搜档网
当前位置:搜档网 › 进程和线程中英文

进程和线程中英文

进程和线程中英文
进程和线程中英文

进程和线程简介(中英文)

Programs consist of a number of processes, each of which contains one or more conceptually concurrent threads of execution.

程序包含了若干进程,每一个进程包含了一个或多个概念上知执行的线程。

A thread is the unit of execution within a process. Every time a process is initialised, a primary thread is created. For many applications the primary thread is the only one that the application requires; however, processes can create additional threads.

线程是进程的执行单元。当进程被初始化后,主线程就被创建了。对于绝大多数的应用程序来说,通常仅要求有一个主线程。尽管如此进程也可以创建额外的线程。

Each user process has its own private address space, i.e. a collection of memory regions which that process can access. A user process cannot directly address memory areas in the address space of another process. There is also a special process, the Kernel process, whose threads run at supervisor privilege level. This process normally contains two threads:

每一个用户进程拥有自己私有的地址空间,也就是说,进程拥有一定的可被其访问的内存区域。一个用户进程不可以直接访问其他进程的地址空间。另外还有一个特殊的进程,内核进程,它运行在超级用户权限模式。这个进程通常包括两个线程:

the Kernel server thread, which is the initial thread whose execution begins at the reset vector, and which is used to implement all Kernel functions requiring allocation or deallocation on the Kernel heap. This is the highest priority thread in the system.

Kernel server (内核服务器)线程:是一个初始的进程,在系统启动时就已经存在。它可以在heap执行由核心函数请求的内存分配或内存的重分配。这是系统中具有最高权限的线程。

the null thread, which runs only when no other threads are ready to run. The null thread places the processor into idle mode to save power.

null (空)线程:当系统中没有其他可运行的线程时这个线程就开始运行,null 线程使处理器处于空闲状态,减少耗电。

Threads execute individually and are unaware of other threads in a process. The scheduling of threads is pre-emptive, i.e. a currently executing thread may be suspended at any time to allow another thread to run.

线程是独立运行的,它且并不知道进程中还有其他线程存在。线程的执行是抢占式的,也就是说,当前运行的线程在任何时候都可能被挂起,以便另外一个线程可以运行。

Each thread is assigned a priority; at any time, the thread running is the highest priority thread which is ready to run. Threads with equal priority are time-sliced on a round-robin basis. Context switching between threads involves saving and restoring the state of threads. This state includes not only the processor registers (the thread context) but also the address space accessible to the thread (the process context). The process context only needs switching if a reschedule is between threads in different processes.

每一个线程都设置了优先限权;在任何时候,只要线程已经准备就绪,具有高优先权的线程总是首先运行。如果线程具有相同的悠闲权,则根据时间片进行轮转调度。上下文的切换包括了保存和恢复线程状态。这个状态不仅仅包含了处理器寄存器(进程上下文)而且还包含了线程可访问的地址空间(进程上下文)。只有在重新调度是在两个进程间进行的时候,进程上下文才被切换。

Compare this with active objects which allow non pre-emptive multi-tasking within a single thread.

把这个与活动对象比较,活动对象允许在一个线程中实现非强占式的多任务调度。

A thread can suspend, resume, panic and kill another thread.

一个线程可以被挂起,唤醒、异常抛出和结束其他线程。

When a thread is created it is put into a suspended state, it does not begin to run until that thread’s Resume() member function is called.

线程被创建以后,它处于挂起状态。它没有马上进入运行状态,直到它的Resume()成员函数被调用。

When a thread is created, it is given the priority EPriorityNormal by default. The fact that a thread is initially put into a suspended state means that the thread priority can be changed (RThread::SetPriority()) before the thread is started (RThread::Resume()).

