搜档网
当前位置:搜档网 › 计算电场强度的各种练习题

计算电场强度的各种练习题

计算电场强度的各种练习题
计算电场强度的各种练习题

计算电场强度的各种练习题

1.如图甲所示,在x 轴上有一个点电荷Q (图中未画出),O 、M 、N 为轴上三点.放在M 、N 两点的试探电荷受到的静电力跟检验电荷所带电荷量的关系如图乙所示,则( )

A .M 点的电场强度大小为5×103

N/C

B .N 点的电场强度大小为2×103

N/C C .点电荷Q 在MN 之间 D .点电荷Q 在MO 之间 【答案】C 2.ab 是长为l 的均匀带电细杆,P 1、P 2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P 1处的场强大小为E 1,在P 2处的场强大小为E 2。则以下说法正确的是( )

A 、两处的电场方向相同,E 1>E 2

B 、两处的电场方向相反,E 1>E 2

C 、两处的电场方向相同,E 1<E 2

D 、两处的电场方向相反,

E 1<E 2 【答案】D

3.下列选项中的各1/4圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各1/4圆环间彼此绝缘。坐标原点O 处电场强度最大的是

【答案】B

4.如图所示,中子内有一个电荷量为e 32+的上夸克和两个电荷量为e 31-的下夸克,3

个夸克都分布在半径为 r 的同一圆周上,则3个夸克在其圆心处产生的电场强度为:

A .

2

r

ke B .23r ke C .29r ke D .232r ke 【答案】 A

5.如图,真空存在一点电荷产生的电场,其中a 、b 两点的电场强度方向如图,a 点的电场方向与ab 连线成60°,b 点电场方向与ab 连线成30°,则以下关于a 、b 两点电场强度E a 、E b 及电势φa 、φb 的关系正确的是

A .E a =3E b ,φa >φb

B .E a =3E b ,φa <φb

C .3

b

a E E =

,φa >φb D

.a b E ,φa <φb

【答案】A

6.均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场。如图所示,在半球面AB 上均匀分布正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球顶点与球心O 的轴线,在轴线上有M 、N 两点,OM=ON=4R 。已知M 点的场强大小为E ,静电力常量为k ,则N 点的场强大小为 ( )

A .

28kq E R - B .216kq

E R -

C . 216kq R

D .2

8kq E R

+ 【答案】A

7.如图所示的各电场中,A 、B 两点电场强度相等的图是

【答案】 C

8.如图所示,一带电量为+q 的点电荷与均匀带电的正三角形的薄板相距为2d ,+q 到带电

薄板的垂线通过板的几何中心,若

中a

处的合电场强度为零,正确应用等效和对称的思维方法求出带电薄板与+q 在图中b 点处产生的合电场强度大小为(静电力恒量为k )( )

A B C D

A.0

B.229q q k

k d d + C.229q q d k d d - D.2

q

k d 【答案】 B

9.如图,有一带电荷量为+q 的点电荷与表面均匀带电圆形绝缘介质薄板相距为2d ,此点电荷到带电薄板的垂线通过板的圆心。若图中a 点处的电场强度为零,则图中b 点处的电场强度大小是

A .0

B .2q k

d

C .229q q k k d d -

D .22

9q q k k

d d + 【答案】D

10.如图所示,分别在M 、N 两点固定放置两个点电荷+Q 和-q (Q>q) ,以MN 连线的中点O 为圆心的圆周上有A 、B 、C 、D 四点。下列说法中正确的是

A .A 点场强大于

B 点场强 B .

C 点场强与

D 点场强相同 C .A 点电势小于B 点电势

D .将某正电荷从C 点移到O 点,电场力做负功 【答案】AD 11.如图所示的真空空间中,仅在正方体中的黑点处存在着电荷量大小相等的点电荷(电荷的正负图中已标注),则图中a 、b 两点电场强度和电势均相同的是 ( )

【答案】 C

12.如图甲所示有一个均匀带正电荷的绝缘半圆环,在圆心O 处产生的电场强度大小为

1E 、电势为1φ;现将环自对称轴剖开,然后将左半部叠放于右半部圆环上,此时圆心O

处电场强度大小为2E 、电势为2φ。下列说法中正确的是( )

A .12:1:2E E = 12:1:2φφ= B

.12:E E =

12:φφ=C

.12:E E =

12:φφ= D

.12:E E =12:1:1φφ=

【答案】D

13.真空中Ox 坐标轴上的某点有一个点电荷Q ,坐标轴上A 、B 两点的坐标分别为0.2m 和0.7m 。在A 点放一个带正电的试探电荷,在B 点放一个带负电的试探电荷,A 、B 两点的试探电荷受到电场力的方向都跟x 轴正方向相同,电场力的大小F 跟试探电荷电量q 的关系分别如图中直线a 、b 所示。下列说法正确的是( )

A .

B 点的电场强度大小为0.25N/C

B .A 点的电场强度的方向沿x 轴负方向

C .点电荷Q 是正电荷

D .点电荷Q 的位置坐标为0.3m 【答案】D

14.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 点为半圆弧的圆心,∠NOP=90°。电荷量相等、电性相反的两个点电荷分别置于M 、N 两点,这时O 点电场强度的大小为E 1;若将N 处的点电荷移到P 点,则O 点的电场强度大小变为E 2则E 1与E 2之比为

A .1:2 B

:1 C .2:1 D .1

【答案】B

15.如图所示,有一水平方向的匀强电场,场强大小为9000N/C ,在电场内一水平面上作半径为10cm 的圆,圆上取A 、B 两点,AO 沿E 方向,BO⊥OA,另在圆心处放一电量

为10-8

C 的正点电荷,则A 处场强大小E A =______N/C ,B 处的场强大小E B =______N/C.

【答案】0 ,41.2710?

