A = p A* - p A = p A*x B

(2)凝固点降低:?T f =K f b B,K f–溶剂有关的凝固点降低常数

(3)沸点升高:?T b =K b b B,K f–溶剂有关的沸点升高常数

∏=cRT

(4)渗透压:在半透膜两边的平衡压力差

4. 化学势定义G B =(?G/?n B)T,p,nc≠nB

(1)理想气体的化学势

(2)实际气体的化学势与逸度f

5.过程方向判据:d T=0,d p=0,W'=0时

(1)相变过程

(2)化学反应

6. 理想液态混合物的性质

理想液态混合物:任一组分在全部组成范围内都符合拉乌尔定律的混合物。

化学势;混合过程性质的变化量

?mix V=0,?mix H=0,?mix S= -nR∑x b ln x B,?mix G=?mix H - T?mix S = nRT∑x b ln x B,

7. 真实液态混合物:浓度用活度代替。

三、常见的计算题型

1.根据稀溶液的性质作依数性等方面的计算

2.在相平衡一章中常用拉乌尔定律和亨利定律。

第五章化学平衡

一、主要概念

摩尔反应吉布斯函数变,压力商,标准平衡常数,转化率,产率

二、主要公式与方程

核心问题:?r G m = ?r G m(T,p,x),故考虑T,p,x的影响。

1.理想气体反应的等温方程:?r G m = ?r G mθ +RT ln J p

注意:对于多相反应,通常只考虑气相组分,固相或液相的活度近似认为不变。

(2)标准反应摩尔吉布斯函数变:?r G mθ = -RT ln Kθ

(3)标准平衡常数:Kθ=exp(-?r G mθ /RT)=J P(平衡)(即平衡常数的两种计算方法)

(4)恒温恒总压时,?r G m = ?r G mθ +RT ln J p = RT ln(J p / Kθ) < 0 即J p < Kθ 时反应正向进行

2.平衡常数与温度的关系-化学反应的等压方程

{?(?r G mθ /T)/?T} p,x= -?r H mθ /T2(基本式,代入?r G mθ =-RT ln Kθ 可得下微分式)

dln Kθ / d T = ?r H mθ /(RT2)(微分式)

(1)?r H mθ为常数ln(K2θ / K1θ)= -(?r H mθ /R)(1/T2 - 1/T1)(定积分)

ln Kθ = -(?r H mθ /R)(1/T)+ C (不定积分)

(2)?r H mθ与温度有关:?r H mθ(T)= ?r H mθ(T1)+?

?C p d T

再利用?C p = ?a + ?b T + ?c T2代入基本式进行计算。

3.各种平衡常数的关系与影响理想气体反应平衡的其它因素

Kθ = K pθ(pθ)-?v= K y(p/pθ)?v= K cθ(cθRT / pθ)?v= K n(p/pθ∑n B)?v

其中:?v =∑v B,p B = p y B = p n B / ∑n B = (c B/c Bθ)c Bθ RT

(1)若反应的?v>0,总压p增大,Kθ 不变,K y减少,产物分压减少,反应朝反应物方向移动。

Kθ = K y(p/pθ)?v

(2)惰性组分的影响:Kθ = K n(p/pθ∑n B)?v。

(3)反应物配比的影响:符合化学计量数之比时,产物在混合气的比例最大。

4.非理想气体:压力用逸度或活度代替。

三、典型的计算类型

1.标准摩尔反应吉布斯函数?r G mθ的计算

(1)由标准生成吉布斯函数计算:?r G mθ =∑B v B?f G mθ,B

(2)由?r H mθ和?r S mθ计算:?r G mθ =?r H mθ-T?r S mθ

(3)由平衡常数计算: ?r G mθ = -RT ln Kθ

(4)由相关反应计算:利用状态函数的加和性进行。

(5)恒温恒压下,?r G m = ?r G mθ +RT ln J p = RT ln(J p / Kθ) < 0 即J p < Kθ 时反应正向进行

2.平衡常数的计算

(1)由?r G mθ计算:Kθ=exp(-?r G mθ /RT)

(2)由平衡组成计算:Kθ=J P(平衡)

(3)由相关反应的平衡常数进行计算

(4)由Kθ(T1)计算Kθ(T2):利用等压方程。

第六章相平衡

一、主要概念

组分数,自由度,相图,相点,露点,泡点,共熔点,(连)结线,三相线,步冷(冷却)曲线

二、重要定律与公式

本章主要要求掌握相律的使用条件和应用,单组分和双组分系统的各类典型相图特征、绘制方法和应用,利用杠杆规则进行有关计算。

1、相律: F = C - P + n, 其中:C=S-R-R’

(1) 强度因素T,p可变时n=2

(2)对单组分系统:C=1, F=3-P

(3)对双组分系统:C=2,F=4-P;应用于平面相图时恒温或恒压,F=3-P。

2、相图

(1)相图:相态与T,p,x的关系图,通常将有关的相变点联结而成。

(2)实验方法:实验主要是测定系统的相变点。常用如下四种方法得到。

对于气液平衡系统,常用方法蒸气压法和沸点法;

液固(凝聚)系统,通常用热分析法和溶解度法。

3、单组分系统的典型相图

对于单组分系统C=1,F=C-P+2=3-P。当相数P=1时,自由度数F=2最大,即为双变量系统,通常绘制蒸气压-温度(p-T)相图,见260页图。

4、二组分系统的相图

类型:恒压的t-x(y)和恒温的p-x(y)相图。

相态:气液相图和液-固(凝聚系统)相图。

(1)气液相图

根据液态的互溶性分为完全互溶(细分为形成理想混合物、最大正偏差和最大负偏差)、部分互溶(细分为有一低共溶点和有一转变温度的系统)和完全不溶(溶液完全分层)的相图。通常绘制恒温下的p-x(压力-组成)图或恒压下的t-x(温度-组成)图,见271页图、见275页图、见277页图、见278页图。

(2)液-固系统相图:通常忽略压力的影响而只考虑t-x图。

简单的相图也可分为固相部分完全互溶(形成固溶体α,β)、固相部分互溶(细分为有一低共溶点和有一转变温度的系统)、固相完全不互溶(形成低共熔混合物)、固相形成稳定化合物和固相形成不稳定化合物的相图。液相完全互溶,固相完全互溶、固相部分互溶和完全不互溶的液固相图与液相完全互溶、部分互溶和完全不互溶的气液相图的形状相似,只不过在液固相图中的固态和液态在气液相图中变为液态和气态。

稳定化合物熔化时固相和液相组成相同,其相图相当于两个双组分系统A-C和C-B相图的组合。不稳定化合物加热到一定温度后分解成一种固体和溶液,溶液组成与化合物组成不同,典型为H2O-NaCl系统,见289页6.10.3图。

