搜档网
当前位置:搜档网 › 16nm FinFET工艺信号EM问题的分析和解决

16nm FinFET工艺信号EM问题的分析和解决

16nm FinFET工艺信号EM问题的分析和解决
16nm FinFET工艺信号EM问题的分析和解决

005,振动信号的分析方法

振动信号的分析方法 在对设备进行监测和故障诊断中,大多都采用对设备进行振动状态监测,所以对振动信号进行有效地分析,使用不同的分析方法来获得振动信号的特性参数,这种方法是机械设备实现故障诊断的主要措施。常用的振动信号分析方法有时域分析法,频域分析法,阶次跟踪分析法,经验模态分析法和包络解调分析法,下面逐个对这五种分析方法进行详细说明。 1时域分析法 振动时域参数分析是对风力发电机组进行故障检测和诊断的简易方法,时域波形是经过DSP数据处理器去噪处理后的信号,包含较多的信息量。在时域诊断中,采用的参数有:均值、均方根值、峭度值、峰值、脉冲因子、裕度系数……通过监测这些特征参数是否超过设定的_值来诊断传动部件是否发生机械故障。幅域参数一般分为有量纲和无量纲2种类型的指标。均值、均方根值等为有量纲的时域参数。无量纲的时域参数包含偏态系数、波形因子、峰态系数、脉冲因子、裕度系数……现对时域分析中所涉及的主要釆用的参数进行简要介绍。 (1)均值:平均值又可称为直流分量,是用来评价信号是否稳定。表征了振 动信号变化的中心波动,是信号的常量分量,其表达式为 其中,n为总的采样点数;表示振动信号的样本函数。 (2)均方根值:均方根值,也叫方均根值,它是对信号先平方,再求取平均值后开方得到的,是对没有规律的信号比较有用。其表达式为 (3)峭度:峭度值是可以直接体现概率密度的一种可靠参数,概率密度函数分布形态偏移越大,峭度值的绝对值就越大。 峭度值可以反映概率密度图形的对称性。概率密度函数分布形态偏移越大,

峭度值的绝对值越大。 除此之外,还有几种比较常见的时域参数, 2频域分析法 时域振动信号的频谱分析是目前所知的研究故障特征方法中基础的方法之一,可以在频谱中,获得比较全面的故障信息。在频域中,主要从幅值频谱、功率频谱、倒频谱3个基本的频谱进行分析。频谱的功能是用来分析原始信号中轴承内圈、外圈的固有频率和故障频率,以及齿轮箱齿轮互相哨合产生的哨合频率;倒频谱的功能是用于容易地获得频谱的边频带中的周期成分,并确定故障发生的位置。 1.幅值谱分析 幅值频谱就是对传感器釆样所得的原始信号经处理后的振动信号进行一次傅立叶变换(FFT),计算并画出该时域振动信号的频率图谱,傅立叶变化的表达式为:

随机信号分析习题

随机信号分析习题一 1. 设函数???≤>-=-0 , 0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数。并求下列 概率:)1(<ξP ,)21(≤≤ξP 。 2. 设),(Y X 的联合密度函数为 (), 0, 0 (,)0 , other x y XY e x y f x y -+?≥≥=? ?, 求{}10,10<<<

8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度? 9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度 ()Y f y \ 10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数 22 2 W X Y Z X ?=+?=? 设X ,Y 是相互独立的高斯变量。求随机变量W 和Z 的联合概率密度函数。 11. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数 2() W X Y Z X Y =+?? =+? 已知(,)XY f x y ,求联合概率密度函数(,)WZ f z ω。 12. 设随机变量X 为均匀分布,其概率密度1 ,()0X a x b f x b a ?≤≤? =-???, 其它 (1)求X 的特征函数,()X ?ω。 (2)由()X ?ω,求[]E X 。 13. 用特征函数方法求两个数学期望为0,方差为1,互相独立的高斯随机变量1X 和2X 之和的概率密度。 14. 证明若n X 依均方收敛,即 l.i.m n n X X →∞ =,则n X 必依概率收敛于X 。 15. 设{}n X 和{}n Y (1,2,)n = 为两个二阶矩实随机变量序列,X 和Y 为两个二阶矩实随机变量。若l.i.m n n X X →∞ =,l.i.m n n Y Y →∞ =,求证lim {}{}m n m n E X X E XY →∞→∞ =。

