搜档网
当前位置:搜档网 › 反比例函数与几何图形相结合精编版

反比例函数与几何图形相结合精编版

反比例函数与几何图形相结合精编版
反比例函数与几何图形相结合精编版

图像共存

1、函数y x m =+与(0)m

y m x

=

≠在同一坐标系内的图象可以是( )

A .

B .

C .

D .

2、在同一直角坐标系中,函数k kx y +-=与)0k (x

k

y ≠=

的图象大致是( )

A.

B. C. D. 练习:在同一坐标系中,y =(m -1)x 与x

m

y -=的图象的大致位置不可能的是

( ).

一\反比例函数与直线 (1)与面积相关

1.如图,已知一次函数y=kx+b 的图象与反比例函数y=8

x

-的图象交于A 、B 两点, 且点A 的横坐标和点B 的纵坐标都是-2,求: (1)一次函数的解析式; (2)△AOB 的面积.

2.如图,直线22

1

+=

x y 分别交x 轴于点A ,交y 轴于点C ,P 是该直线上在第一象限内一点,PB ⊥x 轴,B 为垂足,且△ABP 的面积为9。(1)求点P 的坐标;(2)设点M 与点P 在同一反比例函数图像上,且点M 在直线PB 右侧,作MN ⊥x 轴,N 为垂足,求:当△BMN ∽△CAO 时,点M 的坐标。

O

A

M

x B

y

O

y

x

A

C

P B

3.已知:如图,双曲线5

y x

=

在第一象限的一支上有一点C (1,5),过点C 的直线y=-kx+b (k>0)与x 轴交于点A (a ,0)。(1)求点A 的横坐标a 与k 的函数关系式;(2)当该直线与双曲线在第一象限的另一交点D 的横坐标是9时,求△COA 的面积。

练习:

1.如图,已知双曲线k

y x

=

,经过点D (6,1),点C 是双曲线第三象限上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;

(2)若△

BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.

2.直线b kx y +=与反比例函数x

k y '

=

(x <0)的图象相交于点A 、点B ,与x 轴

交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.

(1)试确定反比例函数的关系式; (2)求△AOC 的面积.

(2)与函数值的大小比较相关

已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数m

y x

=的图象的两个交点.

(1)求反比例函数和一次函数的解析式;

(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0=-

+x m

b kx 的解(请直接写出答案)

; (4)求不等式0<-+x

m

b kx 的解集(请直接写出答案)

二\反比例函数与三角形(等腰,等边,等腰直角三角形相关)

3如图,将一块直角三角形纸板的直角顶点放在)2

1,1(C 处,两直角边分别 与y x ,轴平行,纸板的另两个顶点B A ,恰好是直线2

9

+

=kx y 与双曲线 )0(>=

m x

m

y 的交点.求m 和k 的值;

4.如图,等边△OAB 和等边△AFE 的一边都在x 轴上,双曲线y =(k >0)经过边OB 的中点C 和AE 的中点D .已知等边△OAB 的边长为4. (1)求该双曲线所表示的函数解析式; (2)求等边△AEF 的边长.

)0

x>的图像上,

11

P OA

?,

1

OA、

12

A A、

23

A A,……

三\反比例函数与四边形结合(与矩形,正方形相关)

5. 、如图所示,矩形ABCD中,2

AB=,3

AD=,P为BC上与B、C不重合的任意一点,设PA x

=,D到AP的距离为y,求y与x的函数关系式,并指出函数类型.

A

P

E

D

B

C

6. .已知:如图,正比例函数y ax

=的图象与反比例函数

k

y

x

=的图象交于点()

32

A,.(1)试确定上述正比例函数和反比例函数的表达式;

(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)()

M m n

,是反比例函数图象上的一动点,其中03

m

<<,过点M作直线MN x

∥轴,交y轴于点B;过点A作直线AC y

∥轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

A (-4,0),

B (2,0),

C (3,3),反比例函数y =

x

m

的图象经过点C 。 (1)求此反比例函数的解析式;

(2)将□ABCD 沿x 轴翻折得到□AD /C /B ,请你通过计算说明点D /

在双曲线上;