(3)双组分系统的相图在恒温或恒压下得到,故相律F=C-P+1。

单相区:P=1,F==C-P+1=2-1+1=2

两相区:P=2,F=C-P+1=2-2+1=1

三相线:P=3,F=C-P+1=2-3+1=0,为无变量系统。

5、杠杆规则

6、复杂相图分析:对二组分系统的p-x或t-x图进行总结分析

区域相态的确定

对于单组分区域的相态,高温或低压区为气态或液态,低温区或高压区为液态或固溶体。若有多个固溶体,可依次按α、β、γ、δ命名。

对于两相平衡区,相态由左右邻单相区或单相线对应的相态组成。

对于三相线,其相态由左右邻单相区或单相线和上邻区域对应的相态组成。

7.步冷曲线(或称冷却曲线)的绘制

步冷曲线即系统加热到高温后让其冷却得到的系统温度与时间的关系曲线。系统冷却过程中,无相变时,温度随时间平滑下降,即出现连续下降的平滑曲线,但低温区的斜率稍小些;出现相变时,因有热效应,会出现折点,曲线斜率变小;若出现自由度为0的相变(如单组分系统的相变点或双组分系统的三相线上),曲线变水平,斜率为0。基于上述原理,很容易根据t-x相图绘出步冷曲线。

物质的构成溶解及物理化学性质

学生:科目:第阶段第次课教师: 考点1:分子的热运动 1知识梳理

温度越高,分子热运动越剧烈。 2典型例题 1 水结冰,分子间的距离如何变化? 2 “墙内开花墙外香"这句话涉及的科学知识是-—----—— 3 我们知道汽化是一个吸热过程,为什么蒸发有致冷作用? 3知识概括、方法总结与易错点分析 分子很小 分子之间有空隙 分子处于不停的无规则运动之中 4 针对练习 1 下列现象中,不能说明分子做无规则运动的是 A 在小盘子里倒一点酒精,满屋子都是酒精气体。 B 扫地时,灰尘在空气中飞舞. C 腌咸菜时,时间一长才就变咸了。 D 晒衣服时,水分蒸发衣服变干。 2 请用分子的知识解释下列现象的原因。 《1》。温度越高,液体蒸发越快:-—————-——-—--———-—-———--—---—----———-——-—-————-——-— 《2》.物体的热胀冷缩现象:—————----———-———-——-—————-——--—--——-—————-—--——-———--—--- 3 固体,液体分子之间的距离比气体分子之间的距离要--—--———---—— 考点2:物质的溶解 1知识梳理 1、氢氧化钠溶于水放出大量的热,硝酸铵溶于水会吸收热量。 2、温度越高,气体在液体溶解得越少。 2典型例题 1色拉油地在衣服上,用水洗不掉,为什么用汽油可以洗干净? 2 一些工厂向河里排放热水,造成河里的鱼死亡,你能解释这个现象吗? 3 你知道汽水瓶打开盖子后为什么会冒泡吗? 3知识概括、方法总结与易错点分析 物质的溶解能力是有限的

不同的物质,溶解能力并不相同。 同一物质在不同物质中溶解能力不一样. 温度影响物质的溶解能力. 物质溶解过程中会有热量变化。 4 针对性练习 1 物质在溶解时会发生温度的改变,它与吸放热的关系正确的是 ( ) A 有的温度升高放热 B 有的温度降低吸热 C 有的温度不变,吸热放热等效 D 以上说法都有道理 2 小明的妈妈买了一瓶蜂蜜,到了冬天,她发现瓶子里洗出了白色晶体。她觉得非常不满意,认为被欺骗了,但工作人员则认为这白色晶体是葡萄糖晶体,是从蜂蜜中析出的,你认为他们谁有理?请说出理由。 考点4:物质的物理性质、化学性质;化学变化和物理变化 1 知识梳理 物理性质;状态、密度、挥发性、导电性、传热性等 化学性质:有些物质有毒性、食物会腐烂、澄清的石灰水中通入二氧化碳后会变浑浊等 没有别的物质生成的变化叫物理变化,有别的物质生成的变化叫化学变化. 2 经典例题 1下列各组两个变化都属于化学变化的是() A 酒精挥发、酒精燃烧 B 蜡烛受热融化、蜡烛燃烧 C 镁条燃烧、钢铁生锈 D 钢锭轧成钢材、食物腐烂 2蜡烛燃烧过程中存在哪些变化?通过这些变化你知道了蜡烛的哪些物理性质和化学性 质? 3知识概括、方法总结与易错点分析 物质的变化 物质的性质 物质的酸碱性 酸碱性的检测 针对性练习: 1 化学变化区别于物理变化的标志是-—--—--——— 2 在下列物质的变化或属性中,属于物理变化的是-—————,属于化学变化的是-—————,属于物理性质的是-----——-,属于化学性质的是——-——--— A 木材做成各种家具 B 氨气有刺激性气味 C 酒精挥发 D 煤油燃烧 E 氧化酶是白色粉末 F 铁在潮湿的空气中会生锈 G 煤油能燃烧 H 酒精易挥发

物理化学(天大第五版全册)课后习题答案

第一章 气体pVT 性质 1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 1 1T T p V p V V T V V ???? ????-=??? ????= κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT 111 )/(11-=?=?=??? ????=??? ????= T T V V p nR V T p nRT V T V V p p V α 1 211 )/(11-=?=?=???? ????-=???? ????- =p p V V p nRT V p p nRT V p V V T T T κ 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。 若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。 解:方法一:在题目所给出的条件下,气体的量不变。并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+= 终态(f )时 ??? ? ??+=???? ??+= +=f f f f f f f f f f T T T T R V p T V T V R p n n n ,2,1,1,2,2,1,2,1 kPa T T T T T p T T T T VR n p f f f f i i f f f f f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+???=? ??? ??+=???? ??+= 1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。 H 2 3dm 3 p T N 2 1dm 3 p T (1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。 (2)隔板抽去前后,H 2及N 2的摩尔体积是否相同? (3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干? 解:(1)抽隔板前两侧压力均为p ,温度均为T 。 p dm RT n p dm RT n p N N H H ====33132222 (1)

