搜档网
当前位置:搜档网 › 污泥回流计算

污泥回流计算

污泥回流计算
污泥回流计算

七、污泥回流系统的技术与设计 ● 污泥回流量的计算; ● 污泥回流设备的选择与设计 1、

污泥回流量的计算:

??污泥回流是关系到处理效果的重要设计参数,应根据不同的水质、水量以及运行方式,确定适宜的回流比; ??也可利用公式

??

? ??

?-+?=

X X R R V Q r c

11

θ 来计算; ??在设计时,应按最大回流比设计,并保证其具有在较小回流比时工作的可能性,以便使回流比在一定范围内可以调节。 2、

污泥回流设备的选择与设计

??常用的污泥提升设备是污泥泵;

??大、中型污水处理厂,一般采用螺旋泵或轴流式污泥泵; ??小型污水处理厂,一般采用小型潜污泵或空气提升器。

八.曝气沉淀池的计算与设计

2.2.1.6活性污泥法的运行管理及常见问题

一、 活性污泥系统的启动与试运行 活性污泥的培养与驯化

??接种污泥:①同类污水厂的剩余污泥;②粪便污水等。

??方法:①全流量连续直接培养法;②流量分阶段直接培养法;③间歇培养法; ——活性污泥的驯化: a.异步驯化法; b.同步驯化法 活性污泥系统的试运行

??试运行的目的是确定最佳的运行条件;

??作为变数考虑的因素:①MLSS 、空气量、污水注入方式;②如是吸附再生法,则吸附与再生的时间比;③N 、P 的投加。

??根据上述各种参数的组合运行结果,找出最佳运行条件。

二、 对活性污泥系统中重要运行参数的调节与观测 1、对活性污泥状况的镜检观察 2、对曝气时间(HRT )的调节 3、对供气量的调节 ● 供气电耗占整个废水处理厂的电耗的一半以上(50~60%); ● 保证充氧——出口处的DO ≥ 2mg/L ;其次要保证混合搅拌的要求; ● 气水比一般为3~7:1(处理城市废水的传统活性污泥法);

● 对于水质、水量相对稳定的大型废水处理厂,每年春秋各调节一次。 4、SV 的测定与调节

● 使MLSS 值经常处于最佳范围内是运行管理的重要内容之一; ● MLSS 的测定需时较长,一般以SV 值作为评定MLSS 值的指标; ● 每座污水处理厂可以有自己的最佳SV 值; ● SV 值可以通过调节剩余污泥的排放量来控制; ● SV 值的测定,一般要求每班测一次,每天3~4次; ●

结合MLSS 则可以得出SVI 值。

5、剩余污泥排放量的调节

6、回流污泥量的调节

三、活性污泥系统的水质管理

A、曝气池的水质管理

(1)水质管理监测项目

①水温:15~30?C,一般要求不高于35?C或低于10?C;

②pH值:6.5~8.5,最佳7.2~7.4,一般不>9.5和<4.0;

③DO:DO>0.3mg/L时,即可正常进行反应;但一般要求入口处不低于0.5 mg/L,出口处应高于2.0 mg/L;

④SV:

⑤MLSS、MLVSS:

⑥X r:用于确定回流污泥量和属于污泥量,一般在7000~12000mg/L;

⑦SVI:沉降性能,60~150;

⑧L srBOD和L vrBOD:

⑨污泥龄(θc):

⑩HRT:

(2)生物相镜检观察:

一般来说,主要镜检活性污泥中的原生动物,其是指示性生物,根据在混合液中出现的原生动物的种属及其数量,可以大体地判断出废水净化的程度和活性污泥的状态。

①活性污泥生长正常、净化功能强,出水水质良好时,主要是有柄着生型的纤毛虫,如钟虫等;

②活性污泥生长不好、有机负荷高,DO含量低,细菌多以游离状态存在时,出现的原生动物则主要是游泳型的纤毛虫,如

草履虫、肾形虫等;

③DO不足时,可能出现的原生动物数量较少,主要有扭头虫等,它们的出现说明已出现厌氧反应,产生了H2S气体;

④曝气过度时,活性污泥絮体呈细小分散状,出现的原生动物主要是一些小型变形虫。

c.二沉池的水质管理

*水质管理监测项目:

①pH值:略低于曝气池出水,一般6.8~7.2;

②透明度:一般在30度以上,水质较好时可高于50度;

③SS:低于30mg/L;

④BOD5(COD):BOD5<30mg/L,,COD<100mg/L;

⑤DO:

⑥q表面水力负荷:1.0~1.5m3/m2.h

⑦出水堰的水力负荷:不大于1.7L/m.s;

⑧HRT:1.5~2.5h;

⑨大肠菌值:应小于1000个/ml。

四.活性污泥系统的常见异常现象及其对策

A. 曝气池的异常现象及对策

1)混合液DO不足

??现象:活性污泥呈灰黑色、污泥发生厌氧反应,污泥中出现硫细菌,出水水质恶化;

??原因:1)负荷量增高;2)曝气不足;3)工业废水的流入等;

??对策:1)控制负荷量;2)增大曝气量;3)切断或控制工业废水的流入。

2)SV值异常:

a.污泥沉淀30~60分钟后呈层状上浮(污泥上浮)

??多发生在夏季;

??硝化作用导致在二沉池中被还原成N2,引起污泥上浮;

??对策:1)减少污泥在二沉池的HRT;2)减少曝气量。

b.在沉淀后的上清液中含有大量的悬浮微小絮体,出水透明度下降。

??原因:污泥解体

??曝气过度;负荷下降,活性污泥自身氧化过度;

??对策:减少曝气;增大负荷量

c.泥水界面不明显

??原因:高浓度有机废水的流入,使微生物处于对数增长期;

??污泥形成的絮体性能较差;

??对策:降低负荷;增大回流量以提高曝气池中的MLSS,降低F/M值。

3)SVI值异常

??原废水水质的变化和运行管理不善都会使SVI异常。

4)污泥膨胀

??是指活性污泥质量变轻、膨大,沉降性能恶化,在二沉池中不能正常沉淀下来,SVI异常增高,可达400以上。

??①因丝状菌异常增殖而导致的丝状菌性膨胀;

②因粘性物质大量积累而导致的非丝状菌性膨胀。

??丝状菌性膨胀:

主要是由于丝状菌异常增殖而引起的,主要的丝状菌有:球衣菌属、贝氏硫细菌、以及正常活性污泥中的某些

丝状菌如芽孢杆菌属等、某些霉菌;

??高粘性污泥膨胀:

①多在低温季节发生,主要现象是:废水净化效果良好,但污泥难于沉淀,污泥颗粒大量随出水流失;

②微生物表面为凝胶状的多糖类物质所覆盖;

③主要原因:低的MLSS,高的BOD负荷。

??污泥膨胀的主要对策:

A杀灭丝状菌,如投加氯、臭氧、过氧化氢等的药剂;——加杀菌药剂

B.改善、提高活性污泥的絮凝性,投加絮凝剂如:硫酸铝等;——加化学药剂

C.改善、提高活性污泥的沉降性、密实性,投加粘土、消石灰等;——加化学药剂

D.加大回流污泥量并在其回流前进行再生性曝气;——加强曝气

E.使废水经常处于好氧状态,防止厌氧反应的形成,如预曝气;——加强曝气

F.加强曝气,提高混合液的DO值;——加强曝气

G.考虑调节水温;水温<15?C时易于发生高粘性膨胀;而丝状菌膨胀多发生在20?C以上;——加强曝气

H.降低污泥在二沉池中的停留时间;

I.调整污泥负荷,当超过0.35kgBOD/kgMLSS.d时,易于发生丝状菌膨胀;

J.调整混合液中的营养物质,可以控制高粘性膨胀;

K.投加硫酸铜,可以控制有球衣菌引起的膨胀。——加杀菌药剂

关于“污泥膨胀的选择性理论”以及“选择器”

●统一的污泥膨胀理论:

(1)低F/M比(即低基质浓度)引起的营养缺乏型膨胀;

(2)低溶解氧浓度引起的溶解氧缺乏型膨胀;

(3)高H2S浓度引起的硫细菌型膨胀。

●低基质浓度下的营养缺乏型膨胀的选择性理论:

●选择器:

选择器的出发点就是造成曝气池中的生态环境有利于选择性地发展菌胶团细菌,应用生物竞争的机制抑制丝状菌的过度增殖,从而控制污泥膨胀。

(1)好氧选择器:具有推流特点的预曝气池,其停留时间的选择非常重要;

(2)缺氧选择器:高的基质浓度;菌胶团细菌在缺氧条件下(但有NO3-)有比丝状菌高得多的基质利用率和硝酸盐还原率; (3)厌氧选择器:其作用机制与缺氧选择器相似,即在厌氧条件下,丝状菌具有较低的多聚磷酸盐的释放速度而受到抑制。

B.二沉池的常见异常现象及对策

??二沉池出水水质异常主要表现在透明度下降、SS 、BOD(COD)值增高、大肠菌数增加等; ??主要原因是由于曝气池的净化功能没有充分发挥; ??另一方面,就二沉池本身来说可能是因为:

1)活性污泥在二沉池中停留时间过长; 2)剩余污泥的排除不够及时、充分;

3)由于沉淀池结构上存在的问题,产生短流和异重流等现象。

计算剩余污泥量的四种公式

计算剩余污泥量的四种公式 一、不考虑悬浮物的公式《水处理工程师手册》P329。 1、活性污泥泥龄和剩余污泥量准确地应按下式计算: (2)、活性污泥泥龄(SRT): 活性污泥系统内的总活性污泥量/每天从系统内排除的活性污泥量 SRT =(Ma+Mc+MR)/(Mw+Me) Ma——为曝气池内的活性污泥量; Mc——为二沉池内污泥量; MR——为回流系统的污泥量; Mw——为每天排放的剩余污泥量(kgss/d); Me——为二沉池出水每天带走的污泥量。 上式为最准确的计算公式,在实际运行管理中,常根据不同的情况,采用不同的近似计算公式。 当不考虑回流系统和二沉池时,上述公式可简化为: SRT =Ma/Mw 2、

(2)、剩余污泥量(Mw ) Mw= Ma/SRT=SRT Xa V ? V-曝气池有效容积(m 3); Xa-曝气池悬浮固体浓度(mg/L); 2、行业标准: 中国工程建设标准化协会标准(CECS149:2003《城市污水生物脱氮除磷处理设计规范》 W=Si Xi ft bh c ft Yh bh Yh f Se Si Q ψθ+?+??-?-19.01000)(> 其中:W ——剩余污泥量(kg/d ) Q ——进水流量(m 3/d ) Si\Se ——反应池进、出水BOD 5浓度(mg/l); f ——污泥产率修正系数,由试验确定;无试验条件时,取0.8~0.9. ft ——温度修正系数,取1.072(t-15) ; t ——温度(℃); k de ——反硝化速率,kgNO3-N/(kgMLSS ·d);通过试验确定,无试验条件,20℃时k de 值可采 用0.03~0.06 kgNO3-N/(kgMLSS ·d);并用4.0.4-3进行温度校正。即k de(t)=k de(20)1.8t-20; ψ——反应池进水悬浮固体中不可水解/降解的悬浮固体比例,无测定条件时,取0.6;

自来水厂污泥产生量计算

自来水厂排泥水处理污泥量的确定方法 实施自来水厂排泥水处理,首先需要确定自来水厂的污泥量,就此将污泥量分为排泥水量和干污泥量。排泥水量可根据沉淀池排泥运行方式和滤池反冲洗运行方式来确定。对于干污泥量的确定介绍了计算法和物料平衡分析法,物料平衡分析法可作为计算法的补充,对计算法 的结果进行校核。 实施排泥水处理,首先必须确定合理的污泥量,因为污泥量的确定直接影响整个排泥水处理工程的设计规模,从而影响到设备配置和投资规模。自来水厂的污泥量受多种因素影响,包括原水水质、水处理药剂投加量、采用的净水工艺和排泥的方式等。污泥量确定包括两方面内容:一是排泥水总量,它决定浓缩池规模;二是总干泥量,确定污泥脱水设备的规模。污泥量确定一般需要较长时间数据的统计结果,因此即使目前没有建设排泥水处理工程计划的自来水厂,着手进行有关水厂污泥产量资料的收集工作仍然是明智之举。 1排泥水总量确定 排泥水总量可分为沉淀池(或澄清池,下同)排泥水量和滤池反冲洗废水量两部分。 通常可以认为自来水厂一泵房取水量和二泵房出水量之间的差值即为自来水厂排泥水的总量。但它不能分别确定出沉淀池排泥水量和滤池反冲洗废水量,且这一估算方法不够准 确。 已投产的自来水厂,根据水厂的有关运行参数可以较准确地计算出沉淀池排泥水量和滤池反冲洗废水量。水厂沉淀池采用人工定时排泥,只需根据每天排泥次数、每次排泥历时和排泥流量以及沉淀池格数,就可以计算出沉淀池的排泥水量。同样道理,也可以根据滤池每天冲洗次数、每次冲洗历时、冲洗强度及单格滤池面积和格数,计算出滤池反冲洗废水量。如果沉淀池排泥和滤池反冲洗实现了自动化运行,则需要对水厂沉淀池排泥和滤池反冲洗进行现场观测,了解沉淀池排泥和滤池反冲洗流量、每次历时和统计每天排泥或冲洗的次数, 然后进行计算。 尚未建成或仍处在设计阶段的自来水厂,沉淀池排泥水量和滤池反冲洗废水量可根据沉淀池排泥和滤池反冲洗的设计参数进行估算,也可以参照已建成投产的、条件相近的自来水 厂实际运行资料进行估算。 排泥水总量的确定,最好能绘制出排泥水量在一天内的变化曲线。由于水厂沉淀池排泥和滤池反冲洗都是在较短的时间内完成,瞬间流量很大,绘出变化曲线,对确定排泥水截留 池和浓缩池设计规模有很大帮助。 2干污泥产量确定 2.1计算法 根据投加混凝剂在混凝过程中的化学反应、原水中悬浮固体对污泥量的贡献及其它污泥成份的来源,可以近似地计算出干污泥的产量。当硫酸铝用作混凝剂时,化学反应可简化为:

污泥量计算

污泥量计算 (1)污泥量计算 1初次沉淀污泥量和二次沉淀污泥量的计算公式: V=100C0ηQ/1000(100-p)ρ 式中:V——初次沉淀污泥量,m3/d; Q——污水流量,m3/d; η——去除率,%;(二次沉淀池η以80%计) C0——进水悬浮物浓度,mg/L; P——污泥含水率,%; ρ——沉淀污泥密度,以1000kg/m3计。 2剩余活性污泥量的计算公式: Qs=ΔX/fXr式中:Qs——每日从系统中排除的剩余污泥量,m3/d; ΔX——挥发性剩余污泥量(干重),kg/d; f=MLVSS/MLSS,生活污水约为0.75,城市污水也可同此; Xr——回流污泥浓度,g/L。 3消化污泥量的计算公式:见公式(8-3)。 (2)污水处理厂干固体物质平衡: 污水处理厂内部存在着固体物质的平衡问题,通过固体物质的平衡计算,有助于污泥处理系统的设计与管理。污水处理厂固体物质平衡的典型计算,可根据图8-1进行。设原污水悬浮物X0为100,初次沉淀池悬浮物去除率以50%计,二次沉淀池去除率以80%计,悬浮物总去除率总去除率为90%。各处理构筑物固体回收率为:浓缩池为r1=90%;消化池为r2=80%;悬浮物减量为rg=30%;机械脱水为r3=95%(预处理所加混凝剂的固体量略去不计)。因此其平衡式为: 进入污泥浓缩池的悬浮物量:X1=ΔX+XR (8-10) XR=Xˊ2+ Xˊ3+ Xˊ4 (8-11) 式中:X1——进入浓缩池的固体物量; ΔX——初次沉淀池排泥的悬浮物量加二次沉淀池剩余污泥中的悬浮物量; XR——等于浓缩池上清液含有的悬浮物量Xˊ2,消化池上清液悬浮物量Xˊ3,机械脱水上清液悬浮物量Xˊ4的总和。 进入消化池的悬浮物量:X2= X1 r1 (8-12) 浓缩池上清液悬浮物量:Xˊ2= X1(1- r1)(8-13) 消化池悬浮物减量:G= X2rg= X1 r1rg (8-14) 进入机械脱水设备的悬浮物量:X3=(X2-G)r2 (8-15) 消化池上清液悬浮物量:Xˊ3=(X2-G)(1- r2)(8-16) 脱水泥饼固体物量:X4= X3 r3 机械脱水上清液含有的悬浮物量:Xˊ4= X3(1- r3)(8-17) 回流至沉砂池前的上清液中所含悬浮物总量: XR=Xˊ2+ Xˊ3+ Xˊ4 = X1(1- r1rg-r1r2r3+r1r2r3rg) (X1- XR)/ X1= r1rg+r1r2r3-r1r2r3rg=ΔX/ X1 X1=ΔX/ r1[rg+r2r3(1-rg)] (8-18)

污水厂污泥计算

污泥是水处理过程的副产物,包括筛余物、沉泥、浮渣和剩余污泥等。污泥体积约占处理水量的0.3%~0.5%左右,如水进行深度处理,污泥量还可能增加0.5~1倍。 是使污泥减量、稳定、无害化及综合利用。 (1)确保水处理的效果,防止二次污染; (2)使容易腐化发臭的有机物稳定化; (3)使有毒有害物质得到妥善处理或利用; (4)使有用物质得到综合利用,变害为利。 (1)按成分不同分: 污泥:以有机物为主要成分。其主要性质是易于腐化发臭,颗粒较细,比重较小(约为1.02~1.006),含水率高且不易脱水,属于胶状结构的亲水性物质。初次沉淀池与二次沉淀池的沉淀物均属污泥。 沉渣:以无机物为主要成分。其主要是颗粒较粗,比重较大(约为2左右),含水率较低且易于脱水,流动性差。沉砂池与某些工业废水处理沉淀池的沉淀物属沉渣。 (2)按来源不同分: 初次沉淀污泥(也称生污泥或新鲜污泥):来自初次沉淀池。 剩余活性污泥(也称生污泥或新鲜污泥):来自活性污泥法后的二次沉淀池。 腐殖污泥(也称生污泥或新鲜污泥):来自生物膜法后的二次沉淀池。 消化污泥(也称熟污泥):生污泥经厌氧消化或好氧消化处理后的污泥。 化学污泥(也称化学沉渣):用化学沉淀法处理污水后产生的沉淀物。例如,用混凝沉淀法去除污水中的磷;投加硫化物去除污水中的重金属离子;投加石灰中和酸性污水产生的沉渣以及酸、碱污水中和处理产生的沉渣等均称为化学污泥。 (3)城市污水厂污泥的特性见表8-1 表8-1 城市废水厂污泥的性质和数量

(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 1污泥中水的存在形式有: 空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离; 毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离; 颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。 通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。 2污泥体积、重量及所含固体物浓度之间的关系: V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1) 式中:p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度; p2、V2、W2、C2——污泥含水率为p1时的污泥体积、重量与固体物浓度; 说明:式(8-1)适用于含水率大于65%的污泥。因含水率低于65%以后,体积内出现很多气泡,体积与重量不在符合式(8-1)的关系。 例题8-1:污泥含水率从97.5%降低至95%时,求污泥体积。 解:由式(8-1) V2= V1(100-p1)/(100-p2)= V1(100-97.5)/(100-95)=(1/2)V1可见污泥含水率从97.5%降低至95%时,污泥体积减少一半。 (2)挥发性固体(或称灼烧减重)和灰分(或称灼烧残渣):挥发性固体近似地等于有机物含量;灰分表示无机物含量。 (3)可消化程度:表示污泥中可被消化降解的有机物数量。 消化对象:污泥中的有机物。一部分是可被消化降解的(或称可被气化,无机化);另一部分是不易或不能被消化降解的,如脂肪、合成有机物等。 消化程度的计算公式:R d=[1-(p V2p S1)/(p V1p S2)] ×100 (8-2) 式中:R d——可消化程度,%; p S1、p S2——分别表示生污泥及消化污泥的无机物含量,%; p V1、p V1——分别表示生污泥及消化污泥的有机物含量,%。