matlab随机信号分析常用函数

随机信号分析常用函数及示例 1、熟悉练习使用下列MATLAB函数,给出各个函数的功能说明和内部参数的意 义,并给出至少一个使用例子和运行结果。 rand(): 函数功能:生成均匀分布的伪随机数 使用方法: r = rand(n) 生成n*n的包含标准均匀分布的随机矩阵,其元素在(0,1)内。 rand(m,n)或rand([m,n]) 生成的m*n随机矩阵。 rand(m,n,p,...)或rand([m,n,p,...]) 生成的m*n*p随机矩数组。 rand () 产生一个随机数。 rand(size(A)) 生成与数组A大小相同的随机数组。 r = rand(..., 'double')或r = rand(..., 'single') 返回指定类型的标准随机数,其中double指随机数为双精度浮点数,single 指随机数为单精度浮点数。 例:r=rand(3,4); 运行结果: r= 0.4235 0.4329 0.7604 0.2091 0.5155 0.2259 0.5298 0.3798 0.3340 0.5798 0.6405 0.7833 randn(): 函数功能:生成正态分布伪随机数 使用方法: r = randn(n) 生成n*n的包含标准正态分布的随机矩阵。 randn(m,n)或randn([m,n]) 生成的m*n随机矩阵。 randn(m,n,p,...)或randn([m,n,p,...]) 生成的m*n*p随机矩数组。 randn () 产生一个随机数。 randn(size(A)) 生成与数组A大小相同的随机数组。 r = randn(..., 'double')或r = randn(..., 'single') 返回指定类型的标准随机数,其中double指随机数为双精度浮点数,single 指随机数为单精度浮点数。 例:

汽轮机轴振动监测中的数据采集与处理

汽轮机轴振动监测中的数据采集与处理 【摘要】本文详细地说明了轴心轨迹振动信号的预处理过程,对振动信号采样和滤波简单的分析了轴心轨迹信号频谱。通过对轴心轨迹特征的识别为轴心轨迹的稳定性及机组的在线监测系统提供 依据,对现场汽轮机发电机组的安全平稳运行有重大的意义。 【关键词】汽轮机组;轨迹识别;滤波;故障诊断 近年来,状态监测和故障诊断技术与系统的研究得到了高速发展。随着电力工业的发展,汽轮发电机组的总装机容量和单机容量都得到了迅速提高,机组轴系也越来越复杂,诱发机组振动的潜在因素也相应增加。振动问题在机组安全运行中的影响越来越大,人们也越来越关注机组振动对于生产安全稳定经济运行的影响。 1.研究意义 结合兰州石化公司动力厂背压发电装置,发电装置的各监控仪器仪表中,没有对整个机组在运行中的振动进行直接的监控。操作人员只能通过机组在运行过程中,对轴瓦的温度监控或是通过机组运行时所产生的声音进行经验性判断。因此,针对汽轮发电机组振动监测的数据采集和预处理做出大胆的设计。 本设计的实施对发电装置的生产运行的意义: (1)避免汽轮机转子发生重大安全事故而造成的巨大经济损失,保证转子在规定的期间内无故障安全可靠运行。 (2)振动监测诊断系统可及时判断转子是否有故障,并能够迅速

查明故障原因、部位、预测故障影响,提高汽轮机转子的维修管理水平,而本文所做的汽轮机发电机组振动监测的数据采集和预处理工作正是振动监测诊断系统的基础。它将对今后的汽轮发电机组进行全面远程监控及自动化改造提供可靠的数据来源。 2.振动信号采集 旋转机械轴系振动信号是以转速为基频的周期信号。在转子系统的振动检测中,需要对振动信号进行整周期采样来避免由于泄露、栅栏等不良效应带来的相位严重失真。传统振动分析方法通过硬件电路锁相倍频法来实现整周期采样,该方法的核心是锁相倍频电路的应用。键相信号经锁相电路倍频后,产生采样脉冲序列,控制采样电路的触发与关闭。该方法的优点在于同步性能好,结合并行采样/保持电路,可自动实现对各个通道振动信号的实时同步采样。但这种方法需要专用的数据采集卡,因此系统硬件成本比较高,开发周期长,且适应能力及硬件升级能力较差。 伪同步采样法充分发挥了通用数据采集卡中数据采集通道资源多的特点,将键相信号与振动信号进行同步采样,对振动信号的整周期截取则在采集后通过数据处理来实现。结合对柔性转子实验系统进行动平衡的实验结果表明:这种伪同步采样方法可有效满足转子振动信号处理对信号采样的要求。 3.振动信号的处理 在机械设备状态监测和故障诊断过程中,传感器的输出信号经采

随机信号分析

随机信号分析 朱华,等北京理工大学出版社2011-07-01 《随机信号分析》是高等学校工科电子类专业基础教材。内容为概率论基础、平稳随机过程、窄带随机过程、随机信号通过线性与非线性系统的理论与分析方法等。在相应的部分增加了离散随机信号的分析。《随即信号分析》的特点侧重在物理概念和分析方法上,对复杂的理论和数学问题着重用与实际的电子工程技术问题相联系的途径及方法去处理。《随即信号分析》配套的习题和解题指南将与《随即信号分析》同期出版。《随即信号分析》适用于电子工程系硕士研究生及高年级本科生,也适用于科技工作者参考。 第一章概率论 1.1 概率空间的概念 1.1.1 古典概率 1.1.2 几何概率 1.1.3 统计概率 1.2 条件概率空间 1.2.1 条件概率的定义 1.2.2 全概率公式 1.2.3 贝叶斯公式 1.2.4 独立事件、统计独立 1.3 随机变量及其概率分布函数 1.3.1 随机变量的概念 1.3.2 离散型随机变量及其分布列 1.3.3 连续型随机变量及其密度函数 1.3.4 分布函数及其基本性质 1.4 多维随机变量及其分布函数 1.4.1 二维分布函数及其基本性质 1.4.2 边沿分布 1.4.3 相互独立的随机变量与条件分布 1.5 随机变量函数的分布 1.5.1 一维随机变量函数的分布 1.5.2 二维随机变量函数的分布 1.5.3 二维正态随机变量函数的变换 1.5.4 多维情况 1.5.5 多维正态概率密度的矩阵表示法 1.6 随机变量的数字特征 1.6.1 统计平均值与随机变量的数学期望值 1.6.2 随机变量函数的期望值 1.6.3 条件数学期望 1.6.4 随机变量的各阶矩 1.7 随机变量的特征函数 1.7.1 特征函数的定义 1.7.2 特征函数的性质