16.在真空中O 点放一个点电荷Q =+1.0×10-9

C ,直线MN 通过O 点,OM 的距离r =30cm ,

M 点放一个点电荷q =-1.0×10-10

C ,如图所示,(已知静电力常量

229/100.9C m N k ??=)则q 在M 点受到点电荷Q 的作用力为F= N ;点电荷Q 在

M 点的场强E= N/C 。

【答案】 1.0×10-8

N ,100N/C

17.如图所示,用一根绝缘细线悬挂一个带电小球,小球的质量为m ,电量为q ,现加一水平方向的匀强电场,平衡时绝缘细线与竖直方向夹角为θ。

求:(1)匀强电场的场强E 大小是多少?

(2)如果将电场方向顺时针旋转θ角、大小变为E′后,小球平衡时,绝缘细线仍与竖直方向夹θ角,则E′的大小又是多少?

【答案】

18.(10分)如下图所示,匀强电场中A 、B 、C 三点构成一个直角三角形,把电荷量q =-2×10

-10C 的点电荷由A 点移动到B 点,电场力做功4.8×10-8

J ,再由B 点移到C 点电荷克服

电场力做功4.8×10-8

J ,取B 点的电势为零,求A 、C 两点的电势及匀强电场的场强方向.

【答案】240V A C ??=-= 电场的场强方向垂直于AC ,指向左上方

19.如图(甲)所示,在一个点电荷Q 的电场中,Ox 坐标轴与它的一条电场线重合,坐标轴上A 、B 两点的坐标分别为2.0m 和5.0m .放在A 、B 两点的试探电荷a 、b 受到的电场力方向都跟x 轴的正方向相同,电场力的大小跟试探电荷所带电量的关系图象分别如图(乙)中直线a 、b 所示,放在A 点的电荷带正电,放在B 点的电荷带负电。

(1)求B点的电场强度的大小和方向.

(2)试判断点电荷Q的电性,并说明理由.

(3)求点电荷Q的位置坐标.

【答案】(1)2.5N/C 方向指向x轴的负方向

(2)点电荷Q应位于A、B两点之间,点电荷带负电(3)2.6m

计算电场强度的基本方法

计算电场强度的基本方法 电场强度是静电学中最基本最重要的概念之一,是历年高考考查的热点。高考中将静电学与力学、磁学等问题放在一起作为综合题考查在每年是必不可少的。这些题目中往往涉及有电场力、电势和电势能等参数,这些参数与静电场最基本的物理性质参数——电场强度是紧密相关的。因此,要解决好这些问题,我们首先必须熟练掌握计算电场强度的方法。 在这里,我们首先介绍一下计算电场强度的基本方法。结合所分析的静电场的特点,很多求解电场强度的问题都可以用它来解决。对于一些比较特殊的电场,我们将在下一节介绍一些特殊的方法,那些特殊的方法也是由这些基本方法衍生而来的,因此,我们需要掌握好这些基本方法。下面来看一看这些基本方法。 方法特点 电场强度的定义是检验电荷在电场中某点受到的电场力F 与电荷q 的比值,用E 表示。因此,我们可以利用这一定义去求电场中某点的电场强度。想办法求出电荷q 在某点所受的电场力,使用公式F q E =,即可求出电场强度。在这里需要注意两点:(1)这里q 代表 电量,如果带正电则值为正,此时E 的方向与F 相同;如果带负电则值为负,此时E 的方向与F 相反。(2)由于E 有方向,是矢量,因此我们可以使用矢量的运算法则(正交分解法、平行四边形法则、矢量三角形法则等)求几个不同的电场在某一点所产生的合场强。 根据这一定义,点电荷Q 在周围某点所产生的场强为22 Qq F r q k Q E k q r ===。根据这一定义以及匀强电场中电场力做功与电势能的关系有W F d qE d q U === ,因此匀强电场的场强为U d E =。 从定义引出来的方法是最基本的方法,下面我们来看一看具体该怎么用。 经典体验(1) 如图所示,带正电小球质量为m=1×10-2kg ,带电量为q=1.6×10-6 C 。置于光滑绝缘水平面上的A 点,当空间存在着斜向上的匀强电场时,该小 球从静止开始始终沿水平面做匀加速直线 运动,当运动到B 点时,测得速度v B =1.5m/s , 此时小球的位移为s=0.15m ,求此匀强电场 的场强E 的取值范围(g=10m/s 2 )。 体验思路: 要求E 的取值范围,我们已知电量q ,根据上面的定义,即是要求电场力的

电场计算题专题训练

电场计算题专项练习题 1.在场强为E的匀强电场中,取O点为圆心,r为半径作一圆周,在O点固定一电荷量为+Q的点电荷, a、b、c、d为相互垂直的两条直线和圆周的交点.当把一试探电荷+q放在d点恰好平衡(如图所示,不计重力) (1)匀强电场场强E的大小、方向如何? (2)试探电荷+q放在点c时,受力F c的大小、方向如何? (3)试探电荷+q放在点b时,受力F b的大小、方向如何? 2.如图所示的电场,等势面是一簇互相平行的竖直平面,间隔均为d,各面电势已在图中标出,现有一质量为m的带电小球以速度v0,方向与水平方向成45°角斜向上射入电场,要使小球做直线运动.问:(1)小球应带何种电荷?电荷量是多少? (2)在入射方向上小球最大位移量是多少?(电场足够大) 3.如图1-4-18所示,一质量为m、带有电荷量-q的小物体,可以在水平轨道Ox上运动,O端有一与轨道垂直的固定墙.轨道处于匀强电场中,场强大小为E,方向沿Ox轴正方向,小物体以速度v0从x0点沿Ox轨道运动,运动时受到大小不变的摩擦力F f作用,且F f