(3)请你画出△AD /

C ,并求出它的面积。

8如图,已知矩形OABC 中,OA=2,AB=4,双曲线k

y x

=

(k >0)与矩形两边AB 、BC 分别交于E 、F 。

(1)若E 是AB 的中点,求F 点的坐标;

(2)若将△BEF 沿直线EF 对折,B 点落在x 轴上的D 点,作EG ⊥OC ,垂足为G ,证明△EGD

∽△DCF ,并求k 的值。

练习:

已知:如图,点(1,3)在函数(0)k

y k x

=

≠的图象上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数(0)k y x x

=

的图象又经过A 、E 两点,且E

点的横坐标为m 。(1)求k 的值;

(2)求C 点的坐标(用m 的代数式表示);(3)当∠ABD=45°时,求m 的值。

二次函数与几何图形结合练习

3.2 与几何图形结合3.2.1 与等腰三角形结合1、如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交 x 轴于另 一点C (3,0). ⑴求抛物线的解析式 ; ⑵在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的 Q 点坐标;若不存在,请说明理由 2、如图,已知直线y=x 与交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y=x 的函数值为y 1,二次函数 的函数值为y 2.若y 1>y 2,求x 的 取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?并求出不 少于3个满足条件的点 P 的坐标. y =x 2 y =x 2

3、如图,已知二次函数的图象经过点A (3,3)、B (4,0)和原点O 。P 为二次函数图象 上的一个动点,过点 P 作x 轴的垂线,垂足为 D (m ,0),并与直线OA 交于点C . (1)求出二次函数的解析式; (2)当点P 在直线OA 的上方时,求线段PC 的最大值; (3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出 P 的坐 标;如果不存在,请说明理由. 3.2.2 与直角三角形结合1、二次函数的图象的一部分如图所示.已知它的顶点 M 在第二象限,且经 过点A(1,0)和点B(0,l).(1)试求,所满足的关系式;(2)设此二次函数的图象与x 轴的另一个交点为 C ,当△AMC 的面积为△ABC 面积的 倍时,求a 的值;(3)是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说 明理由. 2 y ax bx c a b 5 4

平面图形与立体图形的认识

【几何图形】 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形分为柱体,锥体,球体 多面体:围城棱柱和棱锥的面都是平的面,像这样的立体图形叫做多面体 欧拉公式:定点数+面数-棱数=2 练习: 1.下面几何体中,不是多面体的是() A球体 B 三棱锥 C 三棱柱D四棱柱 2.下列判断正确的是 A长方形是多面体B柱体是多面体 C圆锥是多面体D棱柱、棱锥都是多面体 3、将半圆绕它的直径旋转一周形成的几何体是() A、圆柱 B、圆锥 C、球 D、正方体 【点、线、面、体】 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 例、右侧这个几何体的名称是_______;它由_______个面组成;它有_______个顶点;经过每个顶点有_______条边。 解答:五棱柱,7,10,3 【直线】 1、概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 2、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 3、表示:一条直线可以用一个小写字母表示;或者用两个大写字母表示 练习: 1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线. 2、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________. 【射线】 直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD . (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+. (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式是_______. 2.如图,P 是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于点Q ,已知AD=6cm,AB=8cm ,设AP=x(cm),BQ=y(cm). (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)是否存在点P ,使BQ=2AP 。若存在,求出AP 的长;若不存在,说明理由。 3.如图,矩形EFGH 内接与△ABC ,AD ⊥BC 与点D ,交EH 于点M ,BC=10cm , AD=8cm , 设EF=x cm ,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x ,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③ x 取何值时,矩形EFGH 的面积最大。 A B D A B C D E F M H G

5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l )如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l )中y 与x 之间的函数关系式还成立?试说明理由. 6.已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2. (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式表示); D C A B E F D C A B E F H G