信号分析与处理

信号分析与处理 第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统。 测试技术的目的是信息获取、处理和利用。 测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。 信号分析与处理是测试技术的重要研究内容。 信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。 一切物体运动和状态的变化,都是一种信号,传递不同的信息。 信号常常表示为时间的函数,函数表示和图形表示信号。 信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。 信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号; 周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号 在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析; 信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。 信号处理包括时域处理和频域处理。时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容; 测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。 常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列。 系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。被测系统和测试系统统称为系统。输入信号和输出信号统称为测试信号。系统分为连续时间系统和离散时间系统。

MATLAB在机械振动信号中的应用

MATLAB在机械振动信号中的应用 申振 (山东理工大学交通与车辆工程学院) 摘要:综述了现代信号分析处理理论、方法如时域分析(包括时域参数识别、相关分析等)、频域分析(包括傅立叶变换、功率谱分解等),并结合MATLAB中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。 关键词:时域分析频域分析MATLAB 信号是信息的载体,采用合适的信号分析处理方法以获取隐藏于传感观测信号中的重要信息(包括时域与频域信息等),对于许多工程应用领域均具有重要意义。对获取振动噪声信号的分析处理,是进行状态监测、故障诊断、质量检查、源识别、机器产品的动态性能测试与优化设计等工作的重要环节,它可以预先发现机械部件的磨损和缺陷等故障,从而可以提高产品的质量,降低维护费用。随着测试技术的迅速发展,各种信号分析方法也随之涌现,并广泛应用在各个领域[1]。 时域描述简单直观,只能反映信号的幅值随时间的变化,而不能明确的揭示信号随时间的变化关系。为了研究信号的频率组成和各频率成分的幅值大小、相位关系,应对信号进行频谱分析,即把时域信号通过适当的数学方法处理变成频率f(或角频率 )为独立变量,相应的幅值或相位为因变量的频域描述。频域分析法将时域分析法中的微分或差分方程转换为代数方程,有利于问题的分析[2]。 MATLAB是MathWorks公司于1982年推出的一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、矩阵运算、信号处理和图形显示

有机地融合为一体,形成了一个极其方便、用户界面良好的操作环境。随着其自身版本的不断提高,MATLAB 的功能越来越强大,应用范围也越来越广,如广泛应用于信号处理、数字图像处理、仿真、自动化控制、小波分析及神经网络等领域[3]。 本文主要运用了MATLAB R2014a 对机械振动信号进行分析。分析过程包括时域分析和频域分析两大部分,时域分析的指标包括随机信号的均值、方差以及均方值。频域分析的性能指标包括对功率谱分析、倒频谱分析。在进行上述分析之前先要对振动信号进行拟合。机械振动分为确定性振动和随机振动,确定性振动又分为周期振动和非周期振动,周期振动又进一步分为简谐振动和复杂的周期振动。所以可以根据上述的分类来拟合振动信号[2]。在设计信号的处理程序时,运用MATLAB 中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。 1 时域分析 1.1 均值 对于一个各态历经随机随机信号()x t ,其均值x μ为 1lim ()T x T x t dt T μ→∞=? (1) 式中 ()x t ——样本函数; T ——观测时间; x μ——常值分量。 1.2 方差 2 x σ是描述随机信号的波动分量,定义为 2 201lim [()]T x x T x t dt T σμ→∞=-? (1) 它表示信号()x t 偏离其均值x μ平方的均值,方差的正平方根x σ称为标准差。

《随机信号分析基础》总复习提

概率论基础 1.概率空间、概率(条件概率、全概率公式、贝叶斯公式) 2.随机变量的定义(一维、二维实随机变量) 3.随机变量的描述: ⑴统计特性 一维、二维概率密度函数、一维二维概率分布函数、边缘分布 概率分布函数、概率密度函数的关系 ⑵数字特征 一维数字特征:期望、方差、均方值(定义、物理含义、期望和方差的性质、三者之间的关系) 二维数字特征:相关值、协方差、相关系数(定义、相互关系) ⑶互不相关、统计独立、正交的定义及其相互关系 4.随机变量函数的分布 △雅柯比变换(随机变量函数的变换一维随机变量函数的单值和双值变换、二维随机变量函数的单值变换) 5、高斯随机变量 一维和二维概率密度函数表达式 高斯随机变量的性质 △随机变量的特征函数及基本性质 、