4.真空中存在空间围足够大的,水平向右的匀强电场。在电场中,若将一个质量为m 、带正电的小球由静止释放,运动中小球的速度与竖直方向夹角为37°(取sin37°= 0.6, cos37°= 0.8)。现将该小球从电场中某点以初速度v 0竖直向上抛出。求运动过程中 (1)小球受到的电场力的大小及方向; (2)小球从抛出点至最高点的电势能变化量; 5.如图所示,匀强电场中三点A 、B 、C 是三角形的三个顶点,∠ABC=∠CAB=30°BC=m 32,已知电场线平行于△ABC 所在的平面,一个带电荷量q=-2×10-6C 的点电荷由A 移到B 的过程中,电势能增加1.2×10-5J ,由B 移到C 的过程中,电场力做功6×10-6 J ,求: ⑴A 、C 两点的电势差U AC ⑵该电场的场强E 6.如图所示,在匀强电场中,电荷量q =-5.0×10 -10 C 的负电荷,由a 点移到b 点和由a 点移到c 点,静电力做功都是4.0×10-8 J .已知a 、b 、c 三点的连线组成直角三角形,ab =20 cm ,∠a =37°,∠c = 90°,(sin 37°=0.6 ,cos37°=0.8)求: (1)a 、b 两点的电势差ab U ; (2)匀强电场的场强大小和方向.

高中物理电场计算题题

16.(12分) 如图所示,空间存在范围足够大的竖直向下的匀强电场,电场强度大小E =l.0×10-4v/m,在绝缘地板上固定有一带正电的小圆环A。初始时,带正电的绝缘小球B静止在圆环A的圆心正上方,B的电荷量为g= 9×10-7C,且B电荷量始终保持不变。始终不带电的绝缘小球c从距离B为x0= 0.9m的正上方自由下落,它与B发生对心碰撞,碰后不粘连但立即与B一起竖直向下运动。它们到达最低点后(未接触绝缘地板及小圆环A)又向上运动,当C、B刚好分离时它们不再上升。已知初始时,B离A圆心的高度r= 0.3m.绝缘小球B、C均可以视为质点,且质量相等,圆环A可看作电量集中在圆心处电荷量也为q =9×l0-7C的点电荷,静电引力常量k=9×109Nm2/C2.(g取10m/s2)。求:(l)试求B球质量m; (2)从碰后到刚好分离过程中A对B的库仑力所做 的功。

15如图所示一质量为m、带电量为q的小球,用长为L的绝缘细线悬挂在水平向右的匀强电场中,静止时悬线向左与竖直方向成θ角,重力加速度为g。(1)求电场强度E。(2)若在某时刻给小球 一个沿切线方向的初速度v。小球恰好能在竖直平面 内做完整的圆周运动求v。为多大? . 16.(14分)如图:在一绝缘水平面上,一竖直绝缘挡板固定在O点,ON段表面粗糙,长度S=0.02m,NM段表面光滑,长度L=0.5m.在水平面的上方有一水平向左的匀强电场,场强为2×lo5 N/C.有一小滑块质量为5×10-3 kg,带正电,电量为1×l0一7C,小滑块与ON段表面的动摩擦因数为0.4,将小滑块从M点由静止释放,小滑块在运动过程中没有电量损失,与挡板相碰时不计机械能损失。g取l0m/S2.求: (1)小滑块从释放用多长时间第一次与挡板相碰? (2)小滑块最后停在距离挡板多远的位置?

§10-怎样计算电场强度

§10 怎样计算电场强度? 静电场的电场强度计算,一般有三种方法: 1、 从点电荷场强公式出发进行叠加; 2、 用高斯定理求解; 3、 从电场强度和电势的微分关系求解。 这三种方法各有优点: 从点电荷的场强公式出发,通过叠加原理来计算,在原则上,是没有不可应用的。但是,叠加是矢量的叠加,因此计算往往十分麻烦。 用高斯定理求电场强度,方法简单,演算方便,它有较大的局限性,只适宜于某些电荷对称分布的场强的计算,或者场强不是对称的,但为几种能用高斯定理求解折场的合成。 用场电势的微分关系求场强也有普遍性,而且叠加是代数叠加。这一种方法也简便,不过还比不上高斯定理。 所以求场强时,一般首先考虑是琐能用高斯定理,其次考虑是否能用场强与电势的微分关系去求。下面分别加以讨论。 一、从点电荷的场强公式出发通过叠加原理进行计算 点电荷的场强公式: 301 (1)4i i i q E r r πε= ∑r r 当电荷连续分布时: ()() 303 0301(2) 4134144r E dl r r E ds r r E d r λπεσπερτπε===???r r r r r r 式中 λ-电荷的线密度; σ-电荷的面密度; ρ-电荷的体密度。 式(2)、(3)、(4)中,积分应普遍一切有电荷分布的地方。计算时,还必须注意这是矢量和。 1、 善于积分变量的统一问题

如果积分上包含有几个相关的变量,只有将它们用同一变量来表示,积分才能积得结果。 这在应用点电荷的场强公式求带电体的场强时,或者应用毕-沙-拉定律求B r 时,常常遇到。 因此,要积分必须先解决积分变量的统一问题。 积分上包含有几个变量,相互之间存在一定的关系。因此,任一变量都可选作自变量,而将其他变量用该变量来统一表示。必须指出,不但可以将积分号中包含的变量选作自变量,而且也可选择不包含在积分号中但与积分号中的变量都有关的量作为自变量,要根据具体情况而定。 现以图2-10-1所示均匀带电直线的场强计算为例来讨论积分变量的统一问题。 由图可知: 2 0cos 4x dl dE r λθπε= 2 0sin 4y dl dE r λθπε= 202 0cos (5) 4sin (6) 4x x y y dl E dE r dl E dE r λθπελθπε∴====?? ?? 上述三个变量中,共有三个相关变量:θ、l 、r 。为了把积分计算出来,必须把三个变量统一用某一个变量,可以θ、l 、r 中的任一个,或者用它的相关变量来表示。究竟选哪 一个好呢? 如果选择θ为自变量,则应把l 、r 都化作θ的函数来表示。由图示几何关系可得: 2222cot l a dl acse d r a cse θθθθ =-== 于是得: ()()2 12 1 21002100cos sin sin 44sin cos cos 44x y E a a E a a θθθθλλ θθθπεπελλ θθθπεπε==-==-? ? x 图2-10-1