初中数学几何基本图形

432 1F E D C B A 432 1F E D C B A F E D C B A H G F E D C B A c b a C B A D C B A F E D C B A C B A 初中数学几何基本图形 1. 平行线的性质: ∵A B ∥CD (已知) ∴∠1=∠2(两直线平行,同位角相等。) ∴∠1=∠3(两直线平行,内错角相等。) ∴∠1+∠4=180° (两直线平行,同旁内角互补。) 2. 平行线的判定: (1)∵∠1=∠2(已知) ∴A B ∥CD (同位角相等,两直线平行。) (2)∵∠1=∠3(已知) ∴A B ∥CD (内错角相等,两直线平行。) (3)∵∠1+∠4=180o (已知) ∴A B ∥CD (同旁内角互补,两直线平行。) 3. 平行线的传递性: ∵A B ∥CD ,A B ∥EF (已知) ∴C D ∥EF (如果两条直线都与第三条直线平行, 那么这两条直线也互相平行。) 4. 两条平行线间距离: ∵A B ∥CD ,EF ⊥CD ,GH ⊥CD (已知) ∴EF=GH (平行线间距离处处相等。) 5. 三角形的性质: (1)∠A+∠B+∠C=180o (三角形内角之和为180o 。) (2)a+b >c ,∣a-b ∣<c (三角形任意两边之和大于第三边, 三角形任意两边之差小于第三边。) (3)∠ACD=∠A+∠B (三角形一个 外角等于与它不相邻的两个外角之和。) 6.三角形中重要线段: (1)∵AD 是△ABC 边BC 上的高(已知) ∴AD ⊥BC 即∠ADC=900(三角形高的意义) (2)∵BF 是△ABC 边AC 上的中线(已知) ∴AF=FC=12 AC (AC=2AF=2FC )(三角形中线的意义) (3)∵CE 是△ABC 的∠ACB 的角平分线(已知) ∴∠ACE=∠BCE= 1 2 ∠ACB (∠ACB=2∠ACE=2∠BCE )(三角形角平分线的意义) 6. 等腰三角形的性质和判定: (1)∵AB=AC (已知)∴∠B=∠C (等边对等角) (2)∵∠B=∠C (已知)∴AB=AC (等角对等边)

平面图形与立体图形教案

4.1几何图形 4.1.1立体图形与平面图形 【教学目标】 1、能从实物图形中抽取出几何图形;能在生活中寻找出相应的几何图形;会认识多见的平面几何图形和立体几何图形。 2、通过实物抽取几何图形的体验,培养自己的几何图形感,能用几何图形描述生活中的物体。 3、通过对多彩多姿的图形世界体验,激发自己对几何学习的兴趣,也体会学习的喜悦。 【教学重难点】 1.重点: (1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;?初步建立空间观念. (2)理解几何图形是从实物图形中抽象出来的。 (3)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣. 2.难点: (1)立体图形与平面图形之间的互相转化. (2)从现实情境中,抽象概括出几何图形 【教具准备】 长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片. 【教学过程】

一、引入新课 由多媒体展示美丽的图形世界 在同学们所观看中,有哪些是我们熟悉的几何图形? 二、新授 1.学生在回顾刚才所看到的图片,充分发表自己的意见,?并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等. 教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征. 3.立体图形的概念. (1)长方体、正方体、球、圆柱、圆锥等都是立体图形. (2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥) (3)用多媒体放映课本4.1-4的幻灯片 (4)提出问题:在这个幻灯片中,包含哪些简单的平面图形? (5)探索解决问题的方法. ①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案. ②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念. 长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.

中考数学重难点专题讲座第八讲动态几何与函数问题

中考数学重难点专题讲座 第八讲 动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E. (1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积. (2)当24t <<时,求S 关于t 的函数解析式. 【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二

的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。 【解】 (1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==, ; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为: ()()112441222 AB OC OA +?=+?=..... (3分) (2)当24t <<时, 阴影部分的面积=直角梯形OABC 的面积-ODE ?的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系) ∴1122S OD OE =-? ∵142 OD OD t OE ==-, ∴()24OE t =- . ∴()()()21122441242 S t t t =-?-?-=-- 284S t t =-+-. 【例2】 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x =>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;

小学数学 几何图形的认识.教师版

本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力. 几何图形的定义: 1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素. (1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置. (2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点. (3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有 尽头. (4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸 (5)两条直线相交: 两条直线相交,只有一个交点. (6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交. (7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边. (8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角. 教室里天花板上的角都是直角. 锐角比直角小,钝角比直角大. (9)三角形:三角形有三条边,三个角,三个顶点. 边 边 顶点 直角锐角钝角 顶角顶角 边边 角 角 角顶角 边 知识点拨