随机信号的时域分析 1、随机信号的定义 从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ?→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系? 3、随机信号的统计特性分析:概率密度函数和概率分布函数(一维、二维要求掌握) 4、随机信号的数字特征分析(定义、物理含义、相互关系) 一维:期望函数、方差函数、均方值函数。(相互关系) 二维:自相关函数、自协方差函数、互相关函数、互协方差函数(相互关系) 5、严平稳、宽平稳 定义、二者关系、判断宽平稳的条件、平稳的意义、联合平稳定义及判定 6、平稳随机信号自相关函数的性质: 0点值,偶函数,均值,相关值,方差 7、两个随机信号之间的“正交”、“不相关”、“独立”。 (定义、相互关系) 8、高斯随机信号 定义(掌握一维和二维)、高斯随机信号的性质 9、各态历经性 定义、意义、判定条件(时间平均算子、统计平均算子)、平稳性与各态历经性的关系直流分量、直流平均功率、总平均功率、交流平均功率 随机信号的频域分析 1、随机信号是功率信号,不存在傅里叶变换,在频域只研究其功率谱。 功率谱密度的含义,与总平均功率的关系 2、一般随机信号功率谱计算公式与方法 3、平稳随机信号的功率谱密度计算方法

信号分析方法总结

信号分析方法总结 随机信号:不能用明确的数学表达式来表示,它反映的通常是一个随机过程,只能用概率和统计的方法来描述。 随机现象的单个时间历程称为样本函数。随机现象可能产生的全部样本函数的集合,称为随机过程 振动信号的时域分析方法 时间历程 描述信号随着时间的变化情况。 平均值 ∑=- = N i i x N x 1 1 均方值用来描述信号的平均能量或平均功率 ∑=-= N i i x N x 1 22 1 均方根值(RMS )为均方值的正平方根。是信号幅度最恰当的量度 方差表示信号偏离其均值的程度,是描述数据的动态分量∑=---=N i i x x x N 1 22 )(11σ 斜度α反映随机信号的幅值概率密度函数对于纵坐标的不对称性∑== N i i N x 1 3 1 α 峭度β对大幅值非常敏感。当其概率增加时,β值将迅速增大,有利于探测奇异振动信号 ∑== N i i N x 1 14β 信号的预处理: 1 预滤波 2 零均值化:消除数据中的直流分量 )()()(^n x n x n x - -=。 3 错点剔除:以标准差为基础的野点剔除法 4 消除趋势项

相关分析 1 自相关分析a=xcorr(x) 自相关函数描述一个时刻的信号与另一时刻信号之间的相互关系 工程上利用自相关函数检查混杂在随机噪声中有无周期性信号 2 互相关函数a=xcorr(x,y) 利用互相关函数所提供的延迟信号,可以研究信号传递通道和振源情况,也可以检测隐藏在外界噪声中的信号 振动信号的频域分析方法 1 自功率谱密度函数(自谱) 自功率谱描述了信号的频率结构,反映了振动能量在各个频率上的分布情况,因此在工程上应用十分广泛 2 互功率谱密度函数(互谱) 互谱不像自谱那样具有比较明显的物理意义,但它在频率域描述两个随机过程的相关性是有意义的。 3 频响函数 它是被测系统的动力特性在频域内的表现形式 4 相干函数 表示整个频段内响应和激励之间的相关性)(2 f yx γ=0表示不相干,)(2 f yx γ=1完全相干,即响应完全由激励引起,干扰为零。相干函数可以用来检验频响函数和互谱的测量精度和置信水平,也可以用来识别噪声的声源和非线性程度。一般认为相干值大于0.8时,频响函数的估计结果比较准确可靠。

