搜档网
当前位置:搜档网 › 中考数学压轴题专项培优训练:一次函数综合题(附解析)

中考数学压轴题专项培优训练:一次函数综合题(附解析)

中考数学压轴题专项培优训练:一次函数综合题(附解析)
中考数学压轴题专项培优训练:一次函数综合题(附解析)

中考数学压轴题专项培优训练:一次函数综合题

1.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣6,0),点C

在y轴正半轴上,且cos B=,动点P从点C出发,以每秒一个单位长度的速度向D点移动(P点到达D点时停止运动),移动时间为t秒,过点P作平行于y轴的直线l与菱形的其它边交于点Q.

(1)求点D坐标;

(2)求△OPQ的面积S关于t的函数关系式,并求出S的最大值;

(3)在直线l移动过程中,是否存在t值,使S=?若存在,求出t的值;

若不存在,请说明理由.

2.如图,平面直角坐标系中直线l

1

:y=x与直线l

2

:y=﹣x+8相交于点A,直

线l

2

与x轴相交于点B,与y轴相交于点C,点D(﹣6,0),点F(0,6),连接DF.

(1)如图1,求点A的坐标;

(2)如图1,若将△ODF向x轴的正方向平移a个单位,得到△O′D′F′,点D与点B 重合时停止移动,设△O′D′F′与△OAB重叠部分的面积为S,请求出S与a的关系式,并写出a的取值范围;

(3)如图2,现将△ODF向x轴的正方向平移12个单位得到△O

1

D

1

F

1

,直线O

1

F

1

与直线

l

2

交于点G,再将△O

1

GB绕点G旋转,旋转角度为α(0°≤α≤360°),记旋转后的三

角形为△O

1

′GB′,直线O

1

′G与直线l

1

的交点为M,直线GB′与直线l

1

的交点为N,是否存在△GMN为等腰三角形?若存在请直接写出MN的值;若不存在,请说明理由.

3.如图,在平面直角坐标系中,OA =OB ,△OAB 的面积是2.

(1)求线段OB 的中点C 的坐标.

(2)连结AC ,过点O 作OE ⊥AC 于E ,交AB 于点D . ①直接写出点E 的坐标.

②连结CD ,求证:∠ECO =∠DCB ;

(3)点P 为x 轴上一动点,点Q 为平面内一点,以点A 、C 、P 、Q 为顶点作菱形,直接写出点Q 的坐标.

4.如图,已知?ABCD 边BC 在x 轴上,顶点A 在y 轴上,对角线AC 所在的直线为y =

+6,

且AC =AB ,若点P 从点A 出发以1cm /s 的速度向终点O 运动,同时点Q 从点C 出发以2cm /s 的速度沿射线CB 运动,当点P 到达终点O 时,点Q 也随之停止运动.设点P 的运动时间为t (s ).

(1)直接写出顶点D 的坐标( , ),对角线的交点E 的坐标( , ); (2)求对角线BD 的长;

(3)是否存在t ,使S △POQ =

S ?ABCD ,若存在,请求出的t 值;不存在说明理由.

(4)在整个运动过程中,PQ 的中点到原点O 的最短距离是 cm ,(直接写出答案)

5.如图,直线l 1:y =﹣0.5x +b 分别与x 轴、y 轴交于A .B 两点,与直线l 2:y =kx ﹣6交于点C (4,2).

(1)点A 坐标为( , ),B 为( , );

(2)在线段BC 上有一点E ,过点E 作y 轴的平行线交直线l 2于点F ,设点E 的横坐标为

m ,当m 为何值时,四边形OBEF 是平行四边形.

6.如图,直线y =kx +b 与x 轴和y 轴交于A 、B 两点,AB =4,∠BAO =45°.

(1)如图1,求直线AB 的解析式.

(2)如图1,直线y =2x ﹣2交x 轴于点E .且P 为该直线在直线AB 上方一动点,当△

PAB 的面积等于10时,将线段PE 沿着x 轴平移得到线段P 1E 1,连接OP 1.求OP 1+P 1E 1+

的最小值.

(3)如图2,在(2)问的条件下,若直线y =2x ﹣2与y 轴的交点是C ,连接CE 1,得到△OCE 1,将△OCE 1绕着原点O 逆时针旋转α°(0<α<180),旋转过程中直线OC 与直线AB 交于点M ,直线CE 1与直线AB 交于点N ,当△CMN 为等腰三角形时,直接写出α的值.

7.在平面直角坐标系中O为坐标原点,直线y=﹣2x+6交x轴于点C,交y轴于点A,直线AB交x轴于点B,且OA=OB.

(1)求直线AB的解析式;

(2)点P为线段AC上一点,过点P作y轴的平行线交直线AB于点Q,交x轴于点N,

点M为线段BO上一点,且BM=PQ,连接MQ,设点P的横坐标为t,△MQN的面积为S,求S与t的函数关系式;

(3)在(2)的条件下,在AB上取点D连接MD,使∠DMQ=2∠MQN,过点D作DE⊥MQ,交MQ于E,交QN的延长线于点F,若NF:MQ=2:5,求MC长.

8.如图1,将矩形OABC放置在平面直角坐标系中,已知A(4,0)、C(0,3),将其绕点A 顺时针旋转,得到矩形O'AB'C,旋转一周后停止.