线程创建以后,它具有EPriorityNormal的默认优选级。线程被初始化并处于挂起状态,这意味着在线程开始运行前,线程的运行优先级可以被改变(通过调用

RThread::SetPriority()) 。

进程与线程的区别 进程的通信方式 线程的通信方式

进程与线程的区别进程的通信方式线 程的通信方式 进程与线程的区别进程的通信方式线程的通信方式2011-03-15 01:04 进程与线程的区别: 通俗的解释 一个系统运行着很多进程,可以比喻为一条马路上有很多马车 不同的进程可以理解为不同的马车 而同一辆马车可以有很多匹马来拉--这些马就是线程 假设道路的宽度恰好可以通过一辆马车 道路可以认为是临界资源 那么马车成为分配资源的最小单位(进程) 而同一个马车被很多匹马驱动(线程)--即最小的运行单位 每辆马车马匹数=1 所以马匹数=1的时候进程和线程没有严格界限,只存在一个概念上的区分度 马匹数1的时候才可以严格区分进程和线程 专业的解释: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程.

线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执 行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序 的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行 的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在 应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可 以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程 的调度和管理以及资源分配。这就是进程和线程的重要区别。 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的 能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中 必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的 其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以 并发执行 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有 独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响, 而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线 程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程 的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。如果有兴趣深入的话,我建议你们看看《现代操作系统》或者 《操作系统的设计与实现》。对就个问题说得比较清楚。 +++ 进程概念

第二章进程管理答案

第二章进程管理 一、单项选择题 1、顺序程序和并发程序的执行相比,()。 A.基本相同 B. 有点不同 C.并发程序执行总体上执行时间快 D.顺序程序执行总体上执行时间快 2、在单一处理机上,将执行时间有重叠的几个程序称为()。 A.顺序程序 B. 多道程序 C.并发程序 D. 并行程序 3、进程和程序的本质区别是()。 A.存储在内存和外存 B.顺序和非顺序执行机器指令 C.分时使用和独占使用计算机资源 D.动态和静态特征 4、在下列特性中,不是进程的特性的是()。 A. 异步性 B. 并发性 C. 静态性 D. 动态性 5 A 6 A. 7 A. 8 A. 9 A. 10 A. 11 A. 12。 A. 13 A. 14 A. 15 A. 16、在操作系统中,对信号量S的P原语操作定义中,使进程进入相应阻塞队列等待的条件是()。 A. S>0 B. S=0 C. S<0 D. S≠0 17、信号量S的初值为8,在S上执行了10次P操作,6次V操作后,S的值为()。 A.10 B.8 C.6 D.4 18、在进程通信中,使用信箱方式交换信息的是()。 A.低级通信B.高级通信C.共享存储器通信D.管道通信 19.( )必定会引起进程切换。A.一个进程被创建后进入就绪态B.一个进程从运行态变成等待态c.一个进程从运行态变成就绪态 D.一个进程从等待态变成就绪态 20、操作系统使用( )机制使计算机系统能实现进程并发执行,保证系统正常工作。 A.中断B.查询c.同步D互斥 21.对于一个单处理器系统来说,允许若干进程同时执行,轮流占用处理器.称它们为()的。 A.顺序执行 B.同时执行c.并行执行D.并发执行

操作系统第二章进程和线程复习题

第二章练习题 一、单项选择题 1.某进程在运行过程中需要等待从磁盘上读入数据,此时该进程的状态将( C )。 A. 从就绪变为运行; B.从运行变为就绪; C.从运行变为阻塞; D.从阻塞变为就绪 2.进程控制块是描述进程状态和特性的数据结构,一个进程( D )。 A.可以有多个进程控制块; B.可以和其他进程共用一个进程控制块; C.可以没有进程控制块; D.只能有惟一的进程控制块。 3.临界区是指并发进程中访问共享变量的(D)段。 A、管理信息 B、信息存储 C、数 据 D、程序 4. 当__ B__时,进程从执行状态转变为就绪状态。 A. 进程被调度程序选中 B. 时间片到 C. 等待某一事件 D. 等待的事件发生 5. 信箱通信是一种( B )通信方式。 A. 直接通信 B. 高级通信 C. 低级通信 D. 信号量 6. 原语是(B)。