振动信号的采集与预处理

振动信号的采集与预处理 几乎所有的物理现象都可看作是信号,但这里我们特指动态振动信号。 振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多,因此,在采集振动信号时应注意以下几点: 1. 振动信号采集模式取决于机组当时的工作状态,如稳态、瞬态等; 2. 变转速运行设备的振动信号采集在有条件时应采取同步整周期采集; 3. 所有工作状态下振动信号采集均应符合采样定理。 对信号预处理具有特定要求是振动信号本身的特性所致。信号预处理的功能在一定程度上说是影响后续信号分析的重要因素。预处理方法的选择也要注意以下条件: 1. 在涉及相位计算或显示时尽量不采用抗混滤波; 2. 在计算频谱时采用低通抗混滤波; 3. 在处理瞬态过程中1X矢量、2X矢量的快速处理时采用矢量滤波。 上述第3条是保障瞬态过程符合采样定理的基本条件。在瞬态振动信号采集时,机组转速变化率较高,若依靠采集动态信号(一般需要若干周期)通过后处理获得1X和2X矢量数据,除了效率低下以外,计算机(服务器)资源利用率也不高,且无法做到高分辨分析数据。机组瞬态特征(以波德图、极坐标图和三维频谱图等型式表示)是固有的,当组成这些图谱的数据间隔过大(分辨率过低)时,除许多微小的变化无法表达出来,也会得出误差很大的分析结论,影响故障诊断的准确度。一般来说,三维频谱图要求数据的组数(△rpm分辨率)较少,太多了反而影响对图形的正确识别;但对前面两种分析图谱,则要求较高的分辨率。目前公认的方式是每采集10组静态数据采集1组动态数据,可很好地解决不同图谱对数据分辨率的要求差异。 影响振动信号采集精度的因素包括采集方式、采样频率、量化精度三个因素,采样方式不同,采集信号的精度不同,其中以同步整周期采集为最佳方式;采样频率受制于信号最高频率;量化精度取决于A/D转换的位数,一般采用12位,部分系统采用16位甚至24位。 振动信号的采样过程,严格来说应包含几个方面: 1. 信号适调 由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进行信号适调。适调包括大信号的衰减处理和弱信号的放大处理,或者对一些直流信号进行偏置处理,使其满足A/D输入量程要求。 2. A/D转换

信号分析方法

3.3齿轮及齿轮箱振动信号的分析方法 齿轮及齿轮箱中轴、齿轮和滚动轴承正常运行时,一般其振动信号是平稳信号,信号频率成分有各轴的转动频率和齿轮的啮合频率等,当发生故障,其振动信号频率成分或幅值发生变化,一般有以下三种特征: (1)信号是稳态的,但对应特征频率的幅值发生明显变化,振动能量有较大的变化。这类故障是以齿轮均匀磨损为代表的。 (2)信号是周期平稳信号,出现了有规律的冲击或调制现象。这类故障一般是齿轮或滚动轴承已经发生轻度或较严重的故障。 (3)信号中出现无规律的冲击或调制现象,这类故障一般是齿轮或滚动轴承已经发生严重的故障。 但是并不是说出现调制现象就一定有故障,所以就需要利用振动信号在频域和时域内进行诊断,来达到诊断故障的目的。而振动信号是齿轮故障特征信息的主要载体,目前能够通过各种振动信号传感器、放大器及其它测量仪器很方便地测量出齿轮箱的振动信号,通过各种分析和处理方法提取其故障特征信息。特征分析的结果是否正确、可靠,特征量的选择是否合理,在很大程度上决定了故障诊断的正确性。下面就介绍一些常用的齿轮振动信号常规的分析方法。 3.3.1时域统计特征 时域统计指标根据量纲和无量纲分为两个部分,一部分是常用的有量纲特征值,包括最大值、最小值、峰值、均值、均方值和方差;另一部分称为无量纲的特征分析值,包括方根幅值、平均幅值、均方幅值、峭度、波形指标、峰值指标、脉冲指标和裕度指标。在齿轮箱的状态检测和故障诊断中,要特别注意这两部分指标的综合运用,有量纲特征值一般随着齿轮箱的不同而改变,不同种类和大小的齿轮箱测量得到的有量纲特征值是没有对比性的,有时甚至同种类和大小的齿轮箱在不同工况下测量得到的有量纲特征值也不能直接进行对比。而不同种类和大小的齿轮箱测量得到的无量纲的特征分析值在一定的情况下是可以进行对比的。对于有限长度的离散时间序列1210,,,,-n x x x x ,其有量纲的统计特征值为: 最大值 }max{max i x x = 最小值 }min{min i x x = 峰峰值 min max x x x p p -=- 均值 ∑-==10 1 n i i x N x

滚动轴承的振动信号特征分析报告

南昌航空大学实验报告 课程名称:数字信号处理 实验名称:滚动轴承的振动信号特征分析实验时间: 2013年5月14日 班级: 100421 学号: 10042134 姓名:吴涌涛 成绩:

滚动轴承的振动信号特征分析 一、实验目的 利用《数字信号处理》课程中学习的序列运算、周期信号知识、DFT 知识,对给定的正常轴承数据、内圈故障轴承数据、外圈故障轴承数据、滚珠故障轴承数据进行时域特征或频域特征提取和分析,找出能区分四种状态(滚动轴承的外圈故障、内圈故障、滚珠故障和正常状态)的特征。 二、实验原理 振动机理分析:机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。 振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。 幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。 相位:振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。 在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。速度又与能量和功率有关,并决定动量的大小。 提取振动信号的幅域、时域、频域、时频域特征,根据特征进行故

