搜档网
当前位置:搜档网 › 相关系数检验

相关系数检验

相关系数检验
相关系数检验

相关系数的显著性检验

相关系数的显著性检验也包括两种情况:一种情况是样本相关系数r与总体相关系数ρ的比较;另一种情况是通过比较两个样本r的差异(r1 -r2)推论各自的总体ρ1和ρ2是否有差异。

一、相关系数的显著性检验

相关系数的显著性检验即样本相关系数与总体相关系数的差异检验。由于相关系数r的样本分布比较复杂,受ρ的影响很大,一般分为ρ=0和ρ≠0两种情况

(一)ρ≠0时

图7—11 样本相关系数r的分布

图7—11表示从ρ=0及ρ=.8的两个总体中抽样(n=8)样本r的分布。可看到ρ=0时r的分布左右对称,ρ=.8时r的分布偏得较大。对于这一点并不难理解,ρ的值域-1~+1,r的值域也是-1~+1,当ρ=0时,的分布理应以0为中心左右对称。而当ρ=0.8时,r的范围仍然是-1~+1,但r值肯定受ρ的影响,趋向+'的值比趋向+1的值要出现得多些,因而分布形态不可能对称。所以,一般认为ρ=0时r的分布近似正态;ρ≠0时r的分布不是正态。

在实际研究中得到r=.30(或其他什么值)时,自然会想到两种情况:①由于r=.30,说明两列变量之间在总体上是相关的(ρ≠0)。②虽然r=.30,但这可能是偶然情况,总体上可能并无相关(ρ=0)。所以需要对r=.30进行显著性检验。这时仍然可以用t检验的方法。

H0:ρ=0

H1 :ρ≠0

(df=n-2) (2-27) 如果t>t.05/2,则拒绝H0,说明所得到的r不是来自ρ=0的总体,或者说r是显著的。

若t< t.05/2,则说明所得到的r值具有偶然性,从r值还不能断定总体具有相关关系。或者说r不显著。

[例1] 18名被试进行了两种能力测验,结果r=.40,试问这两种能力是否存在相关

解:H0:ρ=0

H1 :ρ≠0

查附表2,t.05/2=2.12

t=1.798<2.12不能拒绝H0

所以r=.40并不显著,即不能推翻ρ=0的假设。

在实际应用中,更多地是直接查表来断定r是否显著。因为统计学家已根据上述的t检验制成了相关系数显著性用表。(见本书附表7)如上例中r=.40,12=18,则从附表7中找到df=18-2=16与.05水平交叉处的值是.468,这表示当df=16时r只有达到.468才算显著。例中r=.40<.468因此不显著。

(二)ρ≠0时

人们常常说“相关系数r是显著的”(或“不显著”)这都是特指在ρ=0这一前提下的检验结果,这种情况在实际中用得较多。但是它只解决了两个总体是否有相关的问题,或者说由此只能说明r是否来自ρ=0的总体。有时在研究中还需要了解r是否来自ρ为某一特定值的总体,即当ρ≠0时r的显著性检验。

在图7—11中已经分析过,ρ≠0时r的样本分布不是正态,因此不能用公式(7—27)进行t检验。这时需要将r与ρ都转换成费舍Zr(见前第四章),r转换为Zr以后,Zr的分布可以认为是正态,其平均数Z

ρ,标准误,这样就可以进行Z检验了。

(7-28)

[例2]某研究者估计,对于10岁儿童而言,比奈智力测驹与韦氏儿童智力测验的相关为.70,今随机抽取10岁儿童50名,进行上述两种智力测验。结果相关系数r=.54,试问实测结果是否支持该研究者的估计。

解:查本书附表8、r值的Z r转换表

r=.54 得Z r=.604

ρ=.70 得Zρ=.867

1.80<1.96 即P>.05

就是说,实得r值与理论估计值差异不显著,这位研究者的估计不能推翻。

二、相关系数差异的显著性检验

在实践中经常遇到检验两个样本相关系数差异是否显著的问题。这里仅讨论积差相关,分为两种情况。

(一) r1 r2和r2分别由两组彼此独立的被试得到。

这时将r1和r2分别进行费舍Z r的转换。由于Z r的分布近似正态,同样(Zr1-Zr2)的分布仍为正态,其分布的标准误为

(7—32)

式中n1和n2分别为两个样本的容量。

进行Z检验:

(7—33)

[例3] 某校高中毕业班中理科97名学生毕业考试各科总成绩与瑞文推理测验分数的相关系数.84,文科50名学生各科总成绩与瑞文推理测验分数相关系数为.75,能否认为理科的这一相关系数大于文科。