(1)当边O'A所在直线将矩形分成面积比为5:1的两部分时,求O'A所在直线的函数关系式.

(2)在旋转过程中,若以C,O',B',A四点为顶点的四边形是平行四边形,求点O'的坐标.

(3)取C'B'中点M,连接CM,在旋转过程中,当CM取得最大值时,直接写出△ABM的面积.

9.如图1,在平面直角坐标系中,直线l 1:y =﹣与x 轴相交于B ,与y 轴相交

于点A .直线l 2:y =经过原点,并且与直线l 1相交于C 点.

(1)求△OBC 的面积;

(2)如图2,在x 轴上有一动点E ,连接CE .问CE 是否有最小值,如果有,求出

相应的点E 的坐标及CE

的最小值;如果没有,请说明理由;

(3)如图3,在(2)的条件下,以CE 为一边作等边△CDE ,D 点正好落在x 轴上.将△

DCE 绕点D 顺时针旋转,旋转角度为α(0°≤α≤360°),记旋转后的三角形为△DC ′E ′,点C ,E 的对称点分别为C ′,E ′.在旋转过程中,设C ′E ′所在的直线与直线l 2

相交于点M ,与x 轴正半轴相交于点N .当△OMN 为等腰三角形时,求线段ON 的长?

10.已知,A(0,8),B(4,0),直线y=﹣x沿x轴作平移运动,平移时交OA于D,交OB 于C.

(1)当直线y=﹣x从点O出发以1单位长度/s的速度匀速沿x轴正方向平移,平移到达点B时结束运动,过点D作DE⊥y轴交AB于点E,连接CE,设运动时间为t(s).

①是否存在t值,使得△CDE是以CD为腰的等腰三角形?如果能,请直接写出相应的t

值;如果不能,请说明理由.

②将△CDE沿DE翻折后得到△FDE,设△EDF与△ADE重叠部分的面积为y(单位长度的

平方).求y关于t的函数关系式及相应的t的取值范围;

(2)若点M是AB的中点,将MC绕点M顺时针旋转90°得到MN,连接AN,请直接写出

A N+MN的最小值.

11.已知点P(m,n)和直线y=kx+b,则点P到直线y=kx+b的距离可用公式d=计算.

例如:求点P(﹣1,2)到直线y=3x+7的距离.

解:因为直线y=3x+7,其中k=3,b=7.

所以点P(﹣1,2)到直线y=3x+7的距离为d=

根据以上材料,解答下列问题:

(1)直接写出点P(1,1)到直线y=﹣2x+4的距离d=;

(2)已知直线y=﹣2x+4与y=﹣2x﹣5平行,求这两条直线之间的距离.

(3)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线的位置关系并说明理由.

12.已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点B、A.以AB为边在第一象限内作等腰直角三角形ABC,且∠ABC=90°,BA=BC,作OB的垂直平分线l,交直线AB 与点E,交x轴于点G.

(1)求点C的坐标;

(2)在OB的垂直平分线l上有一点M,且点M与点C位于直线AB的同侧,使得2S

△ABM =S

,求点M的坐标;

△ABC

(3)在(2)的条件下,连结CE、CM,判断△CEM的形状,并给予证明;

13.“不同表示方法表示同种图形的面积”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法,

(1)如图1,在等腰三角形ABC 中,AB =AC ,AC 边上的高为h ,M 是底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1、h 2,请用面积法证明:h 1+h 2=h ;

(2)当点M 在BC 的延长线上时,h 1、h 2、h 之间的等量关系式是 (直接写出结论不必证明)

(3)如图2,在平面直角坐标系中有两条直线l 1:y =

,l 2:y =﹣3x +3,若l 2上

的一点M 到l 1的距离是1,请运用(1)(2)的结论求出点M 的坐标.

14.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点A (

,0),点B (0,1),

点O (0,0).过边OA 上的动点M (点M 不与点O ,A 重合)作MN ⊥AB 于点N ,沿着MN 折叠该纸片,得顶点A 的对应点A ’,设OM =m ,折叠后的△A ’MN 与四边形OMNB 重叠部分的面积为S .

(1)填空:∠BAO = 度;直接写出直线AB 的函数解析式 ;如图①,当点

A ’与顶点

B 重合时,直接写出点M 的坐标 .

(2)点P 是直线AB 上的一点,若S △AOP =

,求点P 的坐标;

(3)当A '落在第二象限时,A ’M 与OB 相交于点C .求出S 关于m 的函数关系式,并写出m 的取值范围.

15.如图,直线y=﹣x+3图象与y轴、x轴分别交于A、B两点

(1)求点A、B坐标和∠BAO度数;

(2)点C、D分别是线段OA、AB上一动点(不与端点重合),且CD=DA,设线段OC的长=y,请求出y关于x的函数关系式以及定义域;

度为x,S

△OCD

(3)点C、D分别是射线OA、射线BA上一动点,且CD=DA,当△ODB为等腰三角形时,求C的坐标.(第(3)小题直接写出分类情况和答案,不用过程)

参考答案

1.解:(1)在Rt△BOC中,∠BOC=90°,OB=6,cos B=,

∴BC==10,

∴OC==8.

∵四边形ABCD为菱形,CD∥x轴,

∴点D的坐标为(10,8).

(2)∵AB=BC=10,点B的坐标为(﹣6,0),

∴点A的坐标为(4,0).