教科版高二物理选修3-1第一章静电场专题复习 : 静电场计算题专练(含解析)

静电场计算题专题练习 1.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方 向水平向右、A 点, 小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°, 小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83 mg ,从A 至C ,重力加速度为g .求: (1)小球第一次到达B 点时的动能;(2)小球在C 点受到的库仑力大小;(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 2.如图所示,长为l 的绝缘细线,上端固定在O 点,下端P 系一质量为m 的带电小球,置于一方向水平向左、场强为E 的匀强电场中,重力加速度为g 。当细线偏离竖直方向的夹角为θ时,小球处于图示平衡状态。(结果用m 、g 、E 、l 、θ表示)(1)求OP 两点间的电势差U OP ;(2)小球带何种电荷,电荷量q 为多少?(3)若在图示位置将细线剪断,求绳断后瞬间小球的加速度a 。

3.如图,高为h=0.8m的平台与其左侧一倾角为37?的斜面相连固定于水平地面上,水平地面上方空间存在水平向右的匀强电场E=1.0×105V/m。可视为质点的物体C、D用轻质细线通过光滑定滑轮连在一起,C、D质量均为1kg,C不带电,D带电量q=+1.0×10-4C,分别将C、D放在斜面和水平台面上,D与水平台面右边缘A的距离为x=0.5m,细线 绷紧。由静止释放C、D,各面间动摩擦因数均为μ=1 9 ,不计细绳与滑轮之间的摩擦,取g=10m/s2,sin37?=0.6,cos37? =0.8,求: (1)刚释放瞬间物体D的加速度大小; (2)若物体D运动到水平台边缘A时,绳子恰好断裂,物块D从A点水平抛出直至落地,求物体D从A点到落地过程电势能的改变量。(已知运动过程中D所带电荷量不变,C始终不会与滑轮相碰。)

电磁场综合计算题

电磁场综合计算题 1、(磁场与运动学综合)如图18所示,质量m=0.1g的小物块,带有 5×10-4C的电荷,放在倾角为30°的光滑绝缘斜面上,整个斜面置于 B=0.5T的匀强磁场中,磁场方向垂直纸面指向纸里,物块由静止开始下滑,滑到某一位置时,开始离开斜面,求:(中等) 图18 (1)物块带什么电? (2)物块离开斜面时速度多大? (3)斜面至少有多长? 2.(电磁场与运动学综合)一个质量为m,电量为+q的金属球套在绝缘长杆上,球与杆间的动摩擦因数为μ,整个装置放在匀强电场与匀强磁场互相垂直的复合场中,如图19所示。若已知电场强度为E,磁感应强度为B,由静止开始释放小球,求:(中等) (1)小球最大加速度是多少? (2)小球最大速度是多少? 图19 3、(电磁场与运动学综合)电磁炮是一种理想的兵 器,它的主要原理如图所示。1982年澳大利亚国立大 学制成了能把m=2.2g的弹体(包括金属杆EF的质 量)加速到v=10km/s的电磁炮(常规炮弹的速度约为 2km/s),若轨道宽L=2m,长为x=100m,通过的电流为I=10A,试问轨道间所加匀强磁场的磁感应强度和磁场的最大功率P m有多大(轨道摩擦不计)?(中等) 4、(电磁场与运动学综合)如图所示,某区域有正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直纸面向里.场强E=10N/C.磁

感应强度B=1T.现有一个质量m=2×10-6kg,带电量q=+2×10-6C的液滴以某一速度进入该区域恰能作匀速直线运动,求这个速度的大小和方向.(g取10m/s2) (简单) 5.(回旋加速器)有一回旋加速器,加在D形盒内两极的 交变电压的频率为1.5×107Hz,D形盒的半径为0.56m,求:(中等)(1)加速α粒子所需的磁感应强度B。 (2)α粒子所达到的最大速率。(α粒子质量为质子质量的4倍,质子质量为1.67×10-27Kg) 6.(磁场与运动学综合)有一匀强磁场,磁感应强度为1.0T,放一根与磁场方向垂直、长度为0.6m的通电直导线,导线中的电流为1.2A。这根导线在与磁场方向垂直的平面内沿安培力的方向移动了0.3m,求安培力对导线所做的功。(简单) 7.(磁场与运动学综合)在竖直向下的匀强磁场中,两根相距L的平行金属导轨与水平方向的夹角为θ,如图所示,电池、滑线可变电阻、电流表按图示方法与两导轨相连,当质量为m的直导线ab横跨于两根导轨之上时,电路闭合,有电流由a到b通过直导线,在导轨光滑的情况下,调节可变电阻,当电流表示数为I0时,ab恰好沿水平方向静止在导轨上,求匀强磁场的磁感强度B多大?(中等) )θ A )θ B a b

场强公式

在匀强电场中:E=U/d 若知道一电荷受力大小可用:E=F/q点电荷形成的电场:E=kq/r^2 k为一常数q 为此电荷的电量r为到此电荷的距离可看出:随r的增大,点电荷形成的场强逐渐减小,(不与r成正比,只与r^2成正比) 从力的角度研究电场 电场强度是电场本身的一种特性, 与检验电荷存在与否无关, E是矢量。 要区别公式: E=F/q (定义式) E=kQ/r2 (点电荷电场) E=U/d (匀强电场) 1、判断电场强度大小的方法: (1)根据公式判断; (2)根据电场线判断; (3)根据等势面判断。 2、判断电场强度方向的几种方法: 方法一:根据规定,正电荷所受电场力的方向即是该点的场强方向; 方法二:电场线上每一点的切线方向即是该点的场强方向; 方法三:电势降低最快的方向就是场强的方向。 注意事项