解:n1=97,r1 =.84 得Zr1=1.22

n2=50,r2=.75 得Zr2=.793

单侧检验,Z.05=1.645

1.39<1.645,即p>.05

因此r1并不显著地大于r2,不能认为理科毕业成绩与瑞文测验的相关系数明显大于文科。

(二)两个样本相关系数由同一组被试算得

这时又分为两种情况:其一是检验ρ12与ρ13的差异,例如一组被试数学与物理成绩的相关系数为r12、数学与化学成绩的相关为r13,。我们的目的是通过(r12- r13)来检验(ρ12- ρ13)。其二是检验ρ12与ρ34的差异,例如一组被试数学与物理成绩相关系数为r12、生物与地理成绩相关系数为r34,目的是通过(r12-r34)来检验(ρ12 -ρ12)。

由于第二种情况在实际中意义不大,而且对其检验结果很难作出解释,所以这里只介绍第一种情况。

这时,应当首先算出三列变量的两两相关系数r12、r13,和r23,然后用下式进行t检验

(7-34)

[例4]随机抽取123名儿童进行某一项能力测验,同时算出能力测验结果与效标的相关系数是.54,研究者嫌该测验对于这组儿童来说效度不理想,在此测验的基础上又编制了一个新测验来测量该项能力(对同一组被试),结果新测验与同一效标分数的相关为.62,而且新旧测验的相关系数是.68,试问新测验的效度是否有显著的提高。

解:n=123

r12=.54,r13=.62,r23=.68

代入(7-34)式

查附表2 t.05=1.658(df-=120,单侧检验)

t=1.43

SPSS中的相关分析及假设检验

相关分析及假设检验 spss 1.概念 变量之间相关,但是又不能由一个或几个变量值去完全和唯一确定另一个变量值的这种关系称为相关关系。相关关系是普遍存在的,函数关系仅仅是相关关系的特例。事物之间有相关关系,不一定是因果关系,也可能仅是伴随关系,但是事物之间有因果关系,则两者必然相关。 相关分析用于分析两个随机变量的关系,可以检验两个变量之间的相关度或多个变量两两之间的相关程度,也可以检验 两组变量之间的相关程度 偏相关分析是指在控制了其他变量的效应以后,对两个变量相关程度的分析。、 2.皮尔逊积差相关系数pearson product-moment correlation coefficient 变量之间的相关程度由相关系数来度量,pearson相关系数是应用最广的一种。它用于检验连续型变量之间的线性相关程度 2.1前提假设 1)正态分布皮尔逊积差相关只适用于双元正态分布的变量,即两个变量都是正态分布,注意只有pearson要求正态分布 如果正态分布的前提不满足,两变量间的关系可能属于非线性相关 2)样本独立样本必须来自总体的随机样本,而且样本必须相互独立 3)替换极值变量中的极端值如极值、离群值对相关系数的影响较大,最好加以删除或代之以均值或中数 2.2相关分析的前提假设检验 一般情况下是对是否满足正态分布进行检验,对于正态分布的检验有好几种方法,总的可分为非参数检验和图形检验法 1)非参数检验法 spss中的1-sample K-S检验,检验样本数据是否服从某种特定的分布,方法有三种 a. Asymptotic only 是一种基于渐进分布的显著性水平的检验指标,通常显著性水平小于0.05则认为显著,适用于大样本。如果 样本过小或分布不好,该指标的适用性会降低 b.Monte Carlo 精确显著性水平的无偏估计,适用于样本过大无法使用渐进方法估计显著性水平的情况,可以不必依赖渐近方法的假设前提 c.Exact 精确计算观测结果的概率值,通常小于0.05即被认为显著,表明横变量和列变量之间存在相关,同时允许用户键入每次检验的最长 时间显著,可以键入1到9999999999之间的数字,但只要一次检验超过指定时间的30分钟,就应该用monte carlo 假设是服从某种分布 所以如果计算出的值比如Asymp. Sig 小于0.05,那么拒绝原假设,说明样本为非正态分布,否则值越大越服从某种分布 单样本K-S首先计算每一阶段实际值与观察值的差异值,再计算每一阶段差异值的绝对值Z,即K-S的Z值,Z值越大,样本服从理论分布的可能性越小 还有一个是2 -sample Kolmogorov—Smirnov用于检验2个样本的分布是相同的假设 2)图形法 spss中graph a.Q-Q正态检验图