物理化学学习方法

物质的pVT 关系和热性质 本章介绍了两类基本的宏观平衡性质,pVT 关系和标准状态的热性质,它们是应用热力学方法研究平衡规律时必须结合或输入的物质特性。热力学方法作为普遍规律将在下一章全面讨论。 从本质来说,这两类性质都是分子的热运动和分子间相互作用在宏观上的反映,但各自有所侧重。对于pVT 关系来说,它的多样性主要决定于分子间相互作用,如果只有热运动,将得到最简单的理想气体状态方程或硬球方程;而标准状态的热性质对气体来说,则完全决定于分子的热运动,对于液体和固体,还要添加分子间相互作用的贡献。分子运动的整体是由分子热运动和分子间相互作用两方面构成的,物质的性质则来源于这种整体的分子运动。 这两类性质各自主要反映了整体分子运动的一个侧面,因此相辅相成,缺一不可,在实际工作中往往需要综合应用。例如为求得实际气体、或高压下液体和固体的热容、反应热和反应熵,首先当然需要O?p,m C 、?ΔOf m H 和O?m S ,但还要知道C p 、H、S 随压力的变化,以后我们将知道,这种变化决定于pVT 关系。当我们讨论从微观到宏观的层次时,也将分为两章:第十二章是没有相互作用的独立子系统的统计力学,讨论如何从理论上得到气体的标准状态热性质;第十三章是有相互作用的相倚子系统的统计力学,介绍如何从位能函数得到状态方程。本章中除了描述一些实验规律,对一些性质进行严格定义外,最值得我们注意的是:在研究pVT 关系的经验半经验方法中,如何从实验现象出发,归纳得到经验方程,然后抽象出一些假设和微观图象,由此得出有一定理论基础并经过合理简化的半经验模型,并根据实践检验,不断改进完善的过程。其中进行抽象和合理简化是两个关键。 最后还要指出三点:一是经验半经验方法和理论方法还在发展,对液固平衡的描述还刚刚开始。二是混合物的pVT 关系和热性质,在第三章中还要讨论。三是由于材料、生命、能源、环境等科学的发展,不断出现新物质,需要进行新的实验测定,并发展适用于这些新物质的经验半经验方法和理论方法。 热力学定律和热力学基本方程 本章结束之际,有几个问题要作些说明。 1. 热力学方法在由实践归纳得出的普遍定律的基础上作演绎的推论。 热力学中的归纳,是从特殊到一般的过程,也是从现象到本质的过程。拿第二定律来说,人们用各种方法制造第二类永动机,但是都失败了,因而归纳出一般结论,第二类永动机是造不出来的,换句话说,功变为热是不可逆过程。第二定律抓住了所有宏观过程的本质,即不可逆性。 热力学方法的主体是演绎。热力学的整个体系,就是在几个基本定律的基础上,通过循环和可逆过程的帮助,由演绎得出的大量推论所构成。有些推论与基本定律一样具有普遍性,有些则结合了一定的条件,因而带有特殊性。例如从第二定律出发,根据可逆过程的特性,证明了卡诺定理,并得出热力学温标,然后导出了克劳修斯不等式,最终得出了熵和普遍的可逆性判据。以后又导出一些特殊条件下的可逆性判据。这个漫长的演绎推理过程,具有极强的逻辑性,是热力学精华之所在。采用循环和以可逆过程为参照,则是热力学独特的基本方法。 2. 热力学基本方程是热力学理论框架的中心热力学基本方程将p、V、T、S、U、H、A、G 等八个状态函数及其变化联系起来,它是一种普遍联系,可以由一些性质预测或计算另一些性质。只要输入的数据是可靠的,得到的结果必定可信。例如根据由基本方程导得的克拉佩龙–克劳修斯方程,可由较容易测定的饱和蒸气压随温度的变化,预测较难测定的相变热,这种预测是热力学理论最能动之所在。 3. 解决实际问题时还必须输入物质特性热力学理论是一种普遍规律,必须结合实际系 统的特点,才能得出有用结果。实际系统的物质特性主要有两类,即第一章所介绍的pVT关 系和标准态热性质。这两类性质本身并不能从热力学理论得到,它们来自直接实验测定、经验半经验方法,或更深层次的统计力学理论。 4. 过程的方向和限度以及能量的有效利用是两类主要的应用它们都植根于可逆性判据或不可逆程度的度量。

水的物理、化学及物理化学处理方法

水的物理、化学及物理化学处理方法简介 (一)物理处理方法 利用固体颗粒和悬浮物的物理性质将其从水中分离去除的方法称为物理处理方法。物理处理法的最大优点是简单易行,效果良好,费用较低。 物理处理法的主要处理对象是水中的漂浮物、悬浮物以及颗粒物质。 常用的物理处理法有格栅与筛网、沉淀、气浮等。 (1)格栅与筛网 格栅是用于去除水中较大的漂浮物和悬浮物,以保证后续处理设备正常工作的一种装置。格栅通常有一组或多组平行金属栅条制成的框架组成,倾斜或直立地设立在进水渠道中,以拦截粗大的悬浮物。 筛网用以截阻、去除水中的更细小的悬浮物。筛网一般用薄铁皮钻孔制成,或用金属丝编制而成,孔眼直径为0.5~1.0mm。 在河水的取水工程中,格栅和筛网常设于取水口,用以拦截河水中的大块漂浮物和杂草。在污水处理厂,格栅和筛网常设于最前部的污水泵之前,以拦截大块漂浮物以及较小物体,以保护水泵及管道不受阻塞。 (2)沉淀 沉淀是使水中悬浮物质(主要是可沉固体)在重力作用下下沉,从而与水分离,使水质得到澄清。这种方法简单易行,分离效果良好,是水处理的重要工艺,在每一种水处理过程中几乎都不可缺少。按照水中悬浮颗粒的浓度、性质及其絮凝性能的不同,沉淀现象可分为:自由沉淀、絮凝沉淀、拥挤沉淀、压缩沉淀。 水中颗粒杂质的沉淀,是在专门的沉淀池中进行的。按照沉淀池内水流方向的不同,沉淀池可分为平流式、竖流式、辐流式和斜流式四种。 (3)气浮 气浮法亦称浮选,它是从液体中除去低密度固体物质或液体颗粒的一种方法。通过空气鼓入水中产生的微小气泡与水中的悬浮物黏附在一起,靠气泡的浮力一起上浮到水面而实现固液或液液分离的操作。其处理对象是:靠自然沉降或上浮难以去除的乳化油或相对密度接近于1的微小悬浮颗粒。 浮选过程包括微小气泡的产生、微小气泡与固体或液体颗粒的粘附以及上浮分离等步骤。实现浮选分离必须满足两个条件:一是必须向水中提供足够数量的

天然气物理化学性质

海底天然气物理化学性质 第一节海底天然气组成表示法 一、海底天然气组成 海底天然气是由多种可燃和不可燃的气体组成的混合气体。以低分子饱和烃类气体为主,并含有少量非烃类气体。在烃类气体中,甲烷(CH 4 )占绝大部分, 乙烷(C 2H 6 )、丙烷(C 3 H 8 )、丁烷(C 4 H 10 )和戊烷(C 5 H 12 )含量不多,庚烷以上 (C 5+)烷烃含量极少。另外,所含的少量非烃类气体一般有氮气(N 2 )、二氧化 碳(CO 2)、氢气(H 2 )、硫化氢(H 2 S)和水汽(H 2 O)以及微量的惰性气体。 由于海底天然气是多种气态组分不同比例的混合物,所以也像石油那样,其物理性质变化很大,它的主要物理性质见下表。 海底天然气中主要成分的物理化学性质 名称分 子 式 相 对 分 子 质 量 密度 /Kg ·m-3 临界 温度 /℃ 临 界 压 力 /MP a 粘度 /KP a ·S 自 燃 点 / ℃ 可燃性 限 /% 热值 /KJ·m-3 (15.6℃, 常压) 气体 常数 / Kg· m· (Kg ·K)-1 低 限 高 限 全 热 值 净 热 值 甲烷CH 4 16. 043 0.71 6 -82. 5 4.6 4 0.01( 气) 6 4 5 5. 15. 372 62 334 94 52.8 4 乙烷C 2 H 6 30. 070 1.34 2 32.2 7 4.8 8 0.009( 气) 5 3 3. 2 12. 45 661 51 602 89 28.2 丙烷C 3 H 8 44. 097 1.96 7 96.8 1 4.2 6 0.125( 10℃) 5 1 2. 37 9.5 937 84 862 48 19.2 3 正丁烷n-C 4 H 10 58. 12 2.59 3 152. 01 3.8 0.174 4 9 1. 86 8.4 1 121 417 108 438 14.5 9 异丁烷i-C 4 H 10 58. 12 2.59 3 134. 98 3.6 5 0.194 1. 8 8.4 4 121 417 108 438 14.5 9 氨He 4.0 03 0.19 7 -267 .9 0.2 3 0.0184 211. 79 氮N 228. 02 1.25 -147 .13 3.3 9 0.017 30.2 6