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=10^6μF=10^12pF; (7)电子伏(eV)是能量的单位,1eV=1.60×10^-19J; (8)其它相关内容:静电屏蔽/ 示波管、示波器及其应用/ 等势面/尖端放电等。

电场磁场计算题专项训练及答案

电场磁场计算题专项训练 【注】该专项涉及运动:电场中加速、抛物线运动、磁场中圆周 1、(2009浙江)如图所示,相距为d 的平行金属板A 、B 竖直放置,在两板之间水平放置一绝缘平板。有一质量m 、电荷量q (q >0)的小物块在与金属板A 相距l 处静止。若某一时刻在金属板A 、B 间加一电压U AB =- q mgd 23μ,小物块与金属板只发生了一次碰撞,碰撞后电荷量变为-q /2,并以与碰前大小相等的速度反方向弹回。已知小物块与绝缘平板间的动摩擦因数为μ,若不计小物块几何量对电场的影响和碰撞时间。则 (1)小物块与金属板A 碰撞前瞬间的速度大小是多少? (2)小物块碰撞后经过多长时间停止运动?停在何位置? 2、(2006天津)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度应大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界的交点C 处沿+y 方向飞出。 (1)判断该粒子带何种电荷,并求出其比荷q /m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B /,该粒子仍以A 处相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B /多大?此粒子在磁场中运动所用时间t 是多少? 3、(2010全国卷Ⅰ)如下图,在a x 30≤ ≤区域内存在与xy 平面垂直的匀强磁场,磁感 应强度的大小为B 。在t = 0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。已知 B

高二物理:电场综合练习题(含参考答案)

高二物理3-1电场: 一:电场力的性质 一、对应题型题组 ?题组1 电场强度的概念及计算 1.下列关于电场强度的两个表达式E =F /q 和E =kQ /r 2的叙述,正确的是( ) A .E =F /q 是电场强度的定义式,F 是放入电场中的电荷所受的力,q 是产生电场的电荷的电荷量 B .E =F /q 是电场强度的定义式,F 是放入电场中电荷所受的电场力,q 是放入电场中电荷的电荷量,它适用于 任何电场 C .E =kQ /r 2是点电荷场强的计算式,Q 是产生电场的电荷的电荷量,它不适用于匀强电场 D .从点电荷场强计算式分析库仑定律的表达式F =k q 1q 2r 2,式kq 2 r 2是点电荷q 2产生的电场在点电荷q 1处的场强大 小,而kq 1 r 2是点电荷q 1产生的电场在q 2处场强的大小 2.如图1所示,真空中O 点有一点电荷,在它产生的电场中有a 、b 两点,a 点的场强大小为E a ,方向与ab 连线成 60°角,b 点的场强大小为E b ,方向与ab 连线成30°角.关于a 、b 两点场强大小E a 、E b 的关系,以下结论正确的是( ) 图1 A .E a = 33E b B .E a =1 3 E b C .E a =3E b D .E a =3E b 3.如图2甲所示,在x 轴上有一个点电荷Q (图中未画出),O 、A 、B 为轴上三点,放在A 、B 两点的试探电荷受到的 电场力跟试探电荷所带电荷量的关系如图乙所示,则( ) 图2 A .A 点的电场强度大小为2×103 N/C B .B 点的电场强度大小为2×103 N/ C C .点电荷Q 在A 、B 之间 D .点电荷Q 在A 、O 之间 ?题组2 电场强度的矢量合成问题 4.用电场线能很直观、很方便地比较电场中各点场强的强弱.如图3甲是等量异种点电荷形成电场的电场线,图乙是 场中的一些点:O 是电荷连线的中点,E 、F 是连线中垂线上相对O 对称的两点,B 、C 和A 、D 也相对O 对称.则( )

电场强度地计算

电场力的性质之考点一(电场强度的理解及计算) 班级::编写:熠 学习目标:1、理解电场强度的矢量性;2、掌握电场强度的计算方法。 自主学习:一、三个公式的比较 二、 (1)电场叠加:多个电荷在空间某处产生的电场的电场强度为各电荷在该处所产生的电场场强的矢量和. (2)计算法则:平行四边形定则. 题型一、点电荷产生的电场 正点电荷电场方向背离电荷负点电荷电场方向指向电荷中心 1、如图所示,真空中有两个点电荷Q1 =+3.0×10-8C和Q2 =-3.0×10-8C,它们相距0.1m,A点与两个点电荷的距离r相等,r=0.1m 。求:电场中A点的场强。 2、如图,A、B两点放有均带电量为+2×10-8C两个点电荷,相距60cm,试求:

(1)AB 连线中点O 的场强; (2)AB 连线的垂直平分线上离开O 点距离为30cm 处的P 点的场强。 合作学习: 【拓展训练】:3、(2013·重点中学联考)如图所示,一个均匀的带电圆环, 带电荷量为+Q ,半径为R ,放在绝缘水平桌面上.圆心为O 点,过O 点作一竖直线,在此线上取一点A ,使A 到O 点的距离为d 。求A 点处的电场强度。 方法归纳: 【变式训练】:4、在某平面上有一个半径为r 的绝缘带电圆环: (1)若在圆周上等间距地分布n (n ≥2)个相同的点电荷,则圆心处的合场强为多少? (2)若有一半径同样为r ,单位长度带电荷量为q (q >0)的均匀带电圆环上有一个很小的缺口Δl (且Δl r ),如图所示,则圆心处的场强又为多少? 方法归纳:补偿法。 解题关键:把带有缺口的带电圆环―――→转化为 点电荷 解析: (1)当n 分别取2、3、4时圆心处的场强均为零,结合点电荷电场的对称性可知,n 个相同的点电荷在圆心处的合场强为零. (2)可以把均匀带电圆环视为由很多点电荷组成,若将缺口补上,再根据电荷分布的对称性可得,圆心O 处的合场强为零,由于有缺口的存在,圆心O 处的电场即为缺口相对圆心O 的对称点产生的电场,其电场强度为该处电荷(可视为点电荷)在O 点的电场强度(包括 大小和方向).其电场强度的大小为E =k q Δl r 2,方向由圆心O 指向缺口. 答案: (1)合场强为零 (2) k q Δl r 2,方向由圆心O 指向缺口 分析电场叠加问题的一般步骤 电场强度是矢量,叠加时应遵从平行四边形定则,分析电场的叠加问题的一般步骤是: (1)确定分析计算的空间位置; (2)分析该处有几个分电场,先计算出各个分电场在该点的电场强度的大小和方向; (3)依次利用平行四边形定则求出矢量和. 题型二特殊带电体产生的电场