相关系数临界值表

附表二:相关系数临界值表 (表中是自由度) n -2 0.10 0.05 0.02 0.01 0.001 n -2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45 50 60 70 80 90 100 0.987 69 0.900 00 0.805 4 0.729 3 0.669 4 0.621 5 0.582 2 0.549 4 0.521 4 0.497 3 0.476 2 0.457 5 0.440 9 0.425 9 0.412 4 0.400 0 0.388 7 0.378 3 0.368 7 0.359 8 0.323 3 0.296 0 0.274 6 0.257 3 0.242 8 0.230 6 0.210 8 0.195 4 0.182 9 0.172 6 0.163 8 0.099 692 0.950 00 0.878 3 0.811 4 0.754 5 0.706 7 0.666 4 0.631 9 0.602 1 0.576 0 0.552 9 0.532 4 0.513 9 0.497 3 0.482 1 0.468 3 0.455 5 0.443 8 0.432 9 0.422 7 0.380 9 0.349 4 0.324 6 0.304 4 0.287 5 0.273 2 0.250 0 0.231 9 0.217 2 0.205 0 0.194 6 0.999 507 0.980 00 0.934 33 0.882 2 0.832 9 0.788 7 0.749 8 0.715 5 0.685 1 0.658 1 0.633 9 0.612 0 0.592 3 0.574 2 0.557 7 0.542 5 0.528 5 0.515 5 0.503 4 0.492 1 0.445 1 0.409 3 0.381 0 0.357 8 0.338 4 0.321 8 0.294 8 0.273 7 0.256 5 0.242 2 0.230 1 0.999 877 0.990 00 0.958 73 0.917 20 0.874 5 0.834 3 0.797 7 0.764 6 0.734 8 0.707 9 0.683 5 0.661 4 0.641 1 0.622 6 0.605 5 0.589 7 0.575 1 0.561 4 0.548 7 0.536 8 0.486 9 0.448 7 0.418 2 0.393 2 0.372 1 0.354 1 0.324 8 0.301 7 0.283 0 0.267 3 0.254 0 0.999 998 8 0.999 00 0.991 16 0.974 06 0.950 74 0.924 93 0.898 2 0.872 1 0.847 1 0.823 3 0.801 0 0.780 0 0.760 3 0.742 0 0.724 6 0.708 4 0.693 2 0.678 7 0.665 2 0.652 4 0.597 4 0.554 1 0.518 9 0.489 6 0.464 8 0.443 3 0.407 8 0.379 9 0.356 8 0.337 5 0.321 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45 50 60 70 80 90 100

如何用SPSS求相关系数

参见: [1] 衷克定数据统计分析与实践—SPSS for Windows[M].北京:高等教育出版社,2005.4:195— [2] 试验设计与SPSS应用[M].北京,化学工业出版社,王颉著,2006.10:141— 多元相关与偏相关 如何用SPSS求相关系数 1 用列联分析中,计算lamabda相关系数,在分析——描述分析——列联分析 2 首先看两个变量是否是正态分布,如果是,则在analyze-correlate-bivariate中选择 pearson相关系数,否则要选spearman相关系数或Kendall相关系数。如果显著相关,输出结果会有*号显示,只要sig的P值大于0.05就是显著相关。如果是负值则是负相关。 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同 两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项:

相关系数检验表

自由度自由度n -m -10.10 0.05 0.01 n -m -10.10 0.05 0.01 10.987690.996920.999882010.018230.010910.0028820.900000.950000.990002020.050680.043320.0258130.805380.878340.958742030.068740.066150.0518940.729300.811400.917202040.079150.080690.0725350.669440.754490.874532050.085730.090380.0880760.621490.706730.834342060.090190.097180.0998670.582210.666380.797682070.093370.102170.1089880.549360.631900.764592080.095730.105950.1161890.521400.602070.734792090.097520.108880.12197100.497260.575980.707892100.098910.111200.12670110.476160.552940.683532110.100010.113070.13062120.457500.532410.661382120.100890.114600.13390130.440860.513980.641142130.101600.115860.13667140.425900.497310.622592140.102170.116900.13903150.412360.482150.605512150.102640.117770.14106160.400030.468280.589712160.103020.118500.14281170.388730.455530.575072170.103320.119110.14432180.378340.443760.561442180.103560.119620.14564190.368740.432860.548712190.103760.120060.14679200.359830.422710.536802200.103910.120420.14780210.351530.413250.525622210.104020.120720.14869220.343780.404390.515102220.104100.120970.14946230.336520.396070.505182230.104160.121170.15015240.329700.388240.495812240.104190.121340.15075250.323280.380860.486932250.104200.121470.15127260.317220.373890.478512260.104190.121570.15173270.311490.367280.470512270.104170.121640.15214280.306060.361010.462892280.104130.121690.15249290.300900.355050.455632290.104080.121720.15279300.295990.349370.448702300.104020.121730.15306310.291320.343960.442072310.103950.121730.15328320.286860.338790.435732320.103870.121700.15348330.282590.333840.429652330.103780.121670.15364340.278520.329110.423812340.103680.121620.15377350.274610.324570.418212350.103580.121560.15388360.270860.320220.412822360.103470.121490.15396370.267270.316030.407642370.103360.121410.15403380.263810.312010.402642380.103240.121320.15407390.260480.308130.397822390.103120.121220.15409400.257280.304400.393172400.103000.121120.15410410.254190.300790.388682410.102870.121010.1541042 0.251210.297320.38434242 0.102740.120900.15408 显著性水平(a ) 显著性水平(a ) 相关系数检验临界值表