怎么才能学好物理化学方法有哪些

怎么才能学好物理化学方法有哪些 “专”——主要针对预习而言 通过预习,可以抓住本节的难点,从而在上课听讲时“有的放矢”,主动地获取知识,而且通过预习,可以培养自己的自学、理 解能力和独立思考问题的能力,这也正是学习物理的目的之一。学 物理不仅在于学习物理知识本身,更重要的是掌握物理的这一套分 析问题、解决问题的能力。 预习并不是简单地看看书就完了,而是应当认真阅读课本,专心致志、反复琢磨每一句话,仔细推敲各个物理定律,直到弄懂为止。实在不懂的,应当做好标记,这正是你上课听讲的重点。因此通过 有目的地预习,可以变被动为主动,为牢固掌握知识打下良好的基础。 “注”——主要是对听课而言 听课是学习的最关键环节。 听课时,一是要注意教师强调的重点,这往往是各类考试的主要目标;其次要注意预习时标记的不懂之处。当教师讲到该处时,一定 要仔细听,积极思考,一般来说是会明白的。如果实在还不懂,则 不要思考过多而耽误听课,可以等课后再向教师请教。好记性不如 烂笔头。上课除了认真听讲外,还要记好笔记,注明上课因时哪些 知识还为没有笔弄得,课后请教同学或老师。上课笔记往往是老师 在多年的教学实践中总结下来的重点和难点的条理化、具体化,凝 聚着教师的心血。此外,记好笔记,也便于复习时抓住重点。 “理”——主要对复习而样言 听完课后,大脑中的知识点就像一个个漂亮的珍珠散落在地,必须通过“复习”这根线,把它们连成一串美丽的项链。复习时应当 对照笔记上的重点,预习时的难点来仔细咀嚼课本、理顺知识点间

的逻辑关系;重要的物理概念、物理定律应牢记在心。复习时就不能 像预习时那样只局限于本节,因为物理学中有许多规律是相似的, 许多概念、定律都有着内在的联系,例如物体在重力场和电场中的 运动,万有引力定律和库仑定律的平方反比性,波动和振动的联系 与区别等等。这就要求我们在复习中要注意前后联系与沟通,从而 更好地掌握它们的性质。 “精”——主要对题目的选择而言 复习完后,并不是大功告成,你现在只是知道了物理定律,但它在具体情况下如何运用,运用时有何技巧,还有任何一个物理定律 都有它的适用范围。超过这个范围,该定律可能就不成立了,就要 用更精确的理论来代替它。这些你可能并不知道或不熟悉,这就得 通过做题来巩固所学知识,运用物理定律解决实际问题,在做题中 积累经验,熟才能生巧。我并不主张搞题海战术,而是应当少而精,多做几种不同类型的题。每次做题前要先认真审题,分清题型,从 而找到适合于某类题型的通法,做到举一反三,触类旁通。 2013年,出版的物理习题、复习书籍可谓数不胜数,这样多的书,必然是良莠混杂、高下不齐的。做题时,如果选了一本不好的 习题书,埋头做下去,如同在一块贫瘠的土地上辛勤耕作,汗水洒 了许多,收获却甚为廖廖,付出与收获完全不成正比;所以要选择好 的学习辅导,解题指导一类的书,它们往往有详细的解题思路分析 和具体的解题步聚。因为同一道物理题,由于思考问题出发点不同,采用的物理定律不同,运用的数学手段不同,往往会导致解题过程 繁简程度大相径庭,当你做完题后再看参考书的解法时,往往会发 现一种更巧妙的思路、更灵活运用的物理定律、更有效的数学手段、更新颖的解题方法。这样每做一道题就会有很大收获。而且久而久之,总是接触新颖变通、灵活的思路,会使你思维开阔、脑筋更灵活。此外,最好把做题时遇到有关定律应用的类型及技巧和注意事 项都补充到笔记上的相应章节,这样会使你在以后的复习中把它们 都系统地纳入你的知识网中。 物理学最重要的是思考和记忆,因此每学完一个知识点要联系实际和理论思考。只有理解了才能更好的掌握。比如,重力做功