电场强度的叠加原理及电场强度的计算

第二讲:电场强度的叠加原理及电场强度的计算 内容:§9-3 电场强度的求法 要求: 1.理解场强叠加原理; 2.掌握用积分的方法计算电场强度。 重点与难点: 1.电场强度及其计算。 作业: 习题:P37:9,11 预习:电场强度的叠加原理

四、电场强度叠加原理 1.点电荷的场强:电荷Q ,空间r 处 2 04r r Q q F E πε== 2.点电荷系: 在点电荷系Q 1,Q 2,…,Q n 的电场中,在P 点放一试验电荷q 0,根据库仑力的叠加原理,可知试验电荷受到的作用力为∑= i F F ,因而P 点的电场强度为 ∑∑∑=== i i i E q F q F q F E = 即 ∑∑3 04r r Q E E i i πε == 点电荷系电场中某点的场强等于各个点电荷单独存在时在该点的场强的矢量和。这就是电场强度的叠加原理。 3.连续分布电荷激发的场强 将带电区域分成许多电荷元d q ,则 ? ?=0 2 04r r dq E d E πε= 其中,对于电荷体分布,d q =ρd v , ???v r r dv E 0 204 περ= 对于电荷面分布,d q =σds ,02 04r r ds E s ??πεσ= 对于电荷线分布,d q =λd l ,?l r r dl E 0 2 04 πελ= 其中体密度 dV dQ V Q V =??→?lim 0 =ρ 单位C/m 3; 面密度 dS dQ S Q S =??→?lim =σ 单位C/m 2;

线密度 dl dQ l Q l =??→?lim =λ 单位C/m 。 五、 电场强度的计算: 1.离散型的:∑∑3 04r r Q E E i i πε == 2.连续型的:? ?=0 2 04r r dq E d E πε= 空间各点的电场强度完全取决于电荷在空间的分布情况。如果给定电荷的分布,原则上就可以计算出任意点的电场强度。计算的方法是利用点电荷在其周围激发场强的表达式与场强叠加原理。计算的步骤大致如下: ● 任取电荷元d q ,写出d q 在待求点的场强的表达式; ● 选取适当的坐标系,将场强的表达式分解为标量表示式; ● 进行积分计算; ● 写出总的电场强度的矢量表达式,或求出电场强度的大小和方向; ● 在计算过程中,要根据对称性来简化计算过程。 例1. 电偶极子(Electric Dipole )的场强。 1. 几个概念: (1)两个电量相等、符合相反、相距为l 的点电荷+q 和-q ,若场点到这两个电荷的距离比l 大得多时,这两个点电荷系称为电偶极子。 (2)从-q 指向+q 的矢量l 称为电偶极子的轴。 (3)l q p =称为电偶极子的电偶极矩 2. 电偶极子的电场强度 (1)电偶极子轴线延长线上一点的电场强度 如图所示,取电偶极子轴线的中点为坐标原点O ,沿极轴的延长线为O x 轴,轴上任意点A 距原点的距离为x ,则正负电荷在点A 产生的场强为 ()i l x q E 2 02/41-= +πε () i l x q E 2 02/41+-=-πε 由叠加原理可知点A 的总场强为 ()()() i l x xl q i l x q l x q E E E ??? ?????-??????-= +22202204/242/2/41πεπε=+-+=- 当x >>l 时,2 224/x l x ≈-

电磁场计算题专项练习

电磁场计算题专项练习 一、电场 1、(20分)如图所示,为一个实验室模拟货物传送的装置,A 是一个表面绝缘质量为1kg 的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q =1×10-2C 的绝缘货柜,现将一质量为0.9kg 的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E 1=3×102N/m 的电场,小车和货柜开始运动,作用时间2s 后,改变电场,电场大小变为E 2=1×102N/m ,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=,(小车不带电,货柜及货物体积大小不计,g 取10m/s 2)求: ⑴第二次电场作用的时间; ⑵小车的长度; ⑶小车右端到达目的地的距离. ] 16(8分)如图所示,水平轨道与直径为d=0.8m 的半圆轨道相接,半圆轨道的两端点A 、B 连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m 的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C 电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2, (1)若它运动的起点离A 为L ,它恰能到达轨道最高点B ,求小球在B 点的速度和L 的值. (2)若它运动起点离A 为L=2.6m ,且它运动到B 点时电场消失,它继续运动直到落地,求落地点与起点的距离. 、 A B

! 6如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A 板比B 板电势高300V ,即UAB =300V 。一带正电的粒子电量q =10-10C ,质量m =10-20kg ,从R 点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。已知两界面MN 、PS 相距为L =12cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。求(静电力常数k =9×109N ·m2/C2) (1)粒子穿过界面PS 时偏离中心线RO 的距离多远 (2)点电荷的电量。 ! 二、磁场 1、(19分)如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿x 轴正方向的匀强电场,电场强度大小为E ,y 轴为磁场和电场的理想边界。一个质量为m ,电荷量为e 的质子经过x 轴上A 点时速度大小为v o ,速度方向与x 轴负方向夹角θ=300。质子第一次到达y 轴时速度方向与y 轴垂直,第三次到达y 轴的位置用B 点表示,图中未画出。已知OA=L 。 (1) 求磁感应强度大小和方向; (2) " (3) 求质子从A 点运动至B 点时间 B A v 0 R M N L P S O E F l

电场强度的几种计算方法

电场强度的几种求法 一.公式法 1.q F E =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。 2.2 r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。 3.d U E =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。 二.对称叠加法 当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。 例:如图,带电量为+q 的点电荷与均匀带电。 例:如图,带电量为+q 的点电荷与均匀带

电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大 例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r q k =?。假设左侧部分在M 点的电场强度为 E 1,电势为1?;右侧部分在M 点的电场强 度为E 2,电势为2?;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1?>2 ?