障有无、故障类型和故障程度三个层次的判断。 三、 实验内容 Step1、使用importdata ()函数导入振动数据。 Step2、把大量数据分割成周期为单元的数据,分割方法为: 设振动信号为{x k }(k =1,2,3,…,n )采样频率为f s ,传动轴的转动速率为V r 。 采样间隔为: 1 s t f ?= (1) 旋转频率为: 60 r r V f = (2) 传动轴的转动周期为: 1 r T f = (3) 由式(1)和(3)可推出振动信号一个周期内采样点数N : 1 1s r r s f f T N t f f = ==? (4) 由式(2)可得到传动轴的转动基频f r =29.95Hz ,再由式(3)可得到一个周期内采样点数N=400.67,取N =400。 Step3、提取振动信号的特征,分析方法包括: 1、时域统计分析指标(波形指标(Shape Factor)、峰值指标(Crest Factor)、脉冲指标(Impulse Factor)、裕度指标(Clearance Factor)、峭度指标(KurtosisValue) )等,相关计算公式如下: (1)波形指标: P f X WK X = (5) 其中,P X 为峰值,X 为均值。p X 计算公式如下:

004-振动信号的采集与预处理

004-振动信号的采集与预处理

振动信号的采集与预处理 1振动信号的采集 振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多。在采集振动信号时应注意以下几点: 1.振动信号采集模式取决于机组当时的工作状态,如稳态、瞬态等; 2.变转速运行设备的振动信号采集在有条件时应采取同步整周期采集; 3.所有工作状态下振动信号采集均应符合采样定理。 1.1 信号适调 由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进行信号适调。适调包括大信号的衰减处理和弱信号的放大处理,或者对一些直流信号进行偏置处理,使其满足A/D输入量程要求。 1.2 A/D转换 A/D转换包括采样、量化和编码三个组成部分。 1.2.1采样 采样(抽样),是利用采样脉冲序列p(t)从模拟信号x(t)中抽取一系列离散样值,使之成为采样信号x(n△t)(n=0,1,2,…)的过程。△t称为采样间隔,其倒数称1/△t=f s之为采样频率。采样频率的选择必须符合采样定理要求。 1.2.2量化 由于计算机对数据位数进行了规定,采样信号x(n△t)经舍入的方法变为只有有限个有效数

字的数,这个过程称为量化。由于抽样间隔长度是固定的(对当前数据来说),当采样信号落入某一小间隔内,经舍入方法而变为有限值时,则 产生量化误差。如8位二进制为28 =256,即量化增量为所测信号最大电压幅值的1/256。 1.2.3 编码 振动信号经过采样和量化后,量化后的数据按照一定的协议进行编码,成为处理器可以处理的数据。 采样定理解决的问题是确定合理的采样间隔△t 以及合理的采样长度T ,保障采样所得的数字信号能真实地代表原来的连续信号x(t)。 衡量采样速度高低的指标称为采样频率f s 。一般来说,采样频率f s 越高,采样点越密,所获得的数字信号越逼近原信号。为了兼顾计算机存储量和计算工作量,一般保证信号不丢失或歪曲原信号信息就可以满足实际需要了。这个基本要求就是所谓的采样定理,是由Shannon 提出的,也称为Shannon 采样定理。 Shannon 采样定理规定了带限信号不丢失信息的最低采样频率为: 2s m f f ≥或2s m ωω≥ 式中f m 为原信号中最高频率成分的频率。 采集的数据量大小N 为: T N t =? 因此,当采样长度一定时,采样频率越高,采集的数据量就越大。 使用采样频率时有几个问题需要注意。 一, 正确估计原信号中最高频率成分的频率,对于采用电涡流传感器测振的系统来说,一

基于LabVIEW的机械振动信号分析系统的应用

基于LabVIEW的机械振动信号分析系统的开发 随着现代化工业大生产的不断发展,机械设备的结构变得越来越复杂,并且经常运行于高速、重载以及恶劣环境等条件下。由于各种因素的干扰和影响,会导致机械设备发生故障,轻则降低生产质量或导致停产,重则会造成严重的甚至是灾难性的事故。为此,为尽最大可能地避免事故的发生,机械设备状态监测与故障诊断技术近年来得到了极为广泛的重视,其应用所达到的深入程度十分令人鼓舞。目前,机械设备状态监测与故障诊断已经基本上形成了一门既有理论基础、又有实际应用背景的交叉性学科。 在实际应用中,故障与征兆之间往往并不存在简单的一一对应关系,一种故障可能对应着多种征兆,反之一种征兆也可能是由于多种故障所致。因此,通常必须要借助信号处理等手段从采集的原始数据中加工出特征信息,提取特征量,从而保证有效、准确地进行故障诊断,也就是说,信号处理与故障诊断有着极为密切的联系,信号特征提取是故障诊断中必不可少的一个重要环节[1]。 故障诊断技术的各种理论研究和方法探讨最终都必须落实到具体诊断装置的研制上。而传统的测控仪器以硬件为关键,其开发与维护的费用高、技术更新周期长、价格高、仪器功能柔性差、不易与其他设备连接等特点,越来越不能满足科技进步的要求。虚拟仪器的出现改变了这样的局面,它充分利用了计算机技术来实现和扩展传统测试系统与仪器的功能。 NI公司的图形化编程语言LabVIEW成为当今虚拟仪器开发最流行的一种语言。LabVIEW 的最大特点是用图标代码来代替编程语言创建应用程序。LabVIEW有丰富的函数、工具包、软件包、数值分析、信号处理、设备驱动等功能,还有应用于专业领域的专业模块,解决了传统的虚拟仪器系统采用C、C++、汇编等语言存在的编程、调试过程繁琐、开发周期长、对编程人员要求高等问题,广泛地应用于航空、航天、电子、机械等众多领域[2,3]。 本文基于LabVIEW开发一个针对旋转机械故障诊断的振动信号分析系统,并在成都飞机设计研究所某航空设备监控上获得了应用。 系统设计 根据信号分析系统的设计原则,又考虑到LabVIEW具有图形化编程特点以及丰富的工具箱。因此,笔者选用NI公司的Lab VIEW 7.1作为信号分析系统的开发平台。 笔者开发的信号分析系统主要分为三大模块,即文件管理模块(文件的读取及存储)、信号分析模块、显示模块。按照图1所示的使用流程对这三个模块进行设计。