分两种情况考虑,如图1所示.

①当0≤t≤4时,PQ=OC=8,OQ=t,

∴S=PQ?OQ=4t,

∵4>0,

∴当t=4时,S取得最大值,最大值为16;

②当4<t≤10时,设直线AD的解析式为y=kx+b(k≠0),

将A(4,0),D(10,8)代入y=kx+b,得:

,解得:,

∴直线AD的解析式为y=x﹣.

当x=t时,y=t﹣,

∴PQ=8﹣(t﹣)=(10﹣t),

∴S=PQ?OP=﹣t2+t.

∵S=﹣t2+t=﹣(t﹣5)2+,﹣<0,

∴当t=5时,S取得最大值,最大值为.

综上所述:S 关于t 的函数关系式为S =,S 的最大值为.

(3)S 菱形ABCD =AB ?OC =80. 当0≤t ≤4时,4t =12, 解得:t =3;

当4<t ≤10时,﹣t 2+t =12,

解得:t 1=5﹣

(舍去),t 2=5+

综上所述:在直线l 移动过程中,存在t 值,使S =

,t 的值为3或5+

2.解:(1)由题意得,解得,

∴A (6,

).

(2)在y =﹣x +8中,令y =0,得﹣x +8=0,∴x =24

∴B (24,0),

令x =0,y =

,∴C (0,

),

在Rt △BOC 中,tan ∠BCO ===,∴∠BCO =60°,

在Rt △DOF 中,tan ∠DFO ==

,∴∠DFO =30°.

分两种情况:

①当0≤a ≤6时,如图1,F ′O ′交直线l 1于点E ,则O ′(a ,0),∴y =a ,

∴E (a ,

a ),即EO ′=a ,OO ′=a ,

∴S =OO ′?EO ′=

②当6<a ≤30时,如图2,OO ′=a ,∴H (a ,

F′H=﹣()=

∵F′O′∥OC,∴∠BHO′=∠BCO=60°

∵∠D′F′O′=∠DFO=30°,∴∠F′SH=90°,

∴SH=F′H=(),F′S=SH=(),

∴S=S

△F′O′D′

﹣S

△F′HS

=F′O′?D′O′﹣F′S?SH=×6×6﹣×

()×()=

∴.

(3)存在,MN=8或24.

∵F

1

O

1

∥y轴,∴∠BGO

1

=∠BCO=60°,

∴△GMN为等腰三角形时,∠MGN=60°或120°,

分两种情况:①当∠MGN=60°时,△GMN必为等边三角形,如图3,此时旋转角α=30°或90°或270°,

∵OO

1

=12,∴BO

1

=12,

∴BG===8,AB=OB cos∠OBC=24cos30°=12,

∴AG=AB﹣BG=12﹣8=4,

∴MN=NG===8,

②当∠MGN=120°时,△GMN为等腰三角形,∴∠MNG=∠NMG=30°,如图4,此时旋转角α=120°或300°,

MN=2AN===24.

3.解:(1)∵OA=OB,△OAB的面积是2.

∴OA?OB=2,

∴OA=OB=2,

线段OB的中点C的坐标为:(﹣1,0),

答:线段OB的中点C的坐标为:(﹣1,0).

(2)①过点E作EF⊥OB,

∵∠AOC=90°,OA=2,OC=1,

∴AC=,

∵OE⊥AC,由面积法得:OE===,

∵∠EOF+∠AOE=∠EAO+∠AOE=90°,

∴∠EOF=∠EAO,

∴tan∠EOF=tan∠EAO=,设EF=x,则OF=2x,

∴由勾股定理得:,

解得:x=,2x=,

∴点E坐标为:(﹣,).

②证明:过点B作OB的垂线,交OE于点G,由(2)①可知,∠EOF=∠EAO,

∴在△AOC和△OBG中,

∴△AOC ≌△OBG (ASA ), ∴∠ECO =∠BGD ,BG =OC , ∵C 为线段OB 的中点, ∴BG =BC ,

∵OA =OB ,∠AOC =∠OBG =90°, ∴∠GBD =∠CBD =45°, ∴在△BGD 和△BCD 中,

∴△BGD ≌△BCD (SAS ) ∴∠DCB =∠BGD , 又∠ECO =∠BGD , ∴∠ECO =∠DCB .

(3)由菱形对角线互相垂直的性质,易知,P 1(1,0),Q 1(0,﹣2)符合题意;

∵AC =

∴分别以点C 和点A 为圆心,以

为半径作圆,与x 轴可得两个交点P 2(﹣

,0),

P 3(

,0)

从而得Q 2(﹣

,2),Q 3(

,2),

由tan ∠ACO =2,可知,当以AC 为菱形的对角线时,AC 被另一条对角线垂直平分,

,从而另一条对角线P 4Q 4的一半为

,从而P 4C =,

∴P 4(,0),Q 4(﹣,2)

综上,点Q 的坐标为:(0,﹣2)、(﹣

,2)、(

,2),(﹣,2).