A、一条机器指令 B、若干条机器指令组成 C、一条特定指令 D、中途能打断的指令 7. 进程和程序的一个本质区别是(A)。 A.前者为动态的,后者为静态的; B.前者存储在内存,后者存储在外存; C.前者在一个文件中,后者在多个文件中; D.前者分时使用CPU,后者独占CPU。 8. 任何两个并发进程之间存在着(D)的关系。 A.各自完全独立B.拥有共享变量 C.必须互斥D.可能相互制约 9. 进程从运行态变为等待态可能由于(B )。 A.执行了V操作 B.执行了P操作 C.时间片用完 D.有高优先级进程就绪 10. 用PV操作管理互斥使用的资源时,信号量的初值应定义为(B)。 A.任意整数 B.1 C.0 D.-1 11. 现有n个具有相关临界区的并发进程,如果某进程调用P操作后变为等待状态,则调用P操作时信号量的值必定为(A)。 A.≤0 B.1 C.n-1 D.n

CPU的核心数、线程数的关系和区别

我们在选购电脑的时候,CPU是一个需要考虑到核心因素,因为它决定了电脑的性能等级。CPU从早期的单核,发展到现在的双核,多核。CPU除了核心数之外,还有线程数之说,下面笔者就来解释一下CPU的核心数与线程数的关系和区别。 简单地说,CPU的核心数是指物理上,也就是硬件上存在着几个核心。比如,双核就是包括2个相对独立的CPU核心单元组,四核就包含4个相对独立的CPU核心单元组,等等,依次类推。 线程数是一种逻辑的概念,简单地说,就是模拟出的CPU核心数。比如,可以通过一个CPU核心数模拟出2线程的CPU,也就是说,这个单核心的CPU被模拟成了一个类似双核心CPU的功能。我们从任务管理器的性能标签页中看到的是两个CPU。 比如Intel 赛扬G460是单核心,双线程的CPU,Intel 酷睿i3 3220是双核心四线程,Intel 酷睿i7 4770K是四核心八线程,Intel 酷睿i5 4570是四核心四线程等等。 对于一个CPU,线程数总是大于或等于核心数的。一个核心最少对应一个线程,但通过超线程技术,一个核心可以对应两个线程,也就是说它可以同时运行两个线程。 CPU的线程数概念仅仅只针对Intel的CPU才有用,因为它是通过Intel超线程技术来实现的,最早应用在Pentium4上。如果没有超线程技术,一个CPU核心对应一个线程。所以,对于AMD的CPU来说,只有核心数的概念,没有线程数的概念。 CPU之所以要增加线程数,是源于多任务处理的需要。线程数越多,越有利于同时运行多个程序,因为线程数等同于在某个瞬间CPU能同时并行处理的任务数。 在Windows中,在cmd命令中输入“wmic”,然后在出现的新窗口中输入“cpu get *”即可查看物理CPU数、CPU核心数、线程数。其中, Name:表示物理CPU数 NumberOfCores:表示CPU核心数 NumberOfLogicalProcessors:表示CPU线程数

查看程序的进程和线程实验报告

查看程序的进程和线程实验报告 篇一:程序实验2:11-多线程编程---实验报告 程序实验二:11-多线程编程实验 专业班级实验日期 5.21 姓名学号实验一(p284:11-thread.c) 1、软件功能描述 创建3个线程,让3个线程重用同一个执行函数,每个线程都有5次循环,可以看成5个小任务,每次循环之间会有随即等待时间(1-10s)意义在于模拟每个任务到达的时间是随机的没有任何的特定规律。 2、程序流程设计 3.部分程序代码注释(关键函数或代码) #include #include #include #define T_NUMBER 3 #define P_NUMBER 5 #define TIME 10.0

void *thrd_func(void *arg ) { (本文来自:https://www.sodocs.net/doc/c818084985.html, 小草范文网:查看程序的进程和线程实验报告) int thrd_num=(int)arg; int delay_time =0; int count =0; printf("Thread %d is staraing\n",thrd_num); for(count=0;count { delay_time =(int)(rand()*TIME/(RAND_MAX))+1; sleep(delay_time); printf("\tTH%d:job%d delay =%d\n",thrd_num,count,delay_time); } printf("%d finished\n",thrd_num); pthread_exit(NULL); } int main()