计算剩余污泥量的四种公式

计算剩余污泥量的四种公 式 Prepared on 22 November 2020

计算剩余污泥量的四种公式 一、不考虑悬浮物的公式《水处理工程师手册》P329。 1、活性污泥泥龄和剩余污泥量准确地应按下式计算: (2)、活性污泥泥龄(SRT ): 活性污泥系统内的总活性污泥量/每天从系统内排除的活性污泥量 SRT =(Ma+Mc+MR )/(Mw+Me ) Ma ——为曝气池内的活性污泥量; Mc ——为二沉池内污泥量; MR ——为回流系统的污泥量; Mw ——为每天排放的剩余污泥量(kgss/d); Me ——为二沉池出水每天带走的污泥量。 上式为最准确的计算公式,在实际运行管理中,常根据不同的情况,采用不同的近似计算公式。 当不考虑回流系统和二沉池时,上述公式可简化为: SRT =Ma/Mw 2、 (2)、剩余污泥量(Mw ) Mw= Ma/SRT=SRT Xa V ? V-曝气池有效容积(m 3); Xa-曝气池悬浮固体浓度(mg/L); 2、行业标准:

中国工程建设标准化协会标准(CECS149:2003《城市污水生物脱氮除磷处理设计规范》 W=Si Xi ft bh c ft Yh bh Yh f Se Si Q ψθ+?+??-?-19.01000)(> 其中:W ——剩余污泥量(kg/d ) Q ——进水流量(m 3/d ) Si\Se ——反应池进、出水BOD 5浓度(mg/l); f ——污泥产率修正系数,由试验确定;无试验条件时,取~. ft ——温度修正系数,取(t-15) ; t ——温度(℃); k de ——反硝化速率,kgNO3-N/(kgMLSS ·d);通过试验确定,无试验条件,20℃时k de 值可 采用~ kgNO3-N/(kgMLSS ·d);并用4.0.4-3进行温度校正。即k de(t)=k de(20); ψ——反应池进水悬浮固体中不可水解/降解的悬浮固体比例,无测定条件时,取; b h ——异氧菌内源衰减系数(d -1),取; Y h ——异氧菌产率系数(kgSS/kgBOD5),取; θd ——反应设计污泥龄值(d ); Xi ——反应池进水中悬浮固体浓度(mg/L ); 3、《污水处理新技术》 W=W 1-W 2+W 3 =aQLr-bVNw+(C 0-Ce)Q ×50% =aQ(Lj-Lch) -bVNw+( C 0-Ce)Q ×50% 曝气池的水力停留时间

污泥相关系数的核定及其计算公式

(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 1污泥中水的存在形式有: 空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离; 毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离; 颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。 通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。 2污泥体积、重量及所含固体物浓度之间的关系: V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1) 式中:p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度; p2、V2、W2、C2——污泥含水率为p1时的污泥体积、重量与固体物浓度; 说明:式(8-1)适用于含水率大于65%的污泥。因含水率低于65%以后,体积内出现很多气泡,体积与重量不在符合式(8-1)的关系。 例题8-1:污泥含水率从97.5%降低至95%时,求污泥体积。 解:由式(8-1) V2= V1(100-p1)/(100-p2)= V1(100-97.5)/(100-95)=(1/2)V1可见污泥含水率从97.5%降低至95%时,污泥体积减少一半。 (2)挥发性固体(或称灼烧减重)和灰分(或称灼烧残渣):挥发性固体近似地等于有机物含量;灰分表示无机物含量。 (3)可消化程度:表示污泥中可被消化降解的有机物数量。 消化对象:污泥中的有机物。一部分是可被消化降解的(或称可被气化,无机化);另一部分是不易或不能被消化降解的,如脂肪、合成有机物等。 消化程度的计算公式:R d=[1-(p V2p S1)/(p V1p S2)]×100 (8-2) 式中:R d——可消化程度,%; p S1、p S2——分别表示生污泥及消化污泥的无机物含量,%; p V1、p V1——分别表示生污泥及消化污泥的有机物含量,%。 消化污泥量的计算公式:V d= V1(100-p1)/(100-p d)[(1- p V1/100)+ p V1/100(1- R d/100)] (8-3) 式中:V d——消化污泥量,m3/d; p d——消化污泥含水率,%,取周平均值; V1——生污泥量,m3/d; p1——生污泥含水率,%,取周平均值; p V1——生污泥有机物含量,%; R d——可消化程度,%,取周平均值; (4)湿污泥比重与干污泥比重: 湿污泥重量等于污泥所含水分重量与干固体重量之和。湿污泥比重等于湿污泥重量与同体积的水重量之比值。干固体物质包括有机物(即挥发性固体)和无机物(即灰分)。确定湿污泥比重和干污泥比重,对于浓缩池的设计、污泥运输及后续处理,都有实用价值。 经综合简化后,湿污泥比重(γ)和干污泥比重(γs)的计算公式分别为: γ=(100γs)/[γs p+(100-p)] (8-4)

污泥量计算公式

污水处理厂剩余污泥排放及用药计算 城关污水处理厂剩余污泥排放及用药计算 设计每天产泥量2.9吨。(进水20000m3,BOD进水200mg/l,出水20mg/l。) PAM投配比3‰至5‰,取中间值4‰。 则PAM用量每天为2.9*4=11.6kg。 剩余污泥浓度7000mg/l。 则每天排放的剩余污泥体积为2.9*1000/7=414.28m3。 设计脱水机单台进泥量每小时40m3。 脱水机运行时间为414.28/40=10.357h,取11h。 则PAM溶液浓度为11.6/(1.2*11)=0.8787kg/m3。(设计说明书上推荐1kg/m3。) 实际运行情况 产泥系数按照0.85kgDS/kgBOD计算。 每天产生剩余污泥量:0.85*(41.48-5.36)*15106=463.78kg。(41.48、5.36为09年1月至8月进出水平均浓度,15106为平均进水量。) 目前厂内剩余污泥平均浓度3500mg/l左右。 排放的剩余污泥体积:463.78/3.5=132.5m3 脱水机单台进泥量不高于20m3每小时。 脱水机每天运行时间132.5/20=6.625,实际运行8小时。 PAM溶液浓度为0.75kg/m3。 用药量为0.75*8*1.2=7.2kg。 投配比为7.2/0.43678=15.524kg/m3,即15.5‰ 。 实际投配比是设计投配比的4倍左右。(分析其原因可能是:脱水机进泥量设计是实际的 2倍,污泥浓度设计是实际的2倍。) 若要控制投配比在4‰,则应该降低PAM溶液的浓度。 PAM投配比取4‰。 每天理论投加量为0.46378*4=1.86kg。 加药泵的流量为1.2m3/h,每天运行8小时,则PAM溶液用量为1.2*8=9.6m3。