第六章相关系数检验

第六章 相关系数检验 一般来说,在回归模型的基本假设中,有一个假设条件是最为重要的,这就是假设变量之间在概率意义上存在线性关系;亦即)(i Y E =i X βα+或)(i E μ=0。这里的“概率意义”,虽说与确定意义有差别,但由于概率意义的前提必须承认规律的存在;故我认为,这里的“线性关系”与确定意义下的“线性关系”并无根本性的区别。因此,我们可以说,概率意义上的线性关系仍是一般意义上的线性思路或方法,只是分析的条件有所放松而已。 现在我们要问,在建立回归模型时,这个假设条件成立吗?显然需要进行检验,需要建立一种检验方法。 6·1、建立相关系数检验方法的基本思路 实际上,建立相关系数检验方法的基本思路是较为简单和清晰的。其基本思路是:建立一种方法(2R ),希望此方法在测定被解释变量Y 的总的变化中,推出回归直线能够解释的部分有多大;即通过两者之比的大小,来推断回归模型效果的好坏。下面简要介绍其方法的建立过程: 首先,我们有 Y 的总的变化可表示为 : Y Y y i i -= 回归直线能够解释的部分: Y Y y i i -=?? 由此我们可以得到,回归直线没有(或不能)解释的部分为:i i i Y Y e ?-= 因而我们有 Y 的总的变差=∑∑∑++=+=)?2?()?(2 2 22 i i i i i i i e e y y e y y 其中,)(?)?(?)?)(?(?2 22∑∑∑∑∑∑∑- =-=-=i i i i i i i i i i i i i i x x y x y x x y x x y x e y βββββ =0 (注意:i i i i x X Y Y y X Y X Y ββαβαβαβα???????,??,??=---=-=∴+=∴-= ,另外 i i i i i i i x y y y Y Y e β???-=-=-=)。 所以,我们最终有 Y 的总的变差==∑∑∑∑+=++=+=)?()?2?()?(2 2 2 2 22 i i i i i i i i i e y e e y y e y y 亦即, Y 的总的变差=回归直线能够解释的部分部分+回归直线不能够解释的部分

eviews自相关性检验

实验五自相关性 【实验目的】 掌握自相关性的检验与处理方法。 【实验内容】 利用表5-1资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。 【实验步骤】 一、回归模型的筛选 ⒈相关图分析 SCAT X Y 相关图表明,GDP指数与居民储蓄存款二者的曲线相关关系较为明显。现将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而加以比较分析。 ⒉估计模型,利用LS命令分别建立以下模型 ⑴线性模型:LS Y C X t (-6.706) (13.862) = 2 R=0.9100 F=192.145 S.E=5030.809 ⑵双对数模型:GENR LNY=LOG(Y) GENR LNX=LOG(X) LS LNY C LNX t (-31.604) (64.189) = 2 R=0.9954 F=4120.223 S.E=0.1221 ⑶对数模型:LS Y C LNX

=t (-6.501) (7.200) 2R =0.7318 F =51.8455 S.E =8685.043 ⑷指数模型:LS LNY C X =t (23.716) (14.939) 2R =0.9215 F =223.166 S.E =0.5049 ⑸二次多项式模型:GENR X2=X^2 LS Y C X X2 =t (3.747) (-8.235) (25.886) 2R =0.9976 F =3814.274 S.E =835.979 ⒊选择模型 比较以上模型,可见各模型回归系数的符号及数值较为合理。各解释变量及常数项都通过了t 检验,模型都较为显著。除了对数模型的拟合优度较低外,其余模型都具有高拟合优度,因此可以首先剔除对数模型。 比较各模型的残差分布表。线性模型的残差在较长时期内呈连续递减趋势而后又转为连续递增趋势,指数模型则大体相反,残差先呈连续递增趋势而后又转为连续递减趋势,因此,可以初步判断这两种函数形式设置是不当的。而且,这两个模型的拟合优度也较双对数模型和二次多项式模型低,所以又可舍弃线性模型和指数模型。双对数模型和二次多项式模型都具有很高的拟合优度,因而初步选定回归模型为这两个模型。 二、自相关性检验 ⒈DW 检验; ⑴双对数模型 因为n =21,k =1,取显著性水平α=0.05时,查表得L d =1.22, U d =1.42,而0<0.7062=DW