常用化学试剂物理化学性质

氨三乙酸 化学式CH6N9O6,分子量191.14,结构式N(CH2COOH)3,白色棱形结晶粉末,熔点246~249℃(分解),能溶于氨水、氢氧化钠,微溶于水,饱和水溶液pH为2.3,不溶于多数有机溶剂,溶于热乙醇中可生成水溶性一、二、三碱性盐。属于金属络合剂,用于金属的分离及稀土元素的洗涤,电镀中可以代替氰化钠,但稳定性不如EDTA。 丙酮 最简单的酮。化学式CH3COCH3。分子式C3H6O。分子量58.08。无色有微香液体。易着火。比重0.788(25/25℃)。沸点56.5℃。与水、乙醇、乙醚、氯仿、DMF、油类互溶。与空气形成爆炸性混和物,爆炸极限2.89~12.8%(体积)。化学性质活泼,能发生卤化、加成、缩合等反应。广泛用作油脂、树脂、化学纤维、赛璐珞等的溶剂。为合成药物(碘化)、树脂(环氧树脂、有机玻璃)及合成橡胶等的重要原料。 冰乙酸 化学式CH3COOH。分子量60.05。醋的重要成份。一种典型的脂肪酸,无色液体。有刺激性酸味。比重1.049。沸点118℃,可溶于水,其水溶液呈酸性。纯品在冻结时呈冰状晶体(熔点16.7℃),故称“冰醋酸”,能参与较多化学反应。可用作溶剂及制造醋酸盐、醋酸酯(醋酸乙酯、醋酸乙烯)、维尼纶纤维的原料。 苯酚 简称“酚”,俗称“石炭酸”,化学式C6H5OH,分子量94.11,最简单的酚。无色晶体,有特殊气味,露在空气中因被氧化变为粉红,有毒!并有腐蚀性,密度1.071(25℃),熔点42~43℃,沸点182℃,在室温稍溶于水,在65℃以上能与任何比与水混溶,易溶于酒精、乙醚、氯仿、丙三醇、二硫化碳中,有弱酸性,与碱成盐。水溶液与氯化铁溶液显紫色。可用以制备水杨酸、苦味酸、二四滴等,也是合成染料、农药、合成树脂(酚醛树脂)等的原料,医学上用作消毒防腐剂,低浓度能止痒,可用于皮肤瘙痒和中耳炎等。高浓度则产生腐蚀作用。 1,2-丙二醇 化学式CH3CHOHCH2OH,分子量76.10,分子中有一个手征性碳原子。外消旋体为吸湿性粘稠液体;略有辣味。比重1.036(25/4℃),熔点-59℃,沸点188.2℃、83.2℃(1,333Pa),与水、丙酮、氯仿互溶,溶于乙醚、挥发油,与不挥发油不互溶,左旋体沸点187~189℃,比旋光度-15.8。丙二醇在高温时能被氧化成丙醛、乳酸、丙酮酸与醋酸。为无毒性抗冻剂。可用于酿酒、制珞中,是合成树脂的原料。医学上用作注射剂、内服药的溶剂与防腐剂,防腐能力比甘油大4倍,此外还可用于室内空气的消毒。 丙三醇 学名1,2,3-三羟基丙烷,分子式C3H8O3,分子量92.09,有甜味的粘稠液体,甜味为蔗糖的0.6倍,易吸湿,对石蕊试纸呈中性。比重1.26362(20/20℃)。熔点7.8℃,沸点290℃(分解)167.2℃(1,3332Pa)。折光率1.4758(15℃),能吸收硫化氢、氰化氢、二氧化硫等气体。其水溶液(W/W水)的冰点:10%,-1.6℃;30%,-9.5℃;50%,-23℃;80%,-20.3℃。与水、乙醇互溶,溶于乙酸乙酯,微溶于乙醚,不溶于苯、氯仿、四氯化碳、二硫化碳、石油醚、油类。可以制备炸药(硝化甘油)、树脂(醇酸树脂)、润滑剂、香精、液体肥皂、增塑剂、甜味剂等。在印刷、化妆品、烟草等工业中作润滑剂。医学上可用滋润皮肤,防止龟裂;作为栓剂(甘油栓)可用作通便药。切勿与强化剂如三氧化铬、氯酸钾、高锰酸钾放在一起,以免引起爆炸。 蓖麻油 化学式C57H104O9,分子量933.37。无色或淡黄色透明液体,具有特殊臭味,凝固点-10℃,比重

污水物理化学处理法

污水物理化学处理法 物理化学法(简称物化法),是利用萃取、吸附、离子交换、膜分离技术、气提等物理化学的原理,处理或回收工业废水的方法。它主要用分离废水中无机的或有机的(难以生物降解的)溶解态或胶态的污染物质,回收有用组分,并使废水得到深度净化。 因此,适合于处理杂质浓度很高的废水(用作回收利用的方法),或是浓度很低的废水(用作废水深度处理)。利用物理化学法处理工业废水前,一般要经过预处理,以减少废水中的悬浮物、油类、有害气体等杂质,或调整废水的pH值,以提高回收效率、减少损耗。 同时,浓缩的残渣要经过后处理以避免二次污染。常用的方法有萃取法、吸附法、离子交换法、膜析法(包括渗析法、电渗析法、反渗透法、超滤法等)。 (1)萃取法 萃取法是向污水中加人一种与水不相溶而密度小于水的有机溶剂,充分混合接触后使污染物重新分配,由水相转移到溶剂相中,利用溶剂与水的密度差别,将溶剂分离出来,从而使污水得到净化的方法。再利用溶质与溶剂的沸点差将溶质蒸馆回收,再生后的溶剂可循环使用。使用的溶剂叫萃取剂,提出的物质叫萃取物。萃取是一种液-液相间的传质过程,是利用污染物(溶质)在水与有机溶剂两相中的溶解度不同进行分离的。 在选择萃取剂时,应注意萃取剂对被萃取物(污染物)的选择性,即溶解能力的大小,通常溶解能力越大,萃取的效果越好;萃取剂与水的密度相差越大,萃取后与水分离就越容易。常用的萃取剂有含氧萃取剂、含磷萃取剂、含氮萃取剂等。常用的萃取设备有脉冲筛板塔、离心萃取机等。 (2)吸附法 吸附法处理废水是利用——种多孔性固体材料(吸附剂)的表面来吸附水中的一种或多种溶解污染物、有机污染物等(称为熔质或吸附质),以回收或去除它们,使废水得以净化。例如,利用活性炭可吸附废白水中的盼、隶、错、氧等剧毒物质,且具有脱色、除臭等作用。吸附法目前多用于污水的深度处理,可分为静态吸附和动态吸附两种方法,即在污水分别处于静态和流动态时进行吸附处理。常用的吸附设备有固定床、移动床和流动床等。

各元素物理化学性质

各元素物理化学性质 序号符 号 中 文 读音 原子 量 外层 电子 常见化 合价 分类英文名英文名音标其它 1 H 氢轻 1 1s1 1、-1 主/非 /其 Hydrogen ['haidr?d??n] 最轻 2 He 氦害 4 1s2 主/非 /稀 Helium ['hi:li?m] 最难液化 3 Li 锂里7 2s1 1 主/碱Lithium ['liθi?m] 活泼 4 Be 铍皮9 2s2 2 主/碱 土 Beryllium [be'rili?m] 最轻碱土金属元素 5 B 硼朋10.8 2s2 2p1 3 主/类Boron ['b?:r?n] 硬度仅次于金刚石 的非金属元素 6 C 碳探12 2s2 2p2 2、4、-4 主/非 /其 Carbon ['kɑ:b?n] 沸点最高 7 N 氮蛋14 2s2 2p3 -3 1 2 3 4 5 主/非 /其 Nitrogen ['naitr?d??n] 空气中含量最多的 元素 8 O 氧养16 2s2 2p4 -2、-1、2 主/非 /其 Oxygen ['?ksid??n] 地壳中最多 9 F 氟福19 2s2 2p5 -1 主/非 /卤 Fluorine ['flu?ri:n] 最活泼非金属,不能 被氧化 10 Ne 氖乃20 2s2 2p6 主/非 /稀 Neon ['ni:?n] 稀有气体 11 Na 钠那23 3s1 1 主/碱Sodium ['s?udi?m] 活泼 12 Mg 镁每24 3s2 2 主/碱 土 Magnesium [mæɡ'ni:zi?m] 轻金属之一 13 Al 铝吕27 3s2 3p1 3 主/金 /其 Aluminum [,ælju'minj?m] 地壳里含量最多的 金属 14 Si 硅归28 3s2 3p2 4 主/类Silicon ['silik?n] 地壳中含量仅次于 氧 15 P 磷林31 3s2 3p3 -3、3、5 主/非 /其 Phosphorus ['f?sf?r?s] 白磷有剧毒 16 s 硫留32 3s2 3p4 -2、4、6 主/非 /其 Sulfur ['s?lf?] 质地柔软,轻。与氧 气燃烧形成有毒的 二氧化硫 17 Cl 氯绿35.5 3s2 3p5 -1、1、3、 5、7 主/非 /卤 Chlorine ['kl?:ri:n] 有毒活泼 18 Ar 氩亚40 3s2 3p6 主/非 /稀 Argon ['ɑ:ɡ?n] 稀有气体,在空气中 含量最多的稀有气 体 19 K 钾假39 4s1 1 主/碱Potassium [p?'tæsj?m] 活泼,与空气或水接触发生反应,只能储存在煤油中 20 Ca 钙盖40 4s2 2 主/碱 土 Calcium ['kælsi?m] 骨骼主要组成成分