4.解:(1)把x =0代入y =+6,可得y =6,

即A 的坐标为(0,6),

把y =0代入y =

+6,可得:x =8,

即点C 的坐标为(8,0),

根据平行四边形的性质可得:点B 坐标为(﹣8,0), 所以AD =BC =16, 所以点D 坐标为(16,6), 对角线的交点E 的坐标为(4,3), 故答案为:16;6;4;3;

(2)因为B (﹣8,0)和D (16,6),

∴BD =

(3)设时间为t ,可得:OP =6﹣t ,OQ =8﹣2t , ∵S △POQ =S ?ABCD ,

解得:t 1=2,t 2=8(不合题意,舍去),

答:存在S △POQ =

S ?ABCD ,此时t 值为2;

(4)当Q 与O 点重合时,此时PQ 的中点到原点O 的距离最短, 即8﹣2t =0,

t =4,

所以OP =6﹣t =6﹣4=2,

此时PQ 的中点到原点O 的最短距离为1, 故答案为:1

5.解:(1)将C(4,2)代入y=﹣0.5x+b,得:

﹣2+b=2,解得:b=4,

的解析式为y=﹣0.5x+4.

∴直线l

1

当x=0时,y=﹣0.5x+4=4,

∴点B的坐标为(0,4);

当y=0时,﹣0.5x+4=0,

解得:x=8,

∴点A的坐标为(8,0).

故答案为:(8,0);(0,4).

(2)将C(4,2)代入y=kx﹣6,得:

4k﹣6=2,解得:k=2,

的解析式为y=2x﹣6.

∴直线l

2

∵点E的横坐标为m,

∴点E的坐标为(m,﹣0.5m+4),点F的坐标为(m,2m﹣6),∴EF=﹣0.5m+4﹣(2m﹣6)=﹣2.5m+10.

∵四边形OBEF是平行四边形,

∴EF=OB,即﹣2.5m+10=4,

解得:m=2.4,

∴当m为2.4时,四边形OBEF是平行四边形.

6.解:(1)由k>0,

∵∠BAO=45°,

∴BO=AO

∵AB=4,

∴A (4,0),B (0,﹣4), ∴y =x ﹣4, (2)如图1:

∵P 为直线y =2x ﹣2在直线AB 上方一动点,

设点P (m ,2m ﹣2),∵点P 在直线AB 上方,且△PAB 的面积等于10,△OAB 的面积等于8,∴点P 位于x 轴上方. 由 S 梯形APFO +S △AOB ﹣S △PBF =S △PAB 得

=10

解得 m =3; ∴P (3,4); ∵E (1,0),

∴PE =P 1E 1=2

作P 1关于y 轴的对称点P 2,过E 1作E 1D ⊥AB 于D ,过P 2作P 2G ⊥x 轴于G ,

∵OP 2=OP 1,DE 1=AE ,

∴OP 1+P 1E 1+

最小就是求OP 2+DE 1,

当OP 2∥DE 1时,OP 2+DE 1的值最小, ∴∠P 2OG =∠AE 1D =45°,

∴OP 1=OP 2=

P 2G =4

∴P 2(﹣4,4),P 1(4,4),E 1(2,0), ∴AE =OA ﹣OE 1=4﹣2=2,

∴OP 1+P 1E 1+

的最小值为5

+2

(3)由题意得:C (0,﹣2),∴OC =OE 1,∠COE 1=90°, △CMN 为等腰三角形,分四种情况:

①∠CNM=∠NCM=45°(如图2),旋转角α=45°;

②∠CNM=∠CMN=67.5°(如图3),旋转角α=60°;

③∠CMN=∠NCM=45°(如图4),旋转角α=90°;

④∠CMN=∠NCM=45°(如图5),旋转角α=157.5°

综上所述,旋转角α=45°,60°,90°,157.5°时,△CMN是等腰三角形.7.解:(1)∵直线y=﹣2x+6中,

∴当y=0时,x=3,当x=0时,y=6,

∴C(3,0),A(0,6),

∴OA=6,

∵OA=OB=6,

∴B(﹣6,0),

设直线AB的解析式为y=kx+b,

∴解得:

∴直线AB的解析式为y=x+6;

(2)如图1,由题意得:P(t,﹣2t+6),Q(t,t+6),N(t,0),

∴QN=t+6,ON=tPQ=t+6﹣(﹣2t+6)=3t,

∴BM=PQ=t,

∴M(﹣6+t,0),

∴MN=O B+ON﹣BM=6+t﹣t=6,

∴S=MN?QN=×6×(t+6)=3t+18(0≤t≤3)

(3)根据题意画图,如图2,延长MD到点H,使MH=MQ,连接HQ,过点M作MR∥y轴交HQ于点R

由(2)得:Q(t,t+6),M(﹣6+t,0),N(t,0),

∴MQ=,直线MQ解析式为:y=

∵MR∥y轴∥QN

∴∠RMQ=∠MQN

∵∠DMQ=2∠MQN

∴∠DMR+∠RMQ=2∠MQN=2∠RMQ

∴∠DMR=∠RMQ

∵MH=MQ

∴∠H=∠MQR

在△MHR与△MQR

∴△MHR≌△MQR(ASA)

∴MR垂直平分HQ

∴R为HQ中点,HQ∥x轴

∴H(t﹣12,t+6)

∴直线MH解析式为:y=

联立直线MH与直线AB解析式:

解得:

即点D(,)

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

《三角函数》高考真题理科大题总结及答案

《三角函数》大题总结 1.【2015高考新课标2,理17】ABC ?中,D 是BC 上的点,AD 平分BAC ∠, ABD ?面积是ADC ?面积的2倍. (Ⅰ) 求 sin sin B C ∠∠; (Ⅱ)若1AD =,DC = BD 和AC 的长. 2.【2015江苏高考,15】在ABC ?中,已知 60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值. 3.【2015高考福建,理19】已知函数f()x 的图像是由函数()cos g x x =的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2 p 个单位长度. (Ⅰ)求函数f()x 的解析式,并求其图像的对称轴方程; (Ⅱ)已知关于x 的方程f()g()x x m +=在[0,2)p 内有两个不同的解,a b . (1)求实数m 的取值范围; (2)证明:22cos ) 1.5 m a b -=-( 4.【2015高考浙江,理16】在ABC ?中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4 A π =,22b a -=12 2c . (1)求tan C 的值; (2)若ABC ?的面积为7,求b 的值.