污泥量计算公式

污水处理厂剩余污泥排放及用药计算 2009-12-10 18:11:24| 分类:工作日记| 标签:|举报|字号大中小订阅 城关污水处理厂剩余污泥排放及用药计算 设计每天产泥量2.9吨。(进水20000m3,BOD进水200mg/l,出水20mg/l。) PAM投配比3‰至5‰,取中间值4‰。 则PAM用量每天为2.9*4=11.6kg。 剩余污泥浓度7000mg/l。 则每天排放的剩余污泥体积为2.9*1000/7=414.28m3。 设计脱水机单台进泥量每小时40m3。 脱水机运行时间为414.28/40=10.357h,取11h。 则PAM溶液浓度为11.6/(1.2*11)=0.8787kg/m3。(设计说明书上推荐1kg/m3。) 实际运行情况 产泥系数按照0.85kgDS/kgBOD计算。 每天产生剩余污泥量:0.85*(41.48-5.36)*15106=463.78kg。(41.48、5.36为09年1月至8月进出水平均浓度,15106为平均进水量。) 目前厂内剩余污泥平均浓度3500mg/l左右。 排放的剩余污泥体积:463.78/3.5=132.5m3 脱水机单台进泥量不高于20m3每小时。 脱水机每天运行时间132.5/20=6.625,实际运行8小时。 PAM溶液浓度为0.75kg/m3。 用药量为0.75*8*1.2=7.2kg。 投配比为7.2/0.43678=15.524kg/m3,即15.5‰ 。 实际投配比是设计投配比的4倍左右。(分析其原因可能是:脱水机进泥量设计是实际的 2倍,污泥浓度设计是实际的2倍。) 若要控制投配比在4‰,则应该降低PAM溶液的浓度。 PAM投配比取4‰。 每天理论投加量为0.46378*4=1.86kg。

污泥量计算

污泥量计算 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

污泥量计算????????????????????????????污泥量计算 (1)污泥量计算 1初次沉淀污泥量和二次沉淀污泥量的计算公式: V=100C0ηQ/1000(100-p)ρ 式中:V——初次沉淀污泥量,m3/d; Q——污水流量,m3/d; η——去除率,%;(二次沉淀池η以80%计) C0——进水悬浮物浓度,mg/L; P——污泥含水率,%; ρ——沉淀污泥密度,以1000kg/m3计。 2剩余活性污泥量的计算公式: Qs=ΔX/fXr式中:Qs——每日从系统中排除的剩余污泥量,m3/d; ΔX——挥发性剩余污泥量(干重),kg/d; f=MLVSS/MLSS,生活污水约为0.75,城市污水也可同此; Xr——回流污泥浓度,g/L。 3消化污泥量的计算公式:见公式(8-3)。 (2)污水处理厂干固体物质平衡: 污水处理厂内部存在着固体物质的平衡问题,通过固体物质的平衡计算,有助于污泥处理系统的设计与管理。污水处理厂固体物质平衡的典型计算,可根据图8-1进行。设原污水悬浮物X0为100,初次沉淀池悬浮物去除率以50%计,二次沉淀池去除率以80%计,悬浮物总去除率总去除率为90%。各处理构筑物固体回收率为:浓缩池为r1=90%;消化池为r2=80%;悬浮物减量为rg=30%;机械脱水为r3=95%(预处理所加混凝剂的固体量略去不计)。因此其平衡式为: 进入污泥浓缩池的悬浮物量:X1=ΔX+XR (8-10) XR=Xˊ2+ Xˊ3+ Xˊ4 (8-11) 式中:X1——进入浓缩池的固体物量; ΔX——初次沉淀池排泥的悬浮物量加二次沉淀池剩余污泥中的悬浮物量;XR——等于浓缩池上清液含有的悬浮物量Xˊ2,消化池上清液悬浮物量 Xˊ3,机械脱水上清液悬浮物量Xˊ4的总和。 进入消化池的悬浮物量:X2= X1 r1 (8-12) 浓缩池上清液悬浮物量:Xˊ2= X1(1- r1)(8-13) 消化池悬浮物减量:G= X2rg= X1 r1rg (8-14) 进入机械脱水设备的悬浮物量:X3=(X2-G)r2 (8-15) 消化池上清液悬浮物量:Xˊ3=(X2-G)(1- r2)(8-16) 脱水泥饼固体物量:X4= X3 r3 机械脱水上清液含有的悬浮物量:Xˊ4= X3(1- r3)(8-17) 回流至沉砂池前的上清液中所含悬浮物总量: XR=Xˊ2+ Xˊ3+ Xˊ4 = X1(1- r1rg-r1r2r3+r1r2r3rg)

污水处理剩余污泥量计算

活性污泥工艺中剩余污泥量计算 我国大部分城市(镇)污水处理厂采用的是传统活性污泥法或其变型工艺,其生物系统产生的剩余污泥量往往存在着设计值与实际值相差较为悬殊的现象,这在不设初沉池系统的活性污泥工艺,如A/O法、A2/O法、AB法、氧化沟、SBR中更为普遍。究其根源,或是污泥产率系数的设计取值与实际运行有差距,或是没有考虑进水中不可降解及惰性悬浮固体对剩余污泥量的影响。本文就上述两个问题进行讨论。 1剩余污泥量计算方法 在活性污泥工艺中,为维持生物系统的稳定,每天需不断有剩余污泥排出。它们主要由两部分构成,一是由降解有机物BOD所产生的污泥增殖,二是进水中不可降解及惰性悬浮固体的沉积。因此,剩余干污泥量可以用式(1)计算: ΔX=(Y1+Kdθc)Q(BODi-BODo)+fPQ(SSi-SSo)(1) 式中ΔX———系统每日产生的剩余污泥量,kgMLSS/d; Y———污泥增殖率,即微生物每代谢1kgBOD所合成的MLVSSkg数; Kd———污泥自身氧化率,d-1; θc———污泥龄(生物固体平均停留时间),d; Y1+Kdθc———污泥净产率系数,又称表观产率(Yobs); Q———污水流量,m3/d; BODi,BODo———进、出水中有机物BOD浓度,kgBOD/m3; fP———不可生物降解和惰性部分占SSi的百分数; SSi,SSo———进、出水中悬浮固体SS浓度,kgSS/m3。 德国排水技术协会(ATV)制订的城市污水设计规范中给出了剩余污泥量的计算表达式[1]。此式与式(1)本质相同,只是更加细致,考虑了活性污泥代谢过程中的惰性残余物(约占污泥代谢量的10%左右)及温度修正。综合污泥产率系数YBOD(以BOD计,包含不可降解及惰性SS沉积项)写作: YBOD=0 6×(1+SSiBODi)-(1-fb)×0 6×0 08×θc×FT1+0 08×θc×FT(2) FT=1 702(T-15)(3) 式中fb———微生物内源呼吸形成的不可降解部分,取值0 1; FT———温度修正系数。 比较(1),(2)两式,可知在ATV标准中动力学参数Y,Kd分别取值0.6和0.08d-1,进水中不可降解及惰性悬浮固体(fP部分)占总进水SS的60%。由于剩余污泥中挥发性部分所占比例与曝气池中MLVSS与MLSS的比值大体相当,因此剩余干污泥量也可以表示成下式: ΔX=YobsQ(BODi-BODo)f(4) 式中f=MLVSSMLSS;其他符号意义同前。 式(4)与式(1)是一致的,均需确定Yobs。 2Yobs的确定表观产率 Yobs=Y1+Kdθc具有明确的物理含义,我国《室外排水设计规范》(GBJ14-87)第6 .6.2条明确规定“在20℃,有机物以BOD计时,污泥产率系数Y其常数为0 .4~0.8。如处理系统无初次沉淀池,Y值必须通过试验确定。”同款还规定了Kd20℃的常数值0.04~0 .075d-1。从中可以看出,Y值变化幅度达100%,Kd的变化幅度达87 5%。对于不设初沉池的活性污泥系统,常常将已有类似污水处理厂的运行经验,作为设计上的参考。表1是几种典型活性污泥工艺Yobs(或Y,Kd)取值情况。 对于运行中的污水处理厂,可通过长期运行工况参数,如θc,F(污泥负荷,kgBOD/(kgMLVSS·d))求得Yobs实际值,或回归出适用于该厂的Y,Kd值。Yobs用θc,F表示为:Yobs=1θcF(5)据实际运行参数并利用式(5)计算得出的北京市方庄污水处理厂(传统活性污泥工艺)和酒仙桥污水处理厂(氧化沟工艺)的污泥净产率系数,见表