信号分析方法概述

信号分析方法概述 通信的基础理论就是信号分析的两种方法:1 就是将信号描述成时间的函数,2就是将信号描述成频率的函数。 也有用时域与频率联合起来表示信号的方法。时域、频域两种分析方法提供了不同的角度,它们提供的信息都就是一样,只就是在不同的时候分析起来哪个方便就用哪个。 思考: 原则上时域中只有一个信号波(时域的频率实际上就是开关器件转动速度或时钟循环次数,时域中只有周期的概念),而对应频域(纯数学概念)则有多个频率分量。 人们很容易认识到自己生活在时域与空间域之中(加起来构成了三维空间),所以比较好理解时域的波形(其参数有:符号周期、时钟频率、幅值、相位)、空间域的多径信号也比较好理解。 但数学告诉我们,自己生活在N维空间之中,频域就就是其中一维。时域的信号在频域中会被对应到多个频率中,频域的每个信号有自己的频率、幅值、相位、周期(它们取值不同,可以表示不同的符号,所以频域中每个信号的频率范围就构成了一个传输信道。 时域中波形变换速度越快(上升时间越短),对应频域的频率点越丰富。 所以:OFDM中,IFFT把频域转时域的原因就是:IFFT的输入就是多个频率抽样点(即各子信道的符号),而IFFT之后只有一个波形,其中即OFDM符号,只有一个周期。 时域 时域就是真实世界,就是惟一实际存在的域。因为我们的经历都就是在时域中发展与验证的,已经习惯于事件按时间的先后顺序地发生。而评估数字产品的性能时,通常在时域中进行分析,因为产品的性能最终就就是在时域中测量的。 时钟波形的两个重要参数就是时钟周期与上升时间。 时钟周期就就是时钟循环重复一次的时间间隔,通产用ns度量。时钟频率Fclock,即1秒钟内时钟循环的次数,就是时钟周期Tclock的倒数。 Fclock=1/Tclock

基于LabVIEW的陀螺仪振动信号采集与分析

基于LabVIEW 的陀螺仪振动信号采集与分析 窦修朋,尤传富,欧阳国鑫 (长春工业大学电气与电子工程学院,吉林长春130012) 摘 要:针对陀螺马达振动信号的微弱性,通过数据采集卡检测到的信号要进行大量复杂的线形系统分析,要求数 据准确,根据虚拟仪器设计思想在PC 下利用图形化编辑语言LabVIEW 对陀螺马达的振动信号进行过采样数据采集、波形显示、时域分析、数字滤波、数据存储、频域分析,从而实现对振动信号的多通道信号采集和实时分析。系统逻辑图形清晰,可以有效的防止波形失真,误差小,起到了很好的故障诊断分析作用,在工程应用中实用性强。 关键词:LabVIEW 系统;虚拟仪器;过采样;时域分析;频域分析中图分类号:TP311.52;TP274+.2 文献标识码:A 文章编号:1674-5124(2009)02-0064-03 Acquisition and analysis of gyroscopic vibration signal based on LabVIEW DOU Xiu-peng ,YOU Chuan-fu ,OUYANG Guo-xin (School of Electric and Electricity Engineering ,Changchun University of Technology ,Changchun 130012,China )Abstract:According to the weakness of the vibration signal of gyroscope motors ,a large number of complex linear system analyses needed to process the signal detected by data acquisition card ,and the data must be precise ,those of the gyroscope motor vibration signal such as data acquisition ,waveform display ,time domain analysis ,digital filtering ,data storage and frequency -domain and so on were analyzed according to the virtual instrument design with graphical progamming software LabVIEW on PC to realize the multi -channel signal acquisition and real -time analysis of the vibration signal.The logic diagrams of this system are clear ,the waveform distortion can be effectively prevented ,and the error can be reduced.Thus ,this system can play a very important role in the fault diagnosis and has very practical impacts on engineering. Key words:LabVIEW ;Virtual instrument ;Over-sampling ;Time-domain analysis ;Frequency domain analysis 收稿日期:2008-09-05;收到修改稿日期:2008-11-30作者简介:窦修朋(1982-),男,河北沧州市人,硕士研究生, 专业方向为信号分析及处理。 1引言 随着科学的不断发展,人们对惯性导航系统的 陀螺仪要求越来越高。 陀螺马达是陀螺仪的心脏,要使陀螺定向精度高,必须保证陀螺马达在工作过程中正常工作,尽量减少无规则振动和噪声。转子要保持高度的动态平衡,除此之外,马达轴承在高速旋转时也产生振动信号,转子高速旋转引起风阻和由此引起的噪声会诱导转子转动。而信号往往淹没在机械本体几信号处理电路包含的大量噪声中[1],这些振动和噪声都会影响陀螺罗盘的定向性能。因此,在陀螺马达的设计和安装高度中,非常需要明确振源,是由转子不平衡引起,还是轴承振动或风阻噪声引起的。 振动测试及分析系统主要用来分析陀螺转子的振动情况。引起陀螺转子振动的因素可分为质心 偏移因素和非质心偏移因素,质心偏移因素可通过 动平衡消除,而非质心偏移因素多数是由轴承(特别是滚珠轴承)引起的,无法通过动平衡消除。振动大的陀螺在系统使用中会对系统性能产生较大影 响。因此, 在陀螺总装前对陀螺马达进行振动测试和分析十分必要。 计算机和仪器的密切结合而成的虚拟仪器是目前仪器发展的一个重要方向。虚拟仪器的最突出的特点可以发挥出计算机的能力,具有强大的数值处理功能,可以根据自己的需要创造出功能强大的 仪器。在这一领域内, 使用较为广泛的计算机和开发环境的是美国NI 公司的LabVIEW 。整个系统只有输入、输出端,其他仪器功能键都在可视软件板上完成,操作简单方便[2],并且能进行远程控制[3]。 2系统硬件设计 如图1所示,陀螺仪振动的信号由传感器接收,经信号调理、数据采集卡后传递到虚拟仪器控制面版,其主要功能如下。 第35卷第2期2009年3月中国测试 CHINA MEASUREMENT &TEST Vol.35No.2Mar.2009