5.【2015高考山东,理16】设()2sin cos cos 4f x x x x π??=-+ ?? ? . (Ⅰ)求()f x 的单调区间; (Ⅱ)在锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ?? == ??? , 求ABC ?面积的最大值. 6.【2015高考天津,理15】已知函数()22sin sin 6f x x x π??=-- ?? ? ,R x ∈ (I)求()f x 最小正周期; (II)求()f x 在区间[,]34 p p -上的最大值和最小值. 7.【2015高考安徽,理16】在ABC ?中,3,6,4 A A B A C π ===点D 在BC 边上,AD BD =,求AD 的长. 8.【2015高考重庆,理18】 已知函数()2sin sin 2 f x x x x π ??=- ? ? ? (1)求()f x 的最小正周期和最大值; (2)讨论()f x 在2, 6 3ππ?? ???? 上的单调性.

一次函数培优训练经典题型

第十讲一次函数(1) 一【一次函数解析式】 1.画图,并求出与x轴、y轴交点 (1)y=x+2 (2)y=-3x+4 2.求一次函数解析式: (1)直线l过(-1,2)和(3,4);(2)直线l与直线y=2x-1平行且过(0,4)(3)直线l与直线y=3x-6交于x轴上同一点,且过(-1,4) (4)y与x成正比,且当x=9时,y=16. 3.如图,一次函数y=kx+b的图像经过A、B两点,与x轴交于点C,求: (1)一次函数的解析式;(2)△AOC的面积. 二【一次函数图象及性质】 4.作函数y=2x-4的图象,根据图象填空:(1)当-2≤x≤4,则y的取值范围是_____________,(2)当x_________时,y<0;当x_________时,y>0;当x_________时,y=0. 5.已知直线y=(4m+1)x-(m+1),m________时,y随x的增大而减小;m________时,直线与y轴的交点在x轴下方;m________时,此一次函数也是正比例函数;若m=2时,图象与x 轴的交点坐标是_______,与y轴的交点坐标是________. 6.不画函数 1 4 3 y x =-+的图象,回答下列问题: (1)点 7 (3,3),(5,) 3 P Q-是否在这个图象上?(2)若点A(a,1),B(0,b)在这个函数 图象上,求a、b的值;(3)若函数y=x+m的图象与已知图象交于点(n,2)求m、n的值.

7.已知一次函数y=(2k+4)x+(3-b): (1)k、b是什么数时,y随x的增大而增大; (2)k、b是什么数时,函数图象与y轴的交点在x轴下方; (3)k、b是什么数时,函数图象过原点; (4)若k=-1,b=2时,求一次函数图象与两个坐标轴交点坐标,并画出图象; (5)若图象经过一、二、三象限,则k__________,b___________. 三【利用函数图象解决实际问题】 8.为了缓解用电紧张的矛盾,电力公司制订了新的用电收费标准,每月用电量x(千瓦时)与应付电费y(元)的关系如图 (1)根据图象求出y与x的函数关系式; (2)请回答该电力公司的收费标准是什么? 9.客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需购买行李票,行李费用y(元)是行李重量x(千克)的一次函数,其图象如图所示,则按规定旅客免费携带的行李为多少千克? 四【一次函数与几何结合】 10.如图,直线 1 1 3 y x =+与坐标轴交于A、B两点,直线24 y x =+与坐标轴交于C、 (1)求A、B、C、D的坐标;(2)求两直线交点M的坐标;(3)求S四OCMB的大小.

中考数学中二次函数压轴题分类总结

中考数学中二次函数压 轴题分类总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

二次函数的压轴题分类复习 一、抛物线关于三角形面积问题 例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ??=4 5 ,若存在,求出P 点的坐标;若不存在,请说明理由; (3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围. 练习: 1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标; (2)求抛物线的函数解析式; (3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求?BON 的面积的最大值,并求 出此时点N 的坐标; 2. 如图,已知抛物线42 12++-=x x y 交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设),(y x P (0>x )是直线x y =上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作 正方形PEQF .若正方形PEQF 与直线AB 有公共点,求x 的取值范围; (3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值. y x O B N A M E F B y