污泥量计算公式

污水处理厂剩余污泥排放及用药计算?? 城关污水处理厂剩余污泥排放及用药计算????????????? 设计每天产泥量2.9吨。(进水20000m3,BOD进水200mg/l,出水20mg/l。) PAM投配比3‰至5‰,取中间值4‰。 则PAM用量每天为2.9*4=11.6kg。 剩余污泥浓度7000mg/l。 则每天排放的剩余污泥体积为2.9*1000/7=414.28m3。 设计脱水机单台进泥量每小时40m3。 脱水机运行时间为414.28/40=10.357h,取11h。 则PAM溶液浓度为11.6/(1.2*11)=0.8787kg/m3。(设计说明书上推荐1kg/m3。) 实际运行情况 产泥系数按照0.85kgDS/kgBOD计算。 每天产生剩余污泥量:0.85*(41.48-5.36)*15106=463.78kg。(41.48、5.36为09年1月至8月进出水平均浓度,15106为平均进水量。) 目前厂内剩余污泥平均浓度3500mg/l左右。 排放的剩余污泥体积:463.78/3.5=132.5m3 脱水机单台进泥量不高于20m3每小时。 脱水机每天运行时间132.5/20=6.625,实际运行8小时。 PAM溶液浓度为0.75kg/m3。 用药量为0.75*8*1.2=7.2kg。 投配比为7.2/0.43678=15.524kg/m3,即15.5‰。 实际投配比是设计投配比的4倍左右。(分析其原因可能是:脱水机进泥量设计是实际的 2倍,污泥浓度设计是实际的2倍。) 若要控制投配比在4‰,则应该降低PAM溶液的浓度。 PAM投配比取4‰。 每天理论投加量为0.46378*4=1.86kg。 加药泵的流量为1.2m3/h,每天运行8小时,则PAM溶液用量为1.2*8=9.6m3。 PAM溶液浓度应该为1.86/9.6=0.19375kg/m3。 此浓度还未检验是否可行。

SBR以总污泥量为主要参数的综合设计方法

SBR反应池池容计算系指传统的序批式活性污泥反应池,而不包括其他SBR改进型的诸多反应池(如ICEAS、CASS、MSBR等)池容的计算。 现针对存在的问题提出一套以总污泥量为主要参数的综合设计方法,供设计者参考。 1 现行设计方法 1.1 负荷法 该法与连续式曝气池容的设计相仿。已知SBR反应池的容积负荷或污泥负荷、进水量及进水中BOD5浓度,即可由下式迅速求得SBR池容: 容积负荷法V=nQ0C0/Nv (1) Vmin=〔SVI·MLSS/106]·V 污泥负荷法Vmin=nQ0C0·SVI/Ns (2) V=Vmin+Q0 1.2 曝气时间内负荷法 鉴于SBR法属间歇曝气,一个周期内有效曝气时间为ta,则一日内总曝气时间为nta,以此建立如下计算式: 容积负荷法V=nQ0C0tc/Nv·ta (3) 污泥负荷法V=24QC0/nta·MLSS·NS (4) 1.3 动力学设计法 由于SBR的运行操作方式不同,其有效容积的计算也不尽相同。根据动力学原理演算(过程略),SBR反应池容计算公式可分为下列三种情况: 限制曝气V=NQ(C0-Ce)tf/[MLSS·Ns·ta] (5) 非限制曝气V=nQ(C0-Ce)tf/[MLSS·Ns(ta+tf)] (6) 半限制曝气V=nQ(C0-Ce)tf/[LSS·Ns(ta+tf-t0)] (7) 但在实际应用中发现上述方法存有以下问题: ①对负荷参数的选用依据不足,提供选用参数的范围过大〔例如文献推荐 Nv=0.1~1.3kgBOD5/(m3·d)等〕,而未考虑水温、进水水质、污泥龄、活性污泥量以及SBR池几何尺寸等要素对负荷及池容的影响; ②负荷法将连续式曝气池容计算方法移用于具有二沉池功能的SBR池容计算,存有理论上的差异,使所得结果偏小;

污泥量计算公式

污泥量计算公式 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

污水处理厂剩余污泥排放及用药计算 城关污水处理厂剩余污泥排放及用药计算 设计每天产泥量吨。(进水20000m3,BOD进水200mg/l,出水20mg/l。) PAM投配比3‰至5‰,取中间值4‰。 则PAM用量每天为*4=。 剩余污泥浓度7000mg/l。 则每天排放的剩余污泥体积为*1000/7=。 设计脱水机单台进泥量每小时40m3。 脱水机运行时间为40=,取11h。 则PAM溶液浓度为(*11)=m3。(设计说明书上推荐1kg/m3。) 实际运行情况 产泥系数按照kgBOD计算。 每天产生剩余污泥量:*()*15106=。(、为09年1月至8月进出水平均浓度,15106 为平均进水量。) 目前厂内剩余污泥平均浓度3500mg/l左右。 排放的剩余污泥体积:= 脱水机单台进泥量不高于20m3每小时。 脱水机每天运行时间20=,实际运行8小时。 PAM溶液浓度为m3。 用药量为*8*=。 投配比为=m3,即‰。 实际投配比是设计投配比的4倍左右。(分析其原因可能是:脱水机进泥量设计是实际的 2倍,污泥浓度设计是实际的2倍。) 若要控制投配比在4‰,则应该降低PAM溶液的浓度。 PAM投配比取4‰。 每天理论投加量为*4=。 加药泵的流量为h,每天运行8小时,则PAM溶液用量为*8=。 PAM溶液浓度应该为=m3。