(环境管理)工业废水的物理化学处理

第13章工业废水的物理化学处理 13.1 混凝 处理环节:预处理、中间处理、最终处理、三级处理、污泥处理、除油、脱色。 胶体:憎水性对混凝敏感,亲水性需特殊处理 高分子絮凝剂:分子量大的水溶性差,分子量小的水溶性好,故分子量要适当。 混凝的操作程序:里特迪克程序。 1)提高碱度:加重碳酸盐(增加碱度但pH值不提高)――快速搅拌1~3min 2)投加铝盐或铁盐――快速搅拌1~3min 3)投加活化硅酸和聚合电解质之类的助凝剂――搅拌20~30min 应用:1)造纸和纸板废水:加入少量的硫酸铝即可有效地混凝。如表13-1 2)滚珠轴承制造厂含乳化油废水:用CaCl2破除乳化,用硫酸铝去除油脂、悬浮物、Fe、PO4。 13.2气浮 13.2.1 气浮的基本原理 气浮=固液分离+液液分离――用于悬浮物、油类、脂肪、污泥浓缩 原理:微气泡――粘附微粒――气浮体(密度小于水)――去除浮渣。 探讨: 1、水中颗粒与气泡粘附条件 (1)界面张力、接触角和体系界面自由能 任何不同介质的相表面上都因受力不均衡而存在界面张力 气浮的情况涉及:气、水、固三种介质,每两个之间都存在界面张力σ。 三相间的吸附界面构成的交界线称为润湿周边。通过润湿周边作水、粒界面张力作用线和水、气界面张力作用线,二作用线的交角称为润湿接触角θ。见图13-3和13-4。 θ>90,疏水性,易于气浮 θ<90, 亲水性 悬浮物与气泡的附着条件: 按照物理化学的热力学理论, 任何体系均存在力图使界面能减少为最小的趋势。 界面能W =σS S:界面面积;σ:界面张力 附着前W1 =σ水气+σ水粒(假设S 为1) 附着后W2=σ气粒 界面能的减少△W= W1-W2=σ水气+σ水粒-σ气粒 图13-4,σ水粒=σ气粒+σ水气COS(180?-θ) 所以: △W=σ水气(1-COSθ) 按照热力学理论, 悬浮物与气泡附着的条件:△W>0 △W越大,推动力越大,越易气浮。 (2)气-粒气浮体的亲水吸附和疏水吸附 由于水中颗粒表面性质的不同,所构成的气一粒结合体的粘附情况也不同。 亲水吸附:亲水性颗粒润湿接触角(θ)小,气粒两相接触面积小,气浮体结合不牢,易脱落。 疏水吸附:疏水性颗粒的接触角(θ)大,气浮体结合牢固。 根据△W=σ水气(1-COSθ),得: 1) θ→0, COSθ→1, △W= 0 气浮 θ<90, COSθ<1, △W<σ水气颗粒附着不牢 θ>90, △W>σ水气气浮――疏水吸附 θ→180 △W=2σ水气最易被气浮

物理化学性质

甲醇 MSDS 基本信息 中文名:甲醇;木酒精木精;木醇英文名: Methyl alcohol;Methanol 分子式:CH4O 分子量: 32.04 CAS号: 67-56-1 外观与性状:无色澄清液体,有刺激性气味。 主要用途:主要用于制甲醛、香精、染料、医药、火药、防冻剂等。 物理化学性质 熔点: -97.8 沸点: 64.8 相对密度(水=1):0.79 相对密度(空气=1): 1.11 饱和蒸汽压(kPa):13.33/21.2℃ 溶解性:溶于水,可混溶于醇、醚等多数有机溶剂临界温度(℃):240 临界压力(MPa):7.95 燃烧热(kj/mol):727.0 甲醇由甲基和羟基组成的,具有醇所具有的化学性质。[3] 甲醇可以在纯氧中剧烈燃烧,生成水蒸气(I)和二氧化碳(IV)。另外,甲醇也和氟气会产生猛烈的反应。[4] 与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易 燃烧。燃烧反应式为: CH3OH + O2 → CO2 + H2O 具有饱和一元醇的通性,由于只有一个碳原子,因此有其特有的反应。例如:① 与氯化钙形成结晶状物质CaCl2·4CH3OH,与氧化钡形成B aO·2CH3OH的分子化合物并溶解于甲醇中;类似的化合物有MgCl2·6CH3OH、CuSO4·2CH3OH、CH3OK·CH3OH、AlCl3·4CH3OH、AlCl3·6CH3OH、AlCl3·10CH3OH等;② 与其他醇不同,由于-CH2OH基与氢结合,氧化时生成的甲酸进一步氧化为CO2;③ 甲醇与氯、溴不易发生反应,但易与其水溶液作用,最初生成二氯甲醚(CH2Cl)2O,因水的作用转变成HCHO与HCl;④ 与碱、石灰一起加热,产生氢气并生成甲酸钠;CH3OH+NaOH→HCOONa+2H2;⑤与锌粉一起蒸馏,发生分解,生成 CO和H2O。[2] 产品用途 1.基本有机原料之一。主要用于制造甲醛、醋酸、氯甲烷、甲胺和硫酸二甲酯等多种 有机产品。也是农药(杀虫剂、杀螨剂)、医药(磺胺类、合霉素等)的原料,合成对苯二甲酸二甲酯、甲基丙烯酸甲酯和丙烯酸甲酯的原料之一。还是重要的溶剂,亦

物理化学(全册)习题(答案)