北大操作系统高级课程-陈向群作业-XV6进程线程

阅读代码: 1.基本头文件: types.h param.h memlayout.h defs.h x86.h asm.h mmu.h elf.h 2.进程线程部分: vm.c proc.h proc.c swtch.S kalloc.c 以及相关其他文件代码 强调一下:由于内存管理部分还没有学到,所以请同学们遇到相关的代码和问题时,先将问题记录下来,到学过之后,再结合进程线程管理部分进行深入学习,最后要求对XV6有整体的理解。 请大家围绕如下一些问题阐述原理课的相关内容,以及XV6中是如何实现的。 1.什么是进程,什么是线程?操作系统的资源分配单位和调度单位分别是什么?XV6中的 进程和线程分别是什么,都实现了吗? 答:进程是在多道程序系统出现以后,为了描述系统内部各作业的活动规律而引进的概念。进程有3个基本状态,运行状态、就绪状态和等待状态(或称阻塞状态);进程只能由父进程建立,系统中所有的进程形成一种进程树的层次体系;挂起命令可有进程自己和其他进程发出,但是解除挂起命令只能由其他进程发出。进程是具有独立功能的程序关于某个数据集合上的一次运行活动,是系统进行资源分配和调度的独立单位。 线程可称为轻量级的进程,是操作系统可以运行调度的最小单位。线程是进程内的一个相对独立的可执行的单元。若把进程称为任务的话,那么线程则是应用中的一个子任务的执行。 不论操作系统中是否引入了线程,操作系统中资源分配的基本单位都是进程。如果操作系统没有引入线程那么进程就是调度的基本单位。线程并不独立拥有资源,它仅仅分配了一些运行必备的资源。一个进程中的多个线程共同分享进程中的资源。在引入了线程的操作系统中,线程就变成了调度的基本单位,进程中的部分线程阻塞并不代表该线程被阻塞。 xv6操作系统实现了一个基于进程(没有实现线程)的简单进程管理机制。通过对proc.h 文件的阅读了解到xv6的进程中定义了一个context结构,一个枚举类型proc_state定义了UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE 这6种进程的状态,proc结构定义了进程控制块的内容,cpu结构定义了寄存器和栈指针。 2.进程管理的数据结构是什么?在Windows,Linux,XV6中分别叫什么名字?其中包含哪 些内容?操作系统是如何进行管理进程管理数据结构的?它们是如何初始化的? 答:进程管理的数据结构是进程控制块(PCB)。在Linux中进程控制块的结构是由一个叫task_struct的数据结构定义的,ask_struct存在/include/ linux/sched.h中,其中包括管理进程

任务、进程和线程的区别

任务、进程和线程的区别 推荐 摘: 任务(task)是最抽象的,是一个一般性的术语,指由软件完成的一个活动。一个任务既可以是一个进程,也可以是一个线程。简而言之,它指的是一系列共同达到某一目的的操作。例如,读取数据并将数据放入内存中。这个任务可以作为一个进程来实现,也可以作为一个线程(或作为一个中断任务)来实现。 进程(process)常常被定义为程序的执行。可以把一个进程看成是一个独立的程序,在内存中有其完备的数据空间和代码空间。一个进程所拥有的数据和变量只属于它自己。 线程(thread)则是某一进程中一路单独运行的程序。也就是说,线程存在于进程之中。一个进程由一个或多个线程构成,各线程共享相同的代码和全局数据,但各有其自己的堆栈。由于堆栈是每个线程一个,所以局部变量对每一线程来说是私有的。由于所有线程共享同样的代码和全局数据,它们比进程更紧密,比单独的进程间更趋向于相互作用,线程间的相互作用更容易些,因为它们本身就有某些供通信用的共享内存:进程的全局数据。 一个进程和一个线程最显著的区别是:线程有自己的全局数据。线程存在于进程中,因此一个进程的全局变量由所有的线程共享。由于线程共享同样的系统区域,操作系统分配给一个进程的资源对该进程的所有线程都是可用的,正如全局数据可供所有线程使用一样。 简而言之,一个程序至少有一个进程,一个进程至少有一个线程。线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。从逻辑角度来看,多线程的意义在于一个应用程序中,由多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配,这就是进程和线程的重要区别。 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行。 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。 进程概念