此浓度还未检验是否可行。 上述分析中加药泵流速h采用铭牌上的数据,‰通过设置PAM干粉溶液加药时间实现,因为脱水机系统只间歇运行了不到一个月,数据的准确性还有待求证。(因为通过每天统计PAM加药泵运行时间得出的PAM用药量比实际投加的PAM干粉量多。)

如何计算厌氧污泥用量

如何计算厌氧污泥用量 厌氧反应器可以接种的污泥量与厌氧反应器的类型,反应器尺寸的大小有直接关系。以现在广泛应用的第三代厌氧内循环反应器-IC为例,厌氧污泥的最大接种量约为IC反应器有效容积的50-55%左右,而其他类型的厌氧反应器的污泥接种量相对要少,能处理的最大有机负荷也要低一些。 当一个厌氧反应器需要进行生物启动时,如果需要处理的有机负荷小于该反应器最大的处理负荷时,可以按照需处理的有机物总量核算出相应的厌氧污泥接种量,而没有必要满量接种,从而降低厌氧污泥的采购成本。 那么到底该接种多少厌氧污泥呢?这需要了解污泥负荷这个基本概念:污泥负荷是指每天施加给单位质量有效厌氧污泥的有机物的量,以SCOD的公斤数衡量,计算公式为: 污泥负荷(kgSCOD/kgVS.d)=Q(m3/d)*SCOD(mg/L)/VS(kg) 其中:Q为厌氧反应器每日的处理量 SCOD为废水的SCOD浓度 VS为厌氧反应器中厌氧污泥的挥发性固体总量 同样以IC反应器为例,对于产甲烷活性正常的厌氧污泥来说,通常污泥负荷的最佳范围为0.2-0.4kgSCOD/kgVS.d,最大的污泥负荷则不宜高于0.55kgSCOD/kgVS.d,当然不同的行业,不同的水质,其最佳和最大的负荷范围会有所差异。 如果在厌氧反应器进行生物启动之前,能确定所需处理的废水水量及相应的废水SCOD 浓度,明白了上述污泥负荷的概念,就可以通过上述计算公式,选择合适的污泥负荷并计算出所需接种的厌氧污泥量了。 另外需要注意的是,如果采用厌氧颗粒污泥接种,通过泵送接种后,有少量颗粒污泥会破碎,在随后的生物启动中会从厌氧反应器中流失,根据经验,流失的量约为接种量的5%左右。在核算厌氧污泥接种量时,有必要将这部分流失量考虑进去。

污泥量计算

????????????????????????????污泥量计算 (1)污泥量计算 1初次沉淀污泥量和二次沉淀污泥量的计算公式: V=100C0ηQ/1000(100-p)ρ 式中:V——初次沉淀污泥量,m3/d; Q——污水流量,m3/d; η——去除率,%;(二次沉淀池η以80%计) C0——进水悬浮物浓度,mg/L; P——污泥含水率,%; ρ——沉淀污泥密度,以1000kg/m3计。 2剩余活性污泥量的计算公式: Qs=ΔX/fXr式中:Qs——每日从系统中排除的剩余污泥量,m3/d; ΔX——挥发性剩余污泥量(干重),kg/d; f=MLVSS/MLSS,生活污水约为,城市污水也可同此; Xr——回流污泥浓度,g/L。 3消化污泥量的计算公式:见公式(8-3)。 (2)污水处理厂干固体物质平衡: 污水处理厂内部存在着固体物质的平衡问题,通过固体物质的平衡计算,有助于污泥处理系统的设计与管理。污水处理厂固体物质平衡的典型计算,可根据图8-1进行。设原污水悬浮物X0为100,初次沉淀池悬浮物去除率以50%计,二次沉淀池去除率以80%计,悬浮物总去除率总去除率为90%。各处理构筑物固体回收率为:浓缩池为r1=90%;消化池为r2=80%;悬浮物减量为rg=30%;机械脱水为r3=95%(预处理所加混凝剂的固体量略去不计)。因此其平衡式为: 进入污泥浓缩池的悬浮物量:X1=ΔX+XR (8-10) XR=Xˊ2+ Xˊ3+ Xˊ4 (8-11) 式中:X1——进入浓缩池的固体物量; ΔX——初次沉淀池排泥的悬浮物量加二次沉淀池剩余污泥中的悬浮物量; XR——等于浓缩池上清液含有的悬浮物量Xˊ2,消化池上清液悬浮物量Xˊ3,机械脱水上清液悬浮物量Xˊ4的总和。 进入消化池的悬浮物量:X2= X1 r1 (8-12) 浓缩池上清液悬浮物量:Xˊ2= X1(1- r1)(8-13) 消化池悬浮物减量:G= X2rg= X1 r1rg (8-14) 进入机械脱水设备的悬浮物量:X3=(X2-G)r2 (8-15) 消化池上清液悬浮物量:Xˊ3=(X2-G)(1- r2)(8-16) 脱水泥饼固体物量:X4= X3 r3 机械脱水上清液含有的悬浮物量:Xˊ4= X3(1- r3)(8-17) 回流至沉砂池前的上清液中所含悬浮物总量: XR=Xˊ2+ Xˊ3+ Xˊ4 = X1(1- r1rg-r1r2r3+r1r2r3rg) (X1- XR)/ X1= r1rg+r1r2r3-r1r2r3rg=ΔX/ X1 X1=ΔX/ r1[rg+r2r3(1-rg)] (8-18)

生物接触氧化池设计、剩余污泥量计算

生物接触氧化池设计、剩余污泥量计算

生物接触氧化池设计、剩余污泥量计算 接触氧化池主要由池体、填料床、曝气装置及进出水装置等构成,具体结构如图所示。 图3-3 生物接触氧化池的构造示意图 生物接触氧化池设计要点: (1)生物接触氧化池一般不应少于2 座; (2)设计时采用的BOD5负荷最好通过实际确定。也可以采用经验数据,一般处理城市污水可用1.0~1.8kgBOD5/(m3·d),处理BOD5≤500mg/L的污水时可用1.0~3.0 kgBOD5/(m3·d); (3)污水在池中的停留时间不应小于1~2h(按有效容积计); (4)进水BOD5浓度过高时,应考虑设出水回流系统; (5)填料层高度一般大于3.0 m,当采用蜂窝填料时,应分层装填,每层高度为1 m,蜂窝孔径不小于25 mm;当采用小孔径填料时,应加大曝气强度,增加生物膜脱落速度; (6)每单元接触氧化池面积不宜大于25m2,以保证布水、布气均匀; (7)气水比控制在(10~15):1。