B .若左右两部分的表面积相等,有E 1<E 2,1?<2 ? C .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4 D .不论左右两部分的表面积是否相等,总有 E 1>E 2,E 3=E 4 答案:D 例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。则以下说法正确的是( ) A .两处的电场方向相同, E1>E2 B .两处的电场方向相反, E1>E2 C .两处的电场方向相同,E1<E2 D .两处的电场方向相反,E1<E2 A B M O N L

电磁场计算题专项练习

电磁场计算题专项练习 一、电场 1、(20分)如图所示,为一个实验室模拟货物传送的装置,A就是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车与货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达 目的地,货物到达小车的最右端,且小车与货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=0、1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求: ⑴第二次电场作用的时间; B ⑵小车的长度; A ⑶小车右端到达目的地的距离. 16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线就是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2, (1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度与L的值. (2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地, 求落地点与起点的距离.

6如图所示,两平行金属板A 、B 长l =8cm,两板间距离d =8cm,A 板比B 板电势高300V,即UAB =300V 。一带正电的粒子电量q =10-10C,质量m =10-20kg,从R 点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。已知两界面MN 、PS 相距为L =12cm,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。求(静电力常数k =9×109N ·m2/C2) (1)粒子穿过界面PS 时偏离中心线RO 的距离多远? (2)点电荷的电量。 二、磁场 1、(19分)如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿x 轴正方向的匀强电场,电场强度大小为E,y 轴为磁场与电场的理想边界。一个质量为m ,电荷量为e 的质子经过x 轴上A 点时速度大小为v o ,速度方向与x 轴负方向夹角θ=300。质子第一次到达y 轴时速度方向与y 轴垂直,第三次到达y 轴的位置用B 点表示,图中未画出。已知OA=L 。 (1)求磁感应强度大小与方向; (2)求质子从A 点运动至B 点时间 15.(20分)如图10所示,abcd 就是一个正方形的盒子,在cd 边的中点有一小孔 B A v 0 R M N L P S O E F l

电学综合计算题

电学综合计算题 (1)高考概率:试卷的完全型考题。 (2)题型及分值:表述性计算题。12分~20分。总体大于力学计算题。 (3)模型情景:习题模型多,各年度交替变化。有以下几种:①磁场中带电粒子的匀速圆周运动,或通电导体受安培力;②电场中带电粒子的运动;③切割磁场(或磁通量变化)的电磁感应现象;④交变电流的产生及规律。 表现为“多过程现象”或“多物体系统’’。 综合性强。应用各种运动规律、牛顿运动定律、功能关系等。应用几何关系。 一般题情景复杂,侧重物理思维,数学能力要求高。各年度难度起伏很大,对解答的表述过程要求较规范。通常为字母型定量计算,多表现为递进或并列的2~3小问,各小问之间难度递增。 (4)难度档次:高档。

1.题型特点 (1)带电粒子在复合场中的运动是力电综合的重点和高考的热点,常见的考查形式有组合场(电场、磁场、重力场依次出现)、叠加场(空间同一区域同时存在两种以上的场)、周期性变化的场等,近几年高考试题中,涉及本专题内容的频率极高,特别是计算题,题目难度大,

涉及面广. (2)试题多把电场和磁场的性质、运动学规律、牛顿运动定律、圆周运动规律、功能关系揉合在一起,主要考查考生的空间想象力、分析综合能力以及运用数学知识解决物理问题的能力.以及考查考生综合分析和解决复杂问题的能力. 2.解决带电粒子在组合场中运动的一般思路和方法: (1)明确组合场是由哪些场组合成的. (2)判断粒子经过组合场时的受力和运动情况,并画出相应的运动轨迹简图. (3)带电粒子经过电场时利用动能定理和类平抛运动知识分析. (4)带电粒子经过磁场区域时通常用圆周运动知识结合几何知识来处理. 考题一带电粒子在组合场中的运动 分析带电粒子在组合场中运动问题的方法 (1)要清楚场的性质、方向、强弱、范围等. (2)带电粒子依次通过不同场区时,由受力情况确定粒子在不同区域的运动情况. (3)正确地画出粒子的运动轨迹图. (4)根据区域和运动规律的不同,将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理. (5)要明确带电粒子通过不同场区的交界处时速度大小和方向关系,上一个区域的末速度往往是下一个区域的初速度. 考题二带电粒子在叠加场中的运动 带电粒子在叠加场中运动问题的处理方法 (1)弄清叠加场的组成特点. (2)正确分析带电粒子的受力及运动特点. (3)画出粒子的运动轨迹,灵活选择不同的运动规律.

电场强度的几种计算方法

电场强度的几种求法 一. 公式法 1.q F E = 是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。 2.2r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。 3.d U E = 是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。 二.对称叠加法 当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。 例:如图,带电量为+q 的点电荷与均匀带电。 例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大? 例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r q k =?。假设左侧部分在M 点的电场强度为E 1,电势为1?;右侧部分在M 点的电场强度为E 2,电势为2?;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1?>2? B .若左右两部分的表面积相等,有E 1<E 2,1?<2?