(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫 斜边. (11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外 的一条边叫”底”. (12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形. (13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等). (14)四边形:四边形有四条边,内部有四个角. (15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角. (16)正方形:正方形的四条边都相等,四个角都是直角. (17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等. (18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下 底,相等的两边叫腰. 直角边 斜边 直角边 腰 腰 底 直角边 直角边 斜边 腰腰 底边边 边 角 角 角 腰 腰 下底 上底

二次函数与几何图形结合题及答案

1.如图,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标; (2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积; (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 解:(1)令0y =,得2 10x -= 解得1x =± 令0x =,得1y =- ∴ A (1,0)- B (1,0) C (0,1)- ……………………3分 (2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O= 45 ∵A P ∥CB , ∴∠P AB = 45 过点P 作P E ⊥x 轴于E ,则?A P E 为等腰直角三角形 令O E =a ,则P E =1a + ∴P (,1)a a + ∵点P 在抛物线21y x =-上 ∴2 11a a +=- 解得12a =,21a =-(不合题意,舍去) ∴P E =3……………………………………………………………………………5分 ∴四边形ACB P 的面积S =12AB ?O C +12AB ?P E =11 2123422 ??+??=………………………………6分 (3). 假设存在 ∵∠P AB =∠BAC =45 ∴P A ⊥AC ∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC =2 在Rt △P AE 中,AE =P E =3 ∴A P= 32 ………8分 设M 点的横坐标为m ,则M 2 (,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当?A MG ∽?P CA 时,有 AG PA =MG CA ∵A G=1m --,MG=2 1m -即2322 = 解得11m =-(舍去) 23m =(舍去)………9分 G M C B y P A o x

几何图形中的动态问题

几何图形中的动态问题 ★1.如图,在矩形ABCD中,点E在BC边上,动点P 以2厘米/秒的速度从点A出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从点A出发经x(x>0)秒后,△ABP的面积是y. (1)若AB=8cm,BE=6cm,当点P在线段AE上时,求y关于x的函数表达式; (2)已知点E是BC的中点,当点P在线段ED上时,y=12 5x;当点P在线段AD上时,y=32-4x.求y关于x的函数表达式. 第1题图 解:(1)∵四边形ABCD是矩形,∴∠ABE=90°, 又∵AB=8cm,BE=6cm,

∴AE=AB2+BE2=82+62=10厘米,如解图①,过点B作BH⊥AE于点H, 第1题解图① ∵S△ABE=1 2AE·BH=1 2AB·BE, ∴BH=24 5cm,又∵AP=2x, ∴y=1 2AP·BH=24 5x(0

∴AE =DE , ∵y =12 5x (P 在ED 上), y =32-4x (P 在AD 上), 当点P 运动至点D 时,可联立得,?????y =125x y =32-4x , 解得x =5, ∴AE +ED =2x =10, ∴AE =ED =5cm , 当点P 运动一周回到点A 时,y =0, ∴y =32-4x =0, 解得x =8, ∴AE +DE +AD =16, ∴AD =BC =6cm ,∴BE =3cm , 在Rt △ABE 中, AB = AE 2-BE 2=4cm , 如解图②,过点B 作BN ⊥AE 于N ,则BN =12 5cm ,

初中几何基本图形归纳(基本图形+常考图形)

初中几何常见基本图形 AOC=BOD AOD=BOC OD OE ①BAD= C CAD= B ②AD2=BD·CD ③AB2=BD·BC ④AC2=CD·BC P=A+B+C A+B=C+D B=D P=90+A/2 P=A/2

P=90-A/2 ①AC平分BAD ②AB=CB ③BC∥AD AP平分BAC PB=PC ①AB=AC ②BD=CD ③AD BC

几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为 a 2 1 3 ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点:

F E D B A F E D C B A D C B A D C A 45 A B C 为 a 2 5 ; ②当BD 是角平分线时,BD 长为a 224-。 ①当D 是AC 中点时,BD 长 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠ AED=450:①△ABE ∽ECD ②设BE=x ,则CD=a x ax 2 2-。 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则: 2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE=2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x , 有()2 22 34x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 C B A 300 A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G