因废水的有机物浓度较高,本次设计采用二段式接触氧化法。设计一氧 池填料高取3.5m,二氧池填料高取3m 。 3.5.1 填料容积负荷 Nv=0.2881Se0.7246=0.2881*200.7246=1.443[ kgBOD 5 /(m3*d)] 式中N v—接触氧化的容积负荷, kgBOD5/(m3*d); S e—出水BOD5值,mg/l 3.5.2 污水与填料总接触时间 t=24*S0/(1000* Nv)=24*231/(1000*1.443)=3.842(h) 式中S0 ——进水BOD5值,mg/L。 设计一氧池接触氧化时间占总接触时间的60%: t 1 =0.6t=0.6*3.842=2.305(h) 设计二氧池接触氧化时间占总接触时间的40%: t 2 =0.4t=0.4*3.842=1.537(h) 3.5.3接触氧化池尺寸设计 一氧池填料体积V 1 V 1=Q t 1 =1500*2.305/24=144m3 一氧池总面积A1-总: A1-总=V1/h1-3=144/3.5=41.2(m2)>25 m2 一氧池格数n取2格, 设计一氧池宽B1取4米,则池长L1: L1=144/(3.5*4)=10.3m 剩余污泥量:在《生物接触氧化池设计规程》中推荐该工艺系统污泥产率为0.3~0.4 kgDS/kgBOD5,含水率96%~98%。 本设计中,污泥产率以Y=0.4kgDS/kgBOD5,含水率97%。则干污泥量

活性污泥法中污泥产率的计算

活性污泥法中污泥产率 的计算 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

活性污泥法中污泥产率的计算 吴凡松彭永臻 (中国市政工程华北设计研究院)(北京工业大学环境与能源工程学院) 提要:根据IAWQ活性污泥模型确定的原理,推导出活性污泥系统中污泥产率的计算公式,并通过实例验证,当系统中设置初沉池或不设初沉池时应采用不同的计算公式。 关键词:IAWQ活性污泥模型 ATV A131标准污泥产率初沉池 引言 文中的污泥产率是指污泥的净产率,而非表观产率,它是生物处理系统产生的污泥量(MLSS)与进入生物系统的BOD5数量的比值。对于按泥龄法设计的活性污泥系统,污泥产率是最重要的设计参数之一。在泥龄和MLSS浓度确定的情况下,按照以下公式即可计算出生物池容积: V=Q·BOD5·Yt·θc/X 式中: Q——生物处理系统设计流量,m3/d; BOD5—进入生物处理系统的BOD5浓度,kg/m3; Yt——污泥产率,kgMLSS/kgBOD5; θc——泥龄,d; X——混合液悬浮固体(MLSS)浓度,g/L; 设计中污泥产率通常按公式法求算,有时也可按经验选取。 1 污泥产率公式的推导 关于活性污泥产率的计算方法,可依据IAWQ活性污泥模型进行推导。该模型中有机物和污泥挥发性组分均采用COD作为计量参数,考虑到习惯性问题和实用化,这里仍采用

BOD5作为可生物降解有机物的计量参数,采用SS或VSS作为污泥的计量参数。对于特定污水,这些参数与COD之间存在定量换算关系。 (1)根据IAWQ活性污泥模型确定的原理,来自进水中的固定性悬浮固体(FSS)和不可生物降解VSS将全部截留在活性污泥絮体内,由此产生的污泥量(XI)可由下式求得: XI=Q·SS·(1-fV+fV·fNV)(1) 式中: fV——进水SS中挥发份所占比例,我国城市污水典型实测值为~; fNV——进水VSS中不可好氧生物降解部分所占比例,典型值为~。 SS——进入生物处理系统的SS 浓度,kg/m3; (2)活性污泥中的活性部分包括异养微生物和自养微生物。异养微生物(XB·H)由可生物降解有机物转化而来,其产生量为: XB·H=Q·BOD5·YH/(1+Θc·bH)(2) 式中:YH——异养微生物产率系数kgVSS/kgBOD5,典型取值范围~ bH——异养微生物内源衰减系数,15℃时取值,温度系数。 如有硝化发生,可用下式求算硝化菌量(自养菌XB·A) XB·A=Q·TKN·YA/(1+Θc·bA)(kgVSS/d)(3) 式中:TKN——在生物处理系统中,通过硝化作用去除的TKN浓度,kg/m3。 -N YA——硝化菌的产率系数,kgNH 3 bA——硝化菌衰减系数,20℃时取值,温度修正系数 (3)微生物进入内源呼吸状态后产生的内源衰减残留物含量(XP),由下式求得: Xp= fp·bHΘc·XB·H (kg VSS/d) (4)

城市污水污泥量计算

城市污水污泥量计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

1 国际通用污泥量计蒜方法 如今,世界各国污泥量计蒜的方法有两个,一是根据污水处理量和含固率进行估蒜。比如某城市平均污水含固率0.02%,日处理量为60万t,污泥含固率20%,则年产湿泥饼:6.0 x 105x 0.02%x 360/20%=2.16x105t/a (1) 二是根据人口估蒜。比如某城市240万人口.典型人均日产污泥(干)50g.污泥含固率20%,年产湿泥饼:2.4X 105 X 50/1.0 X 106 X 360/20%=2.16x105t/a (2) 第二种方法是国外通行的蒜式,欧洲国家14国的人均污泥日产量按58g(干)物质,2000年数据)计蒜。我国人均日产污泥通常按照50g(干物质)测蒜。 但是.这两个计蒜方法都存在一定的错误。 一是实际上进入环境的并不干物质,主要是含水率在96%左右的(_zuo3 you4 de0)粪便,由不易被消化、吸收的大分子蛋白质、纤维素以及各种菌落组成。 二是粪便首先进入下水管网后.是落入化粪池沉降下来,避免堵塞,使上层的污水能够流动到污水处理厂。 三是蒜式(1)的“污水含固率0.02%”.以及蒜式(2)的“人均日产污泥(干)50g”,应该换蒜成与脱水污泥20%的固含率一样时,才能实现物料平衡。拿蒜式(2)来说: 50g(干物质)/20%(固含率)二250g(固含率20%) 蒜式(2)应该改写成(3):2.4 x 105x 50/20%/1.0 x 106 x 360/20%=2.4x 105x0.45:1.08x 106t/a(3) 而在蒜式(3)每年108万t的污泥中,有28%在下水管网中被微生(_zai xia shui guan wang zhong bei wei sheng)物分解,符合“黄金分割”。 2 合理的计蒜方法 只要知道城市常住人口数(H),就能求得该城市每年产生的污泥量(W1),即: W1=kH=0.45H (4) 其中: k=50/u/1.0 x 106 x 365(d)/u:0.45 W1——城市总的污泥量(t/a) H——城市常住人口数

相关主题