相关系数显著性检验表完整版

附表11(1)相关系数界值表 P(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 P(1): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 1 0.707 0.951 0.988 0.997 1.000 1.000 1.000 1.000 1.000 2 0.500 0.800 0.900 0.950 0.980 0.990 0.995 0.998 0.999 3 0.40 4 0.687 0.80 5 0.878 0.934 0.959 0.974 0.98 6 0.991 4 0.347 0.603 0.729 0.811 0.882 0.917 0.942 0.963 0.974 5 0.309 0.551 0.669 0.755 0.833 0.875 0.90 6 0.935 0.951 6 0.281 0.50 7 0.621 0.707 0.789 0.834 0.870 0.905 0.925 7 0.260 0.472 0.582 0.666 0.750 0.798 0.836 0.875 0.898 8 0.242 0.443 0.549 0.632 0.715 0.765 0.805 0.847 0.872 9 0.228 0.419 0.521 0.602 0.685 0.735 0.776 0.820 0.847 10 0.216 0.398 0.497 0.576 0.658 0.708 0.750 0.795 0.823 11 0.206 0.380 0.476 0.553 0.634 0.684 0.726 0.772 0.801 12 0.197 0.365 0.457 0.532 0.612 0.661 0.703 0.750 0.780 13 0.189 0.351 0.441 0.514 0.592 0.641 0.683 0.730 0.760 14 0.182 0.338 0.426 0.497 0.574 0.623 0.664 0.711 0.742 15 0.176 0.327 0.412 0.482 0.558 0.606 0.647 0.694 0.725 16 0.170 0.317 0.400 0.468 0.542 0.590 0.631 0.678 0.708 17 0.165 0.308 0.389 0.456 0.529 0.575 0.616 0.622 0.693 18 0.160 0.299 0.378 0.444 0.515 0.561 0.602 0.648 0.679 19 0.156 0.291 0.369 0.433 0.503 0.549 0.589 0.635 0.665 20 0.152 0.284 0.360 0.423 0.492 0.537 0.576 0.622 0.652 21 0.148 0.277 0.352 0.413 0.482 0.526 0.565 0.610 0.640 22 0.145 0.271 0.344 0.404 0.472 0.515 0.554 0.599 0.629 23 0.141 0.265 0.337 0.396 0.462 0.505 0.543 0.588 0.618 24 0.138 0.260 0.330 0.388 0.453 0.496 0.534 0.578 0.607 25 0.136 0.255 0.323 0.381 0.445 0.487 0.524 0.568 0.597 26 0.133 0.250 0.317 0.374 0.437 0.479 0.515 0.559 0.588 27 0.131 0.245 0.311 0.367 0.430 0.471 0.507 0.550 0.579 28 0.128 0.241 0.306 0.361 0.423 0.463 0.499 0.541 0.570 29 0.126 0.237 0.301 0.355 0.416 0.456 0.491 0.533 0.562 30 0.124 0.233 0.296 0.349 0.409 0.449 0.484 0.526 0.554 31 0.122 0.229 0.291 0.344 0.403 0.442 0.477 0.518 0.546 32 0.120 0.226 0.287 0.339 0.397 0.436 0.470 0.511 0.539 33 0.118 0.222 0.283 0.334 0.392 0.430 0.464 0.504 0.532 34 0.116 0.219 0.279 0.329 0.386 0.424 0.458 0.498 0.525 35 0.115 0.216 0.275 0.325 0.381 0.418 0.452 0.492 0.519 36 0.113 0.213 0.271 0.320 0.376 0.413 0.446 0.486 0.513 37 0.111 0.210 0.267 0.316 0.371 0.408 0.441 0.480 0.507 38 0.110 0.207 0.264 0.312 0.367 0.403 0.435 0.474 0.501 39 0.108 0.204 0.261 0.308 0.362 0.398 0.430 0.469 0.495 40 0.107 0.202 0.257 0.304 0.358 0.393 0.425 0.463 0.490 41 0.106 0.199 0.254 0.301 0.354 0.389 0.420 0.458 0.484 42 0.104 0.197 0.251 0.297 0.350 0.384 0.416 0.453 0.479 43 0.103 0.195 0.248 0.294 0.346 0.380 0.411 0.449 0.474

操作篇 09_等级相关系数的计算与检验

计算机辅助英语教学与研究(操作篇) 浙江师范大学外语学院夏建新 第9讲用Excel计算等级相关系数 目次 9.1 等级相关的概念 (1) 9.2 适用条件与计算公式 (1) 9.3 操作练习 (1) 9.4 课堂练习 (3) 9.5 积差相关与等级相关比较 (4) 9.6 肯德尔和谐系数的计算 (5) 9.7 Task 9 (6)