《物理化学》复习题 一、选择题: 1.体系的状态改变了,其内能值( ) A 必定改变 B 必定不变状态与内能无关 2. μ=0 3. ( ) A. 不变 B. 可能增大或减小 C. 总是减小4. T, p, W ‘=0≥0 C. (dG)T,V, W=0≤0 D. (dG) T, V, W ‘=0≥0 5. A. (dA)T, p, W ‘=0≤0 B. (dA) T, p, W ‘=0≥ T, V, W ‘=0≥0 6.下述哪一种说法正确? 因为 A. 恒压过程中,焓不再是状态函数 B. 恒压过程中,焓变不能量度体系对外所做的功 D. 恒压过程中, ΔU 不一定为零 7. NOCl 2(g )=NO (g ) + Cl 2(g )为吸热反应,改变下列哪个因素会使平衡向右移动。( ) 增大压力 C. 降低温度 D. 恒温、恒容下充入惰性气体 8. ) A. 溶液中溶剂化学势较纯溶剂化学势增大 B. 沸点降低 C. 蒸气压升高 9.ΔA=0 的过程应满足的条件是 ( ) C. 等温等容且非体积功为零的过程10.ΔG=0 的过程应满足的条件是 ( ) C. 等温等容且非体积功为零的过程 D. 等温等容且非体积功为零的可逆过程 11. 300K 将1molZn Q p ,恒容反应热效应为Q v ,则Q p -Q v = J 。 无法判定 12.已知FeO(s)+C(s)=CO(g)+Fe(s),反应的Δr H m 0为正,Δr S m 0为正(设Δr H m 0 和 Δr S m 0 不随温度而变化) A. 高温有利 B. 低温有利与压力无关 13.化学反应 N 2(g) +3H 2(g) = 2NH 3(g) A. 3NH 2H 2N μμμ== B. 032=++3NH 2H 2N μμμ C. NH 2H 2N μμμ32==14. 某化学反应的方程式为2A →P ,则在动力学研究中表明该反应为 ( ) A.二级反应 B.基元反应 C.双分子反应15. 已知298 K 时, Hg 2Cl 2 + 2e - === 2Hg + 2Cl -, E 1 AgCl + e - === Ag + Cl -, E 2= 0.2224 V 。 则当电池反应为Hg 2Cl 2 A.-0.0886 V ; B.-0.1772 V ;。 16.在浓度不大的范围内,强电解质摩尔电导率随浓度变化的规律为( ) A.与浓度成反比关系,随浓度增大而变小; B.与浓度无关,不受浓度的影响; 与浓度的c 成线性关系,随浓度增大而增大。 17.纯物质在其三相点的自由度是( ) 18.若某液体在毛细管内呈凸液面,则该液体在毛细管中将沿毛细管( ) A.上升与管外液面相平 D.无法确定 19.微小晶体的溶解度比相应晶体的溶解度( ) A.小 B.相等无法确定 20. 溶液的表面张力越大,则在该弯曲液面上产生的附加压力( ) ②越小 ③不变 ④无法确定 21. 二级反应2A B 当A 的初浓度为0.200mol/L 时半衰期为40s ,则该反应的速度常 数是( ) A.8 s -1·L ·mol -1 -1 D.40 s -1·L ·mol -1

物理化学公式集合

物理化学公式集合 kent 第一章 热力学第一定律 一、基本概念 系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。 二、基本定律 热力学第一定律:ΔU =Q +W 。 焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式 1、体积功的计算 δW = -p e d V 恒外压过程:W = -p e ΔV 可逆过程: W =nRT { EMBED Equation.3 |1221ln ln p p nRT V V 2、热效应、焓 等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ;

d H=d U+d(pV) 焓与温度的关系:ΔH= 3、等压热容与等容热容 热容定义:; 定压热容与定容热容的关系: 热容与温度的关系:C p=a+bT+c’T2 四、第一定律的应用 1、理想气体状态变化 等温过程:ΔU=0 ; ΔH=0 ; W=-Q=p e d V 等容过程:W=0 ; Q=ΔU= ; ΔH= 等压过程:W=-p eΔV ; Q=ΔH= ; ΔU= 可逆绝热过程: Q=0 ; 利用p1V1γ=p2V2γ求出T2, W=ΔU=;ΔH= 不可逆绝热过程:Q=0 ; 利用C V(T2-T1)=-p e(V2-V1)求出T2, W=ΔU=;ΔH= 2、相变化 可逆相变化:ΔH=Q=nΔ_H; W=-p(V2-V1)=-pV g=-nRT; ΔU=Q+W 3、热化学

物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。 摩尔反应热的求算: 反应热与温度的关系—基尔霍夫定律: 。 第二章热力学第二定律 一、基本概念 自发过程与非自发过程 二、热力学第二定律 1、热力学第二定律的经典表述 克劳修斯,开尔文,奥斯瓦尔德。实质:热功转换的不可逆性。 2、热力学第二定律的数学表达式(克劳修斯不等式) “=”可逆;“>”不可逆 三、熵 1、熵的导出:卡若循环与卡诺定理 2、熵的定义: 3、熵的物理意义:系统混乱度的量度。 4、绝对熵:热力学第三定律 5、熵变的计算

初中化学常见物质的物理化学性质-

初中化学常见物质的物理化学性质 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、银白色固体:银,铁,镁,铝,汞等金属 7、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 8、红褐色固体:氢氧化铁 9、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧 化镁 (二)、液体的颜色 10、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 11、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 12、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 13、紫红色溶液:高锰酸钾溶液 (三)、气体的颜色 14、红棕色气体:二氧化氮15、黄绿色气体:氯气 16、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学溶液的酸碱性 1、显酸性的溶液:酸溶液和某些盐溶液(硫酸氢钠、硫酸氢钾等) 2、显碱性的溶液:碱溶液和某些盐溶液(碳酸钠、碳酸氢钠等) 3、显中性的溶液:水和大多数的盐溶液 三、化学敞口置于空气中质量改变的 (一)质量增加的 1、由于吸水而增加的:氢氧化钠固体,氯化钙,氯化镁,浓硫酸; 2、由于跟水反应而增加的:氧化钙、氧化钡、氧化钾、氧化钠,硫酸铜; 3、由于跟二氧化碳反应而增加的:氢氧化钠,氢氧化钾,氢氧化钡,氢氧化钙; (二)质量减少的1、由于挥发而减少的:浓盐酸,浓硝酸,酒精,汽油,浓氨水 4、由于风化而减少的:碳酸钠晶体。.1.