二次函数与几何图形综合题(可编辑修改word版)

二次函数与几何图形综合题 类型 1 二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段BC 上的一个动点,过P 作PE 垂直于x 轴与抛物线交于点E,设P 点横坐标为m,PE 长度为y,请写出y 与m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点D 使以A、B、D 为顶点的三角形与△COB 相似?若存在,试求出点D 的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy 中,直线y=x+4 与坐标轴分别交于A,B 两点,过A,B 两点的抛物线为y=-x2+bx+c.点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C,交抛物线于点E. (1)求抛物线的解析式; (2)当DE=4 时,求四边形CAEB 的面积; (3)连接BE,是否存在点D,使得△DBE 和△DAC 相似?若存在,求出D 点坐标;若不存在,说明理由. 3.(2015·襄阳)边长为 2 的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E 两点.

(1)求抛物线的解析式; (2)点P 从点C 出发,沿射线CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点P 作PF⊥CD 于点F.当t 为何值时,以点P,F,D 为顶点的三角形与△COD 相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由. 类型 2 二次函数与平行四边形的存在性问题 1.(2014·曲靖)如图,抛物线y=ax2+bx+c 与坐标轴分别交于A(-3,0),B(1,0),C(0,3)三点,D

二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322 ++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线 x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2 经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题 类型 1二次函数与相似三角形的存在性问题 1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.

2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式; (2)当 DE= 4 时,求四边形CAEB 的面积; (3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.

3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点. (1)求抛物线的解析式; (2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似? (3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

几何图形与平面图形

课题 4.1.1几何图形与平面图形 一、学习目标 1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程; 2、能由实物形状想象出几何图形,由几何图形想象出实物形状; 3、能识别一些简单几何体,正确区分平面图形与立体图形。 学习重点:识别简单的几何体 学习难点:从具体事物中抽象出几何图形 二、自主探究 1、几何图形 (1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界; (2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题: 从整体上看,它的形状是 从不同侧面看,你看到的图形是 看棱得到的是 看顶点的到的是 。 我们见过的长方体、圆柱、圆锥、球、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。 2、立体图形 说一说下面这些几何图形有什么共同特点? 有些几何图形的各部分不都在同一平面内,它们是 .(如: ) 请再举出一些立体图形的例子. 想一想 生活中还有哪些物体的形状类似于这些立体图形呢? 3、平面图形 (1)纸盒 (1)长方体 (2)长方形 (3)正方形(4)线段 点

说一说下面这些几何图形又有什么共同特点? 平面图形的概念 线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是 。 请再举出一些平面图形的例子。 思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系? 三、课堂练习 课本119页练习 四、要点归纳 1、 2、平面图形与立体图形的关系: 立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。 五、拓展训练 1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球. 其中属于立体图形的是( ) A. ①②③; B. ③④⑤; C. ① ③⑤; D. ③④⑤⑥ 【总结反思】 现实物体 几何图形 平面图形 立体图形 看外形

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD 、 (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+、 (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式就是_______、 2、如图,P 就是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于 点Q,已知AD=6cm,AB=8cm,设AP=x(cm),BQ=y(cm)、 (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)就是否存在点P,使BQ=2AP 。若存在,求出AP 的长;若不存在, 说明理由。 3、如图,矩形EFGH 内接与△ABC,AD ⊥BC 与点D,交EH 于点M,BC=10cm, AD=8cm, 设EF=x cm,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③x 取何值时,矩形EFGH 的面积最大。 5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l)如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l)中y 与x 之间的函数关系式还成立?试说明理由. 6、已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2、 (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积 (用含a 的 A B C D P Q A B C D E F M H G