9.1 等级相关的概念 等级相关是指以等级次序排列或以等级次序表示的变量之间的相关。主要包括斯皮尔曼(Spearman)二列等级相关及肯德尔和谐系数(the Kandall Coefficient of Concordance)多列等级相关。 9.2 适用条件与计算公式 z当测量到的数据不是等距或等比数据,而是具有等级顺序的测量数据; z(或)得到的数据是等距或等比的测量数据,但其所来自的总体分布不是正态的; z(或)样本容量不一定大于50(或30) 在无法满足积差相关系数的适用条件时,只要满足上述三个条件中的任何一个,都可以计算其等级相关系数。由于该系数并不要求总体是否呈正态分布,也不要求N>50(或N>30),所以应用范围较广。 斯皮尔曼等级相关系数r R的计算公式为: 在该式中,D = (Rx – Ry),它表示对偶等级之差。 9.3 操作练习 计算下表的相关系数。 学号学习潜能自学能力 199901 71 7 199902 68 7 199903 84 2 199904 64 9 199905 76 5 199906 69 8 199907 90 3 199908 71 8

199909 66 10 199910 71 6 (注:自学能力是按能力高低从小往大的数字打的,即数值越小,说明自学能力越强) 步骤一:先用Excel中的“排序”工具对“学习潜能”进行等级赋值,操作步骤如下所示: 数据→ 排序 → 主要关键字 → 学习潜能 → 递减 → 有标题行→ 确定 结果如下: 学号 学习潜能自学能力 19990790 3 19990384 2 19990576 5 19990171 7 19990871 8 19991071 6 19990669 8 19990268 7 19990966 10 19990464 9 然后对“学习潜能”进行赋值,结果如下: 序号学号学习潜能等级1 自学能力 1 19990790 1 3 2 19990384 2 2 3 19990576 3 5 5 19990171 5 7 4 19990871 5 8 6 19991071 5 6 7 19990669 7 8 8 19990268 8 7 9 19990966 9 10 10 19990464 10 9 说明:因4、5、6号三位学生的“学习潜能”分相等,其赋值取三者的平均等级5(计算方法为名次的总和除以同名次人数,即(4+5+6)/3=5)。 步骤二:按步骤一中所述方法对“自学能力”进行排序和赋值(考虑到“自学能力”的数值越小,等级越高,排序时应该选“递增”)。结果如下: 序号学号学习潜能等级1自学能力等级2 2 19990 3 8 4 2 2 1 1 199907 90 1 3 2 3 199905 76 3 5 3 6 199910 71 5 6 4 5 199901 71 5 7 5.5 8 199902 68 8 7 5.5 4 199908 71 5 8 7.5

相关分析方法

相关分析方法 地理要素之间相互关系密切程度的测定,主要是通过对相关系数的计算与检验来完成的。 1. 两要素之间相关程度的测定 1) 相关系数的计算与检验 (1) 相关系数的计算 相关系数——表示两要素之间的相关程度的统计指标。 对于两个要素x与y,如果它们的样本值分别为xi与yi(i=1,2,...,n),它们之间的相关系数: , r xy>0,表示正相关,即同向相关;rxy<0,表示负相关,即异向相关。的绝对值越接近于1,两要素关系越密切;越接近于0,两要素关系越不密切。 ■ 若记:

则: ■ 若问题涉及到x1,x2,…,xn等n个要素,多要素的相关系数矩阵: [相关系数矩阵的性质] [举例说明] 例1:中国1952~1999年期间的国内总产值(GDP)及其各次产业构成数据如表3.1.1(单击显示该表)所示。试计算GDP与各次产业之间的相关系数及相关系数矩阵。

解: (1) 将表3.1.1中的数据代入相关系数计算公式计算,得到国内生产总值(GDP)与第一、二、三产业之间的相关系数分别为0.9954,0.9994,0.9989。 (2) 根据表3.1.1中的数据,进一步计算,得到国内生产总值及 一、二、三产业之间的相关系数矩阵: (2) 相关系数的检验 一般情况下,相关系数的检验,是在给定的置信水平下,通过查相关系数检验的临界值表来完成。表3.1.2(点击显示该表)给出了相关系数真值(即两要素不相关)时样本相关系数的临界值

[临界值表说明] 2) 秩相关系数的计算与检验 (1) 秩相关系数的计算 秩相关系数——是描述两要素之间相关程度的一种统计指标,是将两要素的样本值按数据的大小顺序排列位次,以各要素样本值的位次代替实际数据而求得的一种统计量。实际上,它是位次分析方法的数量化。 设两个要素x和y有n对样本值,令R1代表要素x的序号(或 位次),R2代表要素y的序号(或位次),代表要素x和y的同一组样本位次差的平方,则要素x和y之间的秩相关系数被定义为 (2) 秩相关系数的检验 与相关系数一样,秩相关系数是否显著,也需要检验。表3.1.4(点击显示该表及表的说明)给出了秩相关系数检验的临界值。