四、初中化学物质的检验(一)、气体的检验 1、氢气:在玻璃尖嘴点燃气体,罩一干冷小烧杯,观察杯壁是否有水滴,往烧杯中倒入澄清的石灰水,若不变浑浊,则是氢气. 2、氨气:湿润的紫红色石蕊试纸,若试纸变蓝,则是氨气. 3、水蒸气:通过无水硫酸铜,若白色固体变蓝,则含水蒸气. (二)、离子的检验. 1、氢离子:滴加紫色石蕊试液/加入锌粒 2、氢氧根离子:酚酞试液/硫酸铜溶液 3、碳酸根离子:稀盐酸和澄清的石灰水 4、氯离子:硝酸银溶液和稀硝酸,若产生白色沉淀,则是氯离子 5、硫酸根离子:硝酸钡溶液和稀硝酸/先滴加稀盐酸再滴入氯化钡 6、铵根离子:氢氧化钠溶液并加热,把湿润的红色石蕊试纸放在试管口 7、铜离子:滴加氢氧化钠溶液,若产生蓝色沉淀则是铜离子 8、铁离子:滴加氢氧化钠溶液,若产生红褐色沉淀则是铁离子 (三)、相关例题 1、如何检验NaOH是否变质:滴加稀盐酸,若产生气泡则变质 2、检验NaOH中是否含有NaCl:先滴加足量稀硝酸,再滴加AgNO3溶液,若产生白色沉淀,则含有NaCl。 3、检验三瓶试液分别是稀HNO3,稀HCl,稀H2SO4? 向三只试管中分别滴加Ba(NO3)2 溶液,若产生白色沉淀,则是稀H2SO4;再分别滴加AgNO3溶液,若产生白色沉淀则是稀HCl,剩下的是稀HNO3 4、淀粉:加入碘溶液,若变蓝则含淀粉。 5、葡萄糖:加入新制的氢氧化铜,若生成砖红色的氧化亚铜沉淀,就含葡萄糖。。 6、铁的三种氧化物:氧化亚铁,三氧化二铁,四氧化三铁。。 new:实验室制取CO2不能用的三种物质:硝酸,浓硫酸,碳酸钠。 34、三种遇水放热的物质:浓硫酸,氢氧化钠,生石灰。。。 六、初中化学常见混合物的重要成分 1、水煤气:一氧化碳(CO)和氢气(H2) 七、初中化学常见物质俗称 1、硫酸铜晶体(CuSO4 .5H2O):蓝矾,胆矾 2、乙醇(C2H5OH):酒精 3、乙酸(CH3COOH):.2.

生活中的物理化学常识(考试必备)

生活中有哪些关于物理化学的常识呢?下面生活中的物理化学常识,欢迎阅读。 生活中的物理常识 一、与热学知识有关的生活现象 1、燕子低飞有雨:雨前空气潮湿,飞虫翅膀潮湿,不能高飞,燕子为觅食也低飞。 2、下雪不冷化雪冷:下雪是凝华放热过程,化雪是融化吸热过程。 3、真金不怕火炼:金熔点高,一般炉火的温度不能达到金的熔点,故不能熔化。 4、瑞雪兆丰年: ①雪是热的不良导体,保护小麦安全过冬。②雪中凝结了许多的微量元素与含有有机物的灰尘,具有一定的肥效。 ③雪化成水对小麦的生长极为有利。 5、朝霞不出门、晚霞走千里:早晨西方有虹,说明东方的光照到西方的降雨云上形成虹,西方的降雨云将随西风移到本地,马上有雨。傍晚东方有虹,西方射光,照到东方的降雨云,说明西方已没有雨,马上晴天。 6、开水不响,响水不开:水没烧开时,壶底水受热,汽化成气泡,气泡上升遇到上面的冷水,气泡内水蒸气又液化成水,气泡缩小,一涨一缩,激起水的震动,发出响声。水开时,上下温度一样,气泡不断涨大,出水破裂,振动小,故“响水不开开水不响” 7、墙内开花墙内香:分子不停运动,墙内花香扩撒到墙外。 8、破镜不能重圆:分子之间距离大(大于几百埃),引力小,几乎为零,故不能重圆。 9、月晕而风,础润而雨: ①大风来前,高空气温降低,水蒸气凝结成小水滴,月光通过其发生散射,形成月晕。 ②大雨来前,地面温度低,水蒸气遇冷凝聚为小水滴,被地面盐分吸附,地面反潮。 10、水火不容: ①物质燃烧,必须达到火点,水比热容大,吸收火的热量,使物质温度降低。 ②水汽化的水蒸气包围在物体外,使其不能接触空气,不能燃烧。

11、霜前冷,雪后寒:深秋变冷,水蒸气凝化成小冰晶,故霜前冷,雪后寒参照2条。 12、纸里包不住火:纸达到燃点就会燃烧。 13、扇子有凉风,宜夏不易冬:加快空气流动,促进体表汗液蒸发,吸热,故感凉快。 14、水缸出汗,不用挑担:雨前空气湿度大,水蒸气在温度低的水缸外部液化成水滴,故不用挑担浇地。 15、雪落高山,霜降平原:高山气温低,雪不易化,平原水蒸气多,故易成霜。 16、火场之旁,必有风生:火场周围空气受热膨胀上升,冷空气添补,形成风。 17、大树底下好乘凉:阻挡辐射,通风对流,水分蒸发吸热。 18、扬汤止沸,釜底抽薪:扬汤使其温度降低至沸点一下,抽薪使其停止加热。 二、与声学有关的生活现象: 1、长啸一声,山鸣谷应:山中长啸,多次反射,经久不息,似山狂呼,谷回音。 2、闻其声,见其人:根据音色判断其人。 3、余音绕梁:声音的传播与反射。 4、弦外之音:人听觉之外的声音(超声、次声)。 5、隔墙有耳:固体传声。三、与光学有关的生活现象 1、水中捞月一场空:水面相当于平镜面,水中月亮是虚影,故不可捞。 2、池水映明月,潭清疑水浅:光的折射导致水看上去浅了。 3、猪八戒照镜子,里外不是人:平面镜所成像大小相等,物象对称,故里外都是猪。 4、坐井观天,所见甚少:光的直线传播。 5、一滴水可见太阳,一件事可见精神:凸透镜原理。 6、一石击破水中天:水面是平面镜,石块投入打破平面镜,故打破水中天。 7、瞎子点灯白费蜡:光的反射,万物反射光进入人眼,反射光线不能进瞎子眼。

物理化学下册习题答案(全部)

第七章化学反应动力学 1.以氨的分解反应2NH ==== N2+3H2为例,导出反应进度的增加速率与 3 ,,之间的关系,并说明何者用于反应速率时与选择哪种物质为准无关。 解: ∴,, 2.甲醇的合成反应如下: CO+2H2 ===== CH3OH 已知,求,各为多少? (答案:2.44,4.88mol·dm-3·h-1) 解:, 3.理想气体反应2N O5→ 4NO2+O2,在298.15 K的速率常数k是1.73×10-5 2 s-1,速率方程为。(1)计算在298.15K、、12.0 dm3的容器中,此反应的和即各为多少?(2)计算在(1)的反应条件下,1s内被分解的N2O5分子数目。(答案:(1)7.1×10-8,-1.14×10-7md·dm-3·s-1 (2)1.01×1018)

解:(1)mol·dm-3 mol·dm-3·s-1 ∴mol·dm-3·s-1 (2)1.4×10-7×12.0×6.022×1023=1.01×1018个分子 4.已知每克陨石中含238U 6.3×10-8g,He为20.77×10st1:c hmetcnv UnitName="cm" SourceValue="6" HasSpace="False" Negative="True" NumberType="1" TCSC="0">-6cm3(标准状态下),238U的衰变为一级反应:238U → 206Pb+84He由实验测得238U的半衰期为=4.51×109 y,试求该陨石的年龄。(答案:2.36×109年) 解:每克陨石中含He: mol 最开始每克陨石中含238U的量: mol 现在每克陨石中含238U的量: mol 衰变速率常数: ∴

相关主题