C .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4 D .不论左右两部分的表面积是否相等,总有 E 1>E 2,E 3=E 4 答案:D 例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。则以下说法正确的是( ) A .两处的电场方向相同,E1>E2 B .两处的电场方向相反,E1>E2 C .两处的电场方向相同,E1<E2 D .两处的电场方向相反,E1<E2 三.等效替代法 例:均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场,如图,在半球面A 、B 上均匀分布正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球顶点与球心O 的轴线,在轴线上有M 、N 两点,OM=ON=2R ,已知M 点的场强大小为E ,则N 点场强大小为( ) A .E R -22kq B .24kq R C .E R -24kq D .E R +2 4kq 答案:A 例:【2013安徽20】如图所示,xOy 平面是无穷大导体的表面,该导体充满0z <的空间, 0z >的空间为真空。将电荷为q 的点电荷置于z 轴上z=h 处,则在xOy 平面上会产生感应 电荷。空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的。已知静电平衡时导体内部场强处处为零,则在z 轴上2 h z = 处的场强大小为(k 为静电力常量) A .24q k h B .249q k h C .2329q k h D .2 409q k h 【答案】D C D A B

电场强度的几种计算方法

微专题训练16 电场强度的几种计算方法 1.(公式法)(单选)如图1所示,真空中O 点有一点电荷,在它产生的电场中有a 、 b 两点,a 点的场强大小为E a ,方向与ab 连线成60°角,b 点的场强大小为E b ,方向与ab 连线成30°角.关于a 、b 两点场强大小E a 、E b 的关系,以下结论正确的是 ( ). 图1 A .E a =33E b B .E a =13E b C .E a =3E b D . E a =3E b 解析 由题图可知,r b =3r a ,再由E =kQ r 2可知,E a E b =r 2b r 2a =31,故D 正确. 答案 D 2.(图象斜率法)(多选)如图2甲所示,在x 轴上有一个点电荷Q (图中未画出),Q 、 A 、 B 为轴上三点,放在A 、B 两点的试探电荷受到的电场力跟试探电荷所带电荷量的关系如图乙所示,则 ( ). 图2 A .A 点的电场强度大小为2×103 N/C B .B 点的电场强度大小为2×103 N/C C .点电荷Q 在A 、B 之间 D .点电荷Q 在A 、O 之间 解析 对于电场中任意一点而言,放在该处的试探电荷的电荷量q 不同,其受

到的电场力F的大小也不同,但比值F q是相同的,即该处的电场强度.所以F-q 图象是一条过原点的直线,斜率越大则场强越大.由题图可知A点的电场强度 E A=2×103 N/C,B点的电场强度的大小为E B=0.6×103 N/C,A正确,B错误.A、 B两点放正、负不同的电荷,受力方向总为正,说明A、B的场强方向相反,点电荷Q只能在A、B之间,C正确. 答案AC 3.(叠加法)(多选)如图3所示,在x轴坐标为+1的点上固定一个电荷量为4Q的正点电荷,坐标原点O处固定一个电荷量为Q的负点电荷,那么在x坐标轴上,电场强度方向沿x轴负方向的点所在区域应是(). 图3 A.(0,1)B.(-1,0) C.(-∞,-1)D.(1,+∞) 解析在区域(0,1)中4Q和-Q的电场的电场强度方向都向左,合场强仍向左, A对;在-Q左侧距-Q为x处场强为零,由k Q x2=k 4Q (1+x)2 得x=1,所以区域(-∞,-1)内合场强向左,C对. 答案AC 4.(叠加法)(单选)如图4所示,中子内有一个电荷量为+2e 3的上夸克和两个电荷量 为-e 3的下夸克,3个夸克都分布在半径为r的同一圆周上,则3个夸克在其圆 心处产生的电场强度大小为() 图4

电场计算题2

1.如图所示,现有一个小物块,质量为m=80g ,带上正电荷4 210C q -=?.与水平的轨道之间的滑动摩擦因数 0.2μ=,在一个水平向左的匀强电场中,310V/m E =,在水平轨道的末端N 处,连接一个光滑的半圆形轨道, 半径为R=40cm ,取g=10m/s 2 .求: (1)小物块恰好运动到轨道的最高点,那么小物块应该从水平位置距N 处多远处由静止释放? (2)如果在(1)小题的位置释放小物块,当它运动到P (轨道中点)点时对轨道的压力等于多少? 2.如图所示,两平行金属板A 、B 长L=8cm ,两板间距离d=8cm ,A 板比B 板电势高300V ,一不计重力的带正电的 粒子电荷量q =10-10C ,质量m =10-20kg ,沿电场中心线RD 垂直电场线飞入电场,初速度v 0=2×106 m/s ,粒子飞出平行板电场后可进入界面MN 、PS 间的无电场区域。已知两界面MN 、PS 相距为12cm ,D 是中心线RD 与界面PS 的交点。 (1)粒子穿过MN 时偏离中心线RD 的距离以及速度大小? (2)粒子到达PS 界面时离D 点的距离为多少? (3)设O 为RD 延长线上的某一点,我们可以在O 点固定一负点电荷,使粒子恰好可以绕O 点做匀速圆周运动,求在O 点固定的负点电荷的电量为多少?(静电力常数k = 9.0 ×109N ·m 2/C 2 ,保留两位有效数字) 3.如图甲所示,A 、B 两块金属板水平放置,相距为d=0.6cm,两板间加有一周期性变化的电压,当B 板接地时,A 板电势φA 随时间变化的情况如图乙所示.现有一带负电的微粒在t=0时刻从B 板中央小孔射入电场,若该带电微粒受到的电场力为重力的两倍,且射入电场时初速度可忽略不计.求: (1)在0~ 2T 和2 T ~T 和这两段时间内微粒的加速度大小和方向; (2)要使该微粒不与A 板相碰,所加电压的周期最长为多少(g=10m/s 2 ).

相关主题