相关系数显著性检验表(完整润色版)教学内容

相关系数显著性检验表(完整润色版)

11 (1) 相关系数界值表 0.10 0.05 0.988 0.900 0.805 0.729 0.669 0.621 0.582 0.549 0.521 0.497 0.476 0.457 0.441 0.426 0.412 0.400 0.389 0.378 0.369 0.360 0.352 0.344 0.337 0.330 0.323 0.317 0.311 0.306 0.301 0.296 0.291 0.287 0.283 0.279 0.275 0.271 0.267 0.264 0.261 0.257 0.254 0.251 0.248 0.246 0.05 0.025 0.997 0.950 0.878 0.811 0.755 0.707 0.666 0.632 0.602 0.576 0.553 0.532 0.514 0.497 0.482 0.468 0.456 0.444 0.433 0.423 0.413 0.404 0.396 0.388 0.381 0.374 0.367 0.361 0.355 0.349 0.344 0.339 0.334 0.329 0.325 0.320 0.316 0.312 0.308 0.304 0.301 0.297 0.294 0.291 0.02 0.01 1.000 0.980 0.934 0.882 0.833 0.789 0.750 0.715 0.685 0.658 0.634 0.612 0.592 0.574 0.558 0.542 0.529 0.515 0.503 0.492 0.482 0.472 0.462 0.453 0.445 0.437 0.430 0.423 0.416 0.409 0.403 0.397 0.392 0.386 0.381 0.376 0.371 0.367 0.362 0.358 0.354 0.350 0.346 0.342 0.01 0.005 1.000 0.990 0.959 0.917 0.875 0.834 0.798 0.765 0.735 0.708 0.684 0.661 0.641 0.623 0.606 0.590 0.575 0.561 0.549 0.537 0.526 0.515 0.505 0.496 0.487 0.479 0.471 0.463 0.456 0.449 0.442 0.436 0.430 0.424 0.418 0.413 0.408 0.403 0.398 0.393 0.389 0.384 0.380 0HH 附表 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 0.50 0.20 P(1): 0.25 0.10 0.707 0.951 0.500 0.800 0.404 0.687 0.347 0.603 0.309 0.551 0.281 0.507 0.260 0.472 0.242 0.443 0.228 0.419 0.216 0.398 0.206 0.380 0.197 0.365 0.189 0.351 0.182 0.338 0.176 0.327 0.170 0.317 0.165 0.308 0.160 0.299 0.156 0.291 0.152 0.284 0.148 0.277 0.145 0.271 0.141 0.265 0.138 0.260 0.136 0.255 0.133 0.250 0.131 0.245 0.128 0.241 0.126 0.237 0.124 0.233 0.122 0.229 0.120 0.226 0.118 0.222 0.116 0.219 0.115 0.216 0.113 0.213 0.111 0.210 0.110 0.207 0.108 0.204 0.107 0.202 0.106 0.199 0.104 0.197 0.103 0.195 0.102 0.192 0.00! 0.00 2 0.0025 0.00 1 1.000 1.00 0.995 0.99 8 0.974 0.98 6 0.942 0.96 3 0.906 0.93 5 0.870 0.90 5 0.836 0.87 5 0.805 0.84 7 0.776 0.82 0.750 0.79 5 0.726 0.77 2 0.703 0.75 0.683 0.73 0.664 0.71 1 0.647 0.69 4 0.631 0.67 8 0.616 0.62 2 0.602 0.64 8 0.589 0.63 5 0.576 0.62 2 0.565 0.61 0.554 0.59 9 0.543 0.58 8 0.534 0.57 8 0.524 0.56 8 0.515 0.55 9 0.507 0.55 0.499 0.54 1 0.491 0.53 3 0.484 0.52 6 0.477 0.51 8 0.470 0.51 1 0.464 0.50 4 0.458 0.49 8 0.452 0.49 2 0.446 0.48 6 0.441 0.48 0.435 0.47 4 0.430 0.46 9 0.425 0.46 3 0.420 0.45 8 0.416 0.45 3 0.411 0.44 9 0.407 0.44 4 0.001 0.0005 1.000 0.999 0.991 0.974 0.951 0.925 0.898 0.872 0.847 0.823 0.801 0.780 0.760 0.742 0.725 0.708 0.693 0.679 0.665 0.652 0.640 0.629 0.618 0.607 0.597 0.588 0.579 0.570 0.562 0.554 0.546 0.539 0.532 0.525 0.519 0.513 0.507 0.501 0.495 0.490 0.484 0.479 0.474 0.469 收集于网络,如有侵权请联系管理员删除