我们身边的几何图形

第一章基本的几何图形 §1.1我们身边的图形世界 【学习重点与难点】 重点:了解几何体、多面体、面、平面图形的特征. 难点:培养提高学生的观察力、想象力、和创新能力. 【学习过程】 导入新课 看P4页美丽海滨城市图片,你看到哪些熟悉的图形?小组讨论回答看谁说的多? 一、新知学习: 1.几何体的认识 (1)你熟悉下面的立体图形吗?用线把图形和它们的名称连起来 球正方体圆柱圆锥长方体 (2)像长方体、正方体、圆柱、圆锥、球等都是()简称为体()和()的面都是平的,像这一类几何体也叫多面体.()()()的面有曲的面. 2、平面的学习 (1)数学上的“平面”是 ,平面没有,没有, 是 . (2)正方体由个面围成,圆柱是由个面和个面围成,圆锥是由个面和个面围成,球是由个面围成 §1.2点、线、面、体 重点:点线面体如何形成的. 难点:对几何图形本质特征的正确认识. 【学习过程】 一、导入新课:请同学们自己看课本P8页上的图画,你有什么发现?.

二、新知学习: 1、点线面体如何形成? 从课本P8页上的图中你发现了:点动成,线动成,面动成 2、几何图形 (1)都是几何图形。 (2)几何图形分为平面图形和立体图形 如果,那么这样的几何图形叫做平面图形。 如果,那么这样的几何图形叫做立体图形。 你能举出你学过、见过的平面图形吗? 你能举出你学过、见过的立体图形吗? 3. 几何图形的本质特征 (1)观察圆柱和长方体,正方体,我们发现面与面的交接处是,线可以是直的,也可以是曲的。 在长方体和正方体中,相邻两个面的交接处是一段直的线,我们把它叫做。 (2)线与线的交接处是。 在长方体或正方体中,棱与棱的公共点叫做长方体或正方体的。 注意:1.点是组成几何体的基本元素。 2.点没有大小,线没有粗细,面没有厚薄。 2.动动手:你一定能从中发现数学的美妙! 请同学们自己做一个正方体纸盒. 1.观察立方体的形状它是有几个面组成的?这些面的大小和形状都相同吗? 2.两个面的相接处是什么图形? 3.棱和棱的相接处是什么图形? 4.数一数立方体有几条棱?几个顶点? 5.把正方体纸盒剪开得到一个什么图形?如果展开的 方法不同,得到的图形相同吗? 动手做一做你能得到多少种平面图形?与同学交流.

《立体图形与平面图形》练习题

4.1 多姿多彩的图形(1) 几何图形 长方形的是()1.如图所示,水平放置的下列几何体,从正面看到的视图不是 .. 2.下列几何体中,直棱柱的个数是() A.5 B.4 C.3 D.2 3.直四棱柱、长方体和正方体之间的包含关系是() A B C D 4.若一个棱柱有10个顶点,则下列说法正确的是() A.这个棱柱有4个侧面 B.这个棱柱有5条侧棱 C.这个棱柱的底面是十边形 D.这个棱柱是一个十棱柱 5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是() A B C D 6.举出两个俯视图为圆的实物例子: 、. 7.写出下列立体图形的名称(从左到右依次写出): . 8.如果直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为 cm. 9.分别画出图中的物体的三个视图: 10.如图①②③④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.

(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表: (2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系; (3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数. 参考答案 1.答案: B 解析:B答案中圆锥的主视图是三角形. 2.答案: C 解析:直棱柱的侧面应是矩形,符合这个条件的有第一个,第五个和第六个.故选C.

3.答案:A 解析:正方体是特殊的长方体,长方体又是特殊的直四棱柱,故选A.4.答案:B 解析:一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B. 5.答案:A 解析:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A. 6.圆柱,球,圆锥. 7.从左到右依次为:圆柱、长方体、四棱锥、圆锥. 8.直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为6×4=24cm.故答案为24. 9.三个视图如下: 10.解:(1)结和图形我们可以得出: 图①有4个顶点、6条边、这些边围成3个区域; 图②有7个顶点、9条边、这些边围成3个区域; 图③有8个顶点、12条边、这些边围成5个区域; 10个顶点、15条边、这些边围成6区域.