中考数学压轴题专集二一次函数

中考数学压轴题专集二:一次函数 1、如图,在平面直角坐标中,点A 的坐标为(4,0),直线AB ⊥x 轴,直线y =- 1 4 x +3经过点B ,与y 轴交于点C . (1)求点B 的坐标; (2)直线l 经过点C ,与直线AB 交于点D ,E 是直线AB 上一点,且∠ECD =∠OCD ,CE =5,求直线l 的解析式. 解:(1)∵A (4,0),AB ⊥x 轴,∴点B 的横坐标为4 把x =4代入y =- 1 4 x +3,得y =2 ∴B (4,2) (2)∵AB ⊥x 轴,∴∠EDC =∠OCD ∵∠ECD =∠OCD ,∴∠EDC =∠ECD ∴ED =EC =5 在y =- 1 4 x +3中,当x =0时,y =3 ∴C (0,3),OC =3 过C 作CF ⊥AB 于F ,则CF =OA =4 ∴EF = EC 2 -CF 2 = 5 2 -4 2 =3 ∴FD =5-3=2,∴DA =1 ∴D (4,1) 设直线l 的解析式y =kx +b ,把C (0,3),D (4,1)代入 得:?????b =3 4k +b =1 解得 ?????k =- 1 2 b =3 ∴直线l 的解析式为y =- 1 2 x +3

2、如图,直线y=2x+4交坐标轴于A、B两点,点C为直线y=kx(k>0)上一点,且△ABC是以C为直角顶点的等腰直角三角形. (1)求点C的坐标和k的值; (2)若在直线y=kx(k>0)上存在点P,使得S△PBC=1 2S△ABC,求点P的坐标. (1)过点C分别作坐标轴的垂线,垂足为G、H 则∠HCG=90° ∵∠ACB=90°,∴∠ACG=∠BCH 又∠AGC=∠BHC=90°,AC=BC ∴△ACG≌△BCH,∴CG=CH 在y=2x+4中,令y=0,得x=-2;令x=0,得y=4 ∴A(-2,0),B(0,4),OA=2,OB=4 设CG=CH=x,则2+x=4-x 解得x=1,∴C(1,1) ∴k=1 (2)由(1)知,CG=1,AG=3 ∴AC2=BC2=12+32=10 ∴S△ABC=1 2AC 2=5,S △PBC = 1 2S△ABC= 5 2 当点P在点G左侧时 S△PBC=S△PBO+S△BOC-S△PCO ∴1 2OP×4+ 1 2×4×1- 1 2OP×1= 5 2 解得OP=1 3,∴P1(- 1 3,0) 当点P在点G右侧时 S△PBC=S△PBO-S△BOC-S△PCO ∴1 2OP×4- 1 2×4×1- 1 2OP×1= 5 2 解得OP=3,∴P2(3,0)

高考数学函数及其性质练习题

函数及其性质 一、填空题 (2016·12)已知函数()() f x x∈R满足()2() f x f x -=-,若函数 1 x y x + =与() y f x =图像的交点为 11 (,) x y,22 (,) x y,…,(,) m m x y,则 1 () m i i i x y = += ∑() A.0 B.m C.2m D.4m (2015·5)设函数2 1 1log(2)(1) () 2(1) x x x f x x - +-< ? =? ≥ ? ,则 2 (2)(l og12) f f -+=()A.3 B.6 C.9 D.12 (2015·10)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x. 将动点P到A,B两点距离之和表示为x的函数f(x),则f(x)的图像大致为() A.B.C.D. (2013·8)设 3 log6 a=, 5 log10 b=, 7 log14 c=,则() A.c b a >>B.b c a >>C.a c b >>D.a b c >> (2013·10)已知函数32 () f x x ax bx c =+++,下列结论中错误的是() A. 00 ,()0 x f x ?∈= R B.函数() y f x =的图像是中心对称图形 C.若 x是() f x的极小值点,则() f x在区间 (,) x -∞单调递减 D.若 x是() f x的极值点,则 ()0 f x'= (2012·10)已知函数 x x x f - + = )1 ln( 1 ) (,则) (x f y=的图像大致为() A. B. C. D. (2011·2)下列函数中,既是偶函数又在+∞ (0,)单调递增的函数是() A.3 y x =B.||1 y x =+C.21 y x =-+D.|| 2x y- = (2011·12)函数 1 1 y x = - 的图像与函数2sin,(24) y x x π =-≤≤的图像所有交点的横坐标之和等于() 1 1 y x o 1 1 y x o 1 1 y x o 1 1 y x o

(完整版)一次函数培优经典.docx

一次函数培优 1、已知一个正比例函数与一个一次函数的图象交于点 A (3,4),且 OA=OB (1)求两个函数的解析式;(2)求△AOB 的面积; 4 A 3 2 1 01234 B 2、已知直线 m 经过两点( 1,6)、(-3, -2),它和 x 轴、 y 轴的交点式 B、 A ,直线 n 过点( 2, -2), 且与 y 轴交点的纵坐标是 -3,它和 x 轴、 y 轴的交点是 D、C; (1)分别写出两条直线解析式,并画草图; (2)计算四边形 ABCD 的面积; (3)若直线 AB 与 DC 交于点 E,求△BCE 的面积。 y 4 A B O D -26x C -3 E F 3、如图, A 、B 分别是 x 轴上位于原点左右两侧的点,点P(2,p) 在第一象限,直线 PA 交 y 轴于点 C( 0,2),直线 PB 交 y 轴于点D,△ AOP 的面积为 6; (1)求△COP 的面积; (2)求点 A 的坐标及 p 的值; (3)若△BOP 与△DOP 的面积相等,求直线 BD 的函数解析式。 y D E P (2,p) C A O F B x