spss一些用法-变异系数-相关性检验

变异系数又称“标准差率”,是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。 标准差与平均数的比值称为变异系数,记为C.V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。 标准变异系数是一组数据的变异指标与其平均指标之比,它是一个相对变异指标。 变异系数有全距系数、平均差系数和标准差系数等。常用的是标准差系数,用CV(Coefficient of Variance)表示。 CV(Coefficient of Variance):标准差与均值的比率。 用公式表示为:CV=σ/μ 作用:反映单位均值上的离散程度,常用在两个总体均值不等的离散程度的比较上。若两个总体的均值相等,则比较标准差系数与比较标准差是等价的。 变异系数又称离散系数。 cpa中也叫“变化系数”

Analyze-Descriptive,计算出标准差和均值,然后用标准差除以均值就算出变异系数了 如何用SPSS软件计算两个变量之间的相关系数? 怎么判定相关是不是显著相关呢? analyze-correlate-bivariate-选择变量 OK 输出的是相关系数矩阵 相关系数下面的Sig.是显著性检验结果的P值,越接近0越显著。另外,表格下会显示显著性检验的判断结果,你看看表格下的解释就知道,比如“**. Correlation is significant at the 0.01 level (2-tailed).” 就是说,如果相关系数后有"**"符号,代表在0.01显著性水平下显著相关 粗略判断的方法是,相关系数0.8以上,可以认为显著相关了 在这个图表中,你说的R值就是皮尔逊相关系数~(pearson correlation) r>0 代表两变量正相关,r<0代表两变量负相关。

两组数据相关分析及检验简便方案

两组数据相关分析及检验简便方案 本人也是统计菜鸟,但经常被要求计算相关关系并检验,只好查文献,找资料,结合广大大虾们的经验,总结了一个简单的操作流程和通俗易懂的解释,附带上对分析结果的论文表述(大虾远离、只适合菜鸟使用)。 一、计算方法(可利用SPSS、EXCEL等) 本文以SPSS为例,只要你安装了SPSS就非常简单了,你有两组数据(两列),打开SPSS主界面,将一组数(不带标题)拷贝到一个纵列Variable00001,将另一组数拷贝到第二个纵列Variable00002。 英文版SPSS,打开Analyze-Correlate-Bivariate 出来一个对话框,在这个对话框中,将左边蓝中的两个Variable放到右边栏中。correlation coefficient选取pearson,单击OK。中文版SPSS,点分析-相关-双变量,将Variable00001和Variable00002选作变量,其它默认,确定即可。

二、结果分析 以上操作后,弹出如下窗体,只需关注相关性这个表格即可。 例1的相关性表格如下: Variable00002 Pearson 相关性对应的0.152是相关系数,它反映了二者是正相关还是负相关,是密切还是不密切,这个数的绝对值越大则越密切,如果是负数说明二者负相关。显著性(双侧)是判断相关显著性,如果它<0.05说明这个相关性具有统计学意义,即二者真的相关。如果它>0.05则相关性不显著,即二者不相关。 以上表为例,0.152的相关系数,0.278>0.05,说明相关不显著。 用另一组数据为例,在此做相关分析并检验

例2相关表格如下 两组数据相关系数0.526,Sig=0.00<0.05,说明显著相关。 三、结果描述 例1中Variable00001与Variable00002不相关(r=0.152,p=0.278),例2中Variable00001与Variable00002之间的相关有统计学意义,相关显著(r=0.526,P<0.05) 。 四、为什么做检验,本检验的前提 为如果变量x与y之间并不存在直线关系,但由于n对观测值(Xi,Yi)也可以根据计算公式求得一个直线回归方程。显然,这样的直线回归方程所反应的两个变量之间的直线关系是不真实的,所以为了判断直线回归方程的两个变量间的直线关系的真实性,就必须对直线回归的相关系数进行假设检验,检验方法有F和t两种,二者是等价的,任选其一即可。 pearson correlation是皮尔森相关系数,采用该法有前提:双变量正态分布。如果不服从,应该选用spearman相关系数。Sig. (2-tailed)

SPSS 3种相关系数的区别

3种相关系数的区别 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析 Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项: Pearson Kendall's tau-b Spearman:Spearman spearman(斯伯曼/斯皮尔曼)相关系数 斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法” 斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究 Kendall's相关系数 肯德尔(Kendall)W系数又称和谐系数,是表示多列等级变量相关程度的一种方法。适用这种方法的数据资料一般是采用等级评定的

相关主题