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

初中几何中常见的基本图形1

几何中常见的基本图形(1) 若AC=BD则AB=CD 若AB=CD则AC=BD 若∠1=∠2,则∠BAD=∠ CAE; 若∠BAD=∠CAE,则∠1=∠2。 如左图箭头形状: ∠BPC=∠A+∠B+∠C

如左图蝶形所示 ∠BAC +∠DBA =∠BDC +∠ DCA 如左图所示 点A 、O 、B 在一条直线上, 线段OE 平分∠BOC ,OD 平分∠COA ,则OD ⊥OE 或∠EOD =90° A 线段BP 平分∠CBA ,PC 平分∠ACB 则∠BPC =90°+1 2 ∠BAC B

①AC 平分∠DAB ;②AD =CD ;③CD //AB 以上3个结论“有二可推另一个 ” A 若AP 平分∠CAB ,PB ⊥AB ,PC ⊥AC ,则PB =PC ; 相反,若PB ⊥AB ,PC ⊥AC ,PB =PC ,则AP 平分∠CAB 。 A AB //DC , 则∠ABE +∠EDC +∠BED =360°或∠ABE +∠EDC =360°-∠BED AB //DC , 则∠BED =∠ABE +∠EDC A B C

点A、O、B在一条直线上, 若OC⊥ OD, 则∠1+∠2=90°或∠1和∠2互余A B AB// ED//FG,BC//EF, ∠CBA=∠FED;∠CBA+∠GFE=180° 一个角的两边分别平行于另一个角 的两边,则这两个角相等或互补。 B C E 如左图1,∠POQ内一点C,CA⊥QO于A, CB⊥OP于B,则∠POQ+∠ACB=180°; 如左图2,∠POQ外一点C,AC⊥OQ于 A, CB⊥OP于B,则∠ POQ=∠BCA。 一个角的两边分别垂直于另一个角的两 边,则这两个角相等或互补。 图1 P O 直线a//b,点C、D、E都在直线a上, 则SΔCAB=SΔDAB=SΔEAB 结论:夹在平行线间同底的三角形面积相等。 或:等底等高的三角形面积相等。

立体图形与平面图形

4.1.1立体图形与平面图形 一.教学内容解析 1.内容 几何图形、立体图形、平面图形的概念及它们之间的关系. 2.内容解析 我们生活在一个多姿多彩的图形世界里,生活中处处存在着具有各种各样形状的物体,我们可以从这些物体中抽象出几何图形,如长方体、圆柱、球、长方形、三角形、圆、线段、点等.几何图形可分为立体图形和平面图形两类,常见立体图形有圆柱、棱柱、圆锥、棱锥、球等,常见的平面图形有线段、角、三角形、四边形、圆等.立体图形的表面中包含着平面图形,平面图形可以围成立体图形. 七年级第四章《几何图形初步》引入的是几何图形的一些最基本的概念,这些知识是“空间与图形”领域学习的基础.本课的内容属于初中几何图形知识学习的起始阶段,对于发展学生的空间观念,培养学生的空间想象力有着重要的作用,对后续几何知识的学习影响深远.基于以上分析,确定本节课的教学重点:认识基本的几何图形,能从具体事物中抽象出几何图形. 二.教学目标解析 1.目标 (1)认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、球等)的基本特征,能识别这些几何体. (2)丰富学生对几何图形的感性认识,理解立体图形与平面图形的联系,发展学生的空间观念,培养学生的空间想象力. 2.目标解析 达成目标(1)的标志是:通过观察生活中的大量图片或实物,认识生活中以实物为原型的几何图形,能准确识别圆柱、棱柱、圆锥、棱锥等几何体,并准确说出它们的名称. 达成目标(2)的标志是:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,能指出一个立体图形中所包含的平面图形,能由实物形状想象出相应的几何图形,能由几何图形想象出与之形状相对应的实物. 三.学生学情分析 学生在小学阶段初步认识了一些较简单的几何图形,但对于棱柱、棱锥这两类几何体还比较陌生,对于几何图形之间的区别和联系也模糊不清,小学阶段对几何图形的认识是形象化的、感性的,需要通过进一步学习提高到理性认识.七年级学生抽象逻辑思维能力还有待发展,对于从现实生活中的实物抽象出几何图形,如从一个纸盒抽象出长方体、长方形、线段、点,学生不容易理解,在教学过程中需要借助精心挑选的实物和特制的模型,来帮助学生理解.本节课的教学难点是:从实物中抽象出几何图形. 四.教学策略分析

相关主题