4、已知: l 1:y=2x+m; 经过点( -3,-2),它与 x 轴,y 轴分别交于点 B、A ,直线 l 2=kx+b 经过点( 2,-2),且与 y 轴交于点 C(0,-3),它与 x 轴交于点 D (1)求直线 l1,l2的解析式; (2)若直线与 l2交于点 P,求 S ACP:S ACD的值 5、如图,已知点 A( 2, 4), B(-2, 2),C( 4, 0),求△ABC 的面积。 1 6、如图,在平面直角坐标系xOy 中,已知直线l 1:y= x 与直线 l 2: y=-x+6 相交于点 M ,直线 l2与 x 轴相交于点 N. (1)求 M ,N 的坐标.(2)矩形 ABCD 中,已知 AB=1 ,BC=2,边 AB 在 x 轴上,矩形自左向右以每秒 1 个单位长度的速度移动,设矩形ABCD 与△ OMN 的重叠部分的面积为间为 t(从点 B 与点 O 重合时开始计时,到点 A 与点 N 重合时计时开始结束).直接写出ABCD 沿 x 轴S,移动的时S 与自变量 t 之间的函数关系式. (3)在( 2)的条件下,当t 为何值时, S 的值最大?并求出最大值.

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

三角函数高考大题练习.docx

ABC 的面积是30,内角A, B, C所对边长分别为 12 a, b, c ,cos A。 uuur uuur 13 ( Ⅰ ) 求ABgAC; ( Ⅱ ) 若c b 1,求 a 的值。 设函数 f x sin x cosx x 1 , 0 x 2,求函数 f x 的单调区间与极值。 已知函数 f ( x) 2cos 2x sin 2 x (Ⅰ)求 f () 的值; 3 (Ⅱ)求 f ( x) 的最大值和最小值 设函数 f x3sin x,>0 , x,,且以为最小正周期. 62 ( 1)求f0;(2)求f x 的解析式;(3)已知f 129 ,求 sin的值. 45 已知函数 f ( x) sin 2x2sin 2 x ( I )求函数 f (x) 的最小正周期。 (II)求函数 f ( x) 的最大值及 f (x) 取最大值时x 的集合。

在 VABC 中, a、b、c 分别为内角A、B、C 的对边,且 2a sin A (2b c)sin B (2c b)sin C (Ⅰ)求 A 的大小; (Ⅱ)若 sin B sin C 1,是判断 VABC 的形状。 (17)(本小题满分 12 分) 已知函数 f ( x) sin(x)cos x cos2x (0)的最小正周期为,(Ⅰ)求的值; (Ⅱ)将函数 y f ( x) 的图像上各点的横坐标缩短到原来的1 ,纵坐标不变,得到2 函数 y g ( x) 的图像,求函数y g( x) 在区间 0, 16 上的最小值 . 在 ABC中,AC cos B 。AB cosC (Ⅰ)证明 B=C: (Ⅱ)若 cosA =-1 ,求 sin 4B的值。 33 53 VABC 中, D 为边 BC 上的一点, BD 33 , sin B,cos ADC,求AD。 135 设△ ABC的内角 A、 B、 C 的对边长分别为a、 b、 c,且3b23c23a2 4 2bc .

一次函数压轴题经典培优

一次函数压轴题训练 典型例题 题型一、A卷压轴题 一、A卷中涉及到的面积问题 例1、如图,在平面直角坐标系xOy中,一次函数 12 2 3 y x =-+与x轴、y轴分别相交于点 A和点B,直线 2 (0) y kx b k =+≠经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分. (1)求△ABO的面积; (2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。

练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :1 2 1 +=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。 (1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。 2、如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运 动(0y 2 (2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积(10分) A B C O D x y 1 l 2 l

二、A 卷中涉及到的平移问题 例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。 ①直线y=43x-8 3经过点C ,且与x 轴交与点E ,求四边形AECD 的面积; ②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式, ③若直线1l 经过点F ?? ? ??- 0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位 交x 轴于点M ,交直线1l 于点N ,求NMF ?的面积.

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

一次函数培优完美版

一次函数培优讲解 1、已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(—2,0),则不等式ax大于b的解集为() A. x〉2。 B. x<2。C。x〉-2. D。x〈—2 2、若不等式2|x-1|+3|x—3|≤a有解,则实数a最小值是________ 3、已知实数a,b,c满足a+b+c不等于0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限? 4、已知一次函数y=ax+b的图象过(0,2)点,它与坐标轴围成的图形是等腰直角三角形,则a的值为________ 5、(2010?上海)一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为________ 6、已知一次函数y=ax+b的图像经过点A(√3,√3+2),B(—1,√3),C(c,2—c),求a—b+c的值. 7、已知一次函数y=ax+b的图像经过点A(√3,√3+2),B(-1,√3),C(c,2-c),求a2+b2+c2—ab-bc-ca的值。 8、在修建某条公路的过程中,需挖通一条隧道,甲、乙两个工程队从隧道两端同时开始挖掘.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直至隧道挖通.图是甲、乙两个工程队所挖隧道的长度y(米)与挖掘时(天)之间的函数图象.请根据图象所提供的信息解答下列问题: (1)求该隧道的长; (2)乙工程队工作多少天时,两队所挖隧道的长度相差18米?