振动信号预处理方法-平滑处理及其MATLAB实现

本科生毕业论文 振动信号预处理方法-平滑处理及其MATLAB实现 作者姓名 学院:机电工程学院 专业: 班级: 学号: 指导教师: 职称(或学位): 2016年5月1

原创性声明 本人郑重声明:所呈交的论文(设计),是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文(设计)不含任何其他个人或集体已经发表或撰写过的作品成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 学生签名:年月日 指导声明 本人指导的同学的毕业论文(设计)题目大小、难度适当,且符合该同学所学专业的培养目标的要求。本人在指导过程中,通过网上文献搜索及文献比对等方式,对其毕业论文(设计)内容进行了检查,未发现抄袭现象,特此声明。 指导教师签名:年月日

目录 1 绪论 (1) 2 振动信号预处理算法分析 (1) 2.1 算术平均值法 (2) 2.2 加权平均值法 (2) 2.3 中值法 (3) 2.4 滑动平均值法 (3) 2.5 五点三次平滑法 (4) 2.6 模糊控制算法 (6) 3 基于MATLAB的振动信号平滑处理 (6) 3.1 MATLAB简介 (6) 3.2 算例 (6) 3.3 计算代码 (7) 3.4 算法机理 (8) 4 结果分析 (9) 5 总结 (10) 致谢: (11) 参考文献: (11)

振动信号预处理方法-平滑处理及其MATLAB 实现 作者姓名(宋体四号,居中) (机电工程学院指导教师:XXX)(楷体五号,居中) 摘要:进行振动信号测试时往往由于外界干扰的存在,使得测量信号不光滑,质量差,严重时后续分析难以展开,可见振动信号预处理是必要的步骤。本文对振动信号预处理算法进行详细分析,讨论若干种平滑处理算法,并以五点三次平滑法与滑动平均值法为例,具体讨论了平滑处理的流程。结果表明结果表明五点滑动平均法与五点三次平滑法两种算法都简单明了,可以以很小的计算量实现良好预处理效果,提高振动信号质量。两种算法都是有效的预处理方法,借助于MATLAB软件平台实现简便,因此有很强的实用价值。 关键词:振动信号;平滑处理;平均值;MATLAB Vibration signal preprocessing methods - smoothing processing by MATLAB Name of author College of Mechanical and Electrical Engineering, Advisor: XXX Abstract:When the vibration signal is tested, the measurement signal is not smooth and low quality because of outside interference. If the situation is serious, it is difficult to carry out subsequent analysis, so vibration signal preprocessing step is necessary.This paper will dicuss the vibration signal preprocessing algorithm by the smoothing algorithms and five cubic smoothing the sliding average method. The result show that the two algorithms of five-point moving average and three fiver-point smoothing are both simple ,achieve good pretreatment effect with small amout of computation, imrove the quality of vibration signal. Both algorithms are effective pretreatment methods by using MATLAB software platform, which has a strong practical value. Keywords: Vibration signal; smoothing; mean; MATLAB

相关主题