9、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q5吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题: (1)加油飞机的加油油箱中装载了30吨油,将这些油全部加给运输飞机需10分钟. (2)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请说明理由. 10、一次函数y=(m2-4)x+(1—m)和y=(m+2)x+(m2—3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是 11、已知一次函数y=2x+m与y=(m—1)x+3的图像交点坐标的横坐标为2则m的值 12、一次函数y=kx+b的图像经过点(m,1)和(1,m)两点,且m>1,则k=_____, b的取值范围是____ 13、已知两直线y=4x-2,y=3m-x,的交点在第三象限,则m的取值范围________ 14、如果ab〉0,a/c<0,则直线y=—(a/b)x+c/b不通过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 15、已知关于X的一次函数Y=mx+2m-7在—1≤X≤5上的函数值总是正数,则m的取值范围是. 16、在同一平面直角坐标系中,直线y=kx+b与直线y=bx+k(k、b为常数,且kb≠0)的图象可能是() A B C D

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

2019年各省市中考数学压轴题合辑5(湖南专辑)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】 2019年各省市中考数学压轴题合辑(五) 1.(2019?长沙)如图,抛物线26(y ax ax a =+为常数,0)a >与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(30)t -<<,连接BD 并延长与过O ,A ,B 三点的P e 相交于点C . (1)求点A 的坐标; (2)过点C 作P e 的切线CE 交x 轴于点E . ①如图1,求证:CE DE =; ②如图2,连接AC ,BE ,BO ,当3a = ,CAE OBE ∠=∠时,求11OD OE -的值.

2.(2019?长沙)已知抛物线22(2)(2020)(y x b x c b =-+-+-,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值; (2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围; (3)在(1)的条件下,存在正实数m ,n (m <n ),当m ≤x ≤n 时,恰好≤≤, 求m ,n 的值.

3.(2019?长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比. (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”). ①四条边成比例的两个凸四边形相似;(命题) ②三个角分别相等的两个凸四边形相似;(命题) ③两个大小不同的正方形相似.(命题) (2)如图1,在四边形ABCD和四边形 1111 A B C D中, 111 ABC A B C ∠=∠, 111 BCD B C D ∠=∠,111111 AB BC CD A B B C C D ==.求证:四边形ABCD与四边形 1111 A B C D相似. (3)如图2,四边形ABCD中,// AB CD,AC与BD相交于点O,过点O作// EF AB分 别交AD,BC于点E,F.记四边形ABFE的面积为 1 S,四边形EFCD的面积为 2 S,若 四边形ABFE与四边形EFCD相似,求2 1 S S 的值.

函数高考综合题(含答案)

函数高考综合题(含答案) (21)(本小题满分12分) 设函数2()ln x f x e a x =-。 (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2()2ln f x a a a ≥+。

21.(本小题满分14分) 设a 为实数,函数2()()(1)f x x a x a a a =-+---. (1)若1)0(≤f ,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2≥a 时,讨论4()f x x +在区间),0(+∞内的零点个数. )222(0)||(1) ||||f a a a a a a a a a a =+--=+-+=+

10,21,21 02 0,1,01 2 a a a a a a a a R a a ≥≤≤ ∴≤≤<+≤∈∴<≤若即:若即:-综上所述: (2)22()()(1)() ()()()(1)()x a x a a a x a f x x a x a a a x a ?-+---≥?=?----- ∴(,)a -∞在区间上单调递减,,a +∞在区间()上单调递增 (3)由(2)得()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,所以2min ()()f x f a a a ==-. ①当2a =时,-22()(m in ==)f x f ,???<+-≥-=24523)(22x x x x x x x f ,, 当04)(=+x x f 时,即)0(4)(>-=x x x f . 因为()f x 在(0,2)上单调递减,所以()(2)2f x f >=- 令x x g 4)(-=,则)(x g 为单调递增函数,所以在区间(0,2)上,2)2()(-=时,2min ()()f x f a a a ==-, 当(0,)x a ∈时,(0)24f a => ,0)(2<-=a a a f , 而x x g 4)(-=为单调递增函数,且当),0(a x ∈时,04)(<-=x x g

一次函数拔高练习题

培优练习十一 一次函数的性质 姓名: 家长签字: 1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( ) (A )y=8x (B )y=2x+6 (C )y=8x+6 (D )y=5x+3 2.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( ) (A )一象限 (B )二象限 (C )三象限 (D )四象限 3.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( ) (A )y 1>y 2 (B )y 1=y 2 (C )y 1a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,?则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( ) 5.无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 6.要得到y=-32x-4的图像,可把直线y=-32 x ( ). (A )向左平移4个单位 (B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位 7.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( ) (A )m>-14 (B )m>5 (C )m=-14 (D )m=5 8.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ). (A )k<13 (B )131 (D )k>1或k<13 9.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( ) (A )4条 (B )3条 (C )2条 (D )1条 10.已知abc ≠0,而且a b b c c a c a b +++===p ,那么直线y=px+p 一定通过( ) (A )第一、二象限 (B )第二、三象限 (C )第三、四象限 (D )第一、四象限 11.当-1≤x ≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( ) (A )-4

2018年中考数学二次函数压轴题集锦(50道含解析)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC. (1)请直接写出二次函数y=ax2+x+c的表达式; (2)判断△ABC的形状,并说明理由; (3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标; (4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标. 2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N). 已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2). (1)求d(点O,△ABC); (2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围; (3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围. 3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1). (1)求线段AB的长; (2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点 H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;

(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由. 4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.

相关主题