进程和线程的CPU亲和性

进程和线程的亲缘性(affinity)是指可以将进程或者是线程强制限制在可用的CPU子集上运行的特性,它一定程度上把进程/线程在多处理器系统上的调度策略暴露给系统程序员。 CPU的数量和表示在有n个CPU的Linux上,CPU是用0...n-1来进行一一标识的。CPU的数量可以通过proc文件系统下的CPU相关文件得到,如cpuinfo和stat: $ cat /proc/stat | grep "^cpu[0-9]\+" | wc -l 8 $ cat /proc/cpuinfo | grep "^processor" | wc -l 8 在系统编程中,可以直接调用库调用sysconf获得: sysconf(_SC_NPROCESSORS_ONLN); 进程的亲缘性Linux操作系统在2.5.8引入了调度亲缘性相关的系统调用: int sched_setaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask); int sched_getaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask); 其中sched_setaffinity是设定进程号为pid的进程调度亲缘性为mask,也就是说它只能在mask中指定的CPU 之间进行调度执行;sched_getaffinity当然就是得到进程号为pid的进程调度亲缘性了。如果pid为0,则操纵当前进程。 第二个参数指定mask所指空间的大小,通常为sizeof(cpu_set_t)。 第三个参数mask的类型为cpu_set_t,即CPU集合,GNU的c库(需要在include头文件之前定义 __USE_GNU)还提供了操作它们的宏: void CPU_CLR(int cpu, cpu_set_t *set); int CPU_ISSET(int cpu, cpu_set_t *set); void CPU_SET(int cpu, cpu_set_t *set); void CPU_ZERO(cpu_set_t *set); 如果我们所关心的只是CPU#0和CPU#1,想确保我们的进程只会运作在CPU#0之上,而不会运作在CPU#1之上。下面程序代码可以完成此事: cpu_set_t set; int ret, i; CPU_ZERO(&set); CPU_SET(0, &set); CPU_CLR(1, &set); ret = sched_setaffinity(0, sizeof(cpu_set_t), &set); if( ret == -1) { perror("sched_se"); } for( i=0; i < 3; i++) { int cpu; cpu = CPU_ISSET(i, &set); printf("cpu = %i is %s/n", i, cpu? "set" : "unset"); } Linux只提供了面向线程的调度亲缘性一种接口,这也是上面只提调度亲缘性而不直言进程亲缘性的原因。当前Linux系统下广泛采用的线程库NPTL(Native Posix Thread Library)是基于线程组来实现的,同一个线程组中的线程对应于一组共享存储空间的轻量级进程,它们各自作为单独调度单位被内核的调度器在系统范围内调度,这种模型也就是我们通常所说的1-1线程模型。正因如此,目前线程的调度范围

Linux操作系统基本概念知识

Linux操作系统基本概念知识 linux的操作系统是相对于window的一个操作系统,目前很多人在使用并且开始学习,那么入门级我们需要先了解什么呢。下面由小编为大家整理了linux操作系统常见的相关知识,希望对大家有帮助! linux操作系统概念 Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU 的操作系统。它能运行主要的UNIX工具软件、应用程序和网络协议。它支持32位和64位硬件。Linux继承了Unix以网络为核心的设计思想,是一个性能稳定的多用户网络操作系统。 Linux操作系统诞生于1991 年10 月5 日(这是第一次正式向外公布时间)。Linux存在着许多不同的Linux版本,但它们都使用了Linux内核。Linux可安装在各种计算机硬件设备中,比如手机、平板电脑、路由器、视频游戏控制台、台式计算机、大型机和超级计算机。严格来讲,Linux这个词本身只表示Linux内核,但实际上人们已经习惯了用Linux来形容整个基于Linux内核,并且使用GNU

工程各种工具和数据库的操作系统。 linux操作系统下载 经常有新接触Linux的同学问,“Linux操作系统从哪里下载啊?”这种问题,对于熟手来说要么不屑一提,要么就引来了各种Linux 发行版之争,让初学者无所适从。其实,对于新接触Linux 操作系统的人来说,很多人都不知道“Linux”原来不是一个!而是有林林总总上千种发行版,甚至你乐意的话,都可以制作发行自己的发行版。而各种不同的发行版也各有特色,还层出不穷的推出新版本。这简直让初学者如置身森林,茫然不知所措~ 所以,这里我整理了一份最新、最热的Linux 发行版的下载链接,可以让初学者能够快速领略到Linux 的风采。言归正传,您可以从下面挑个顺眼的下载安装试试了,建议你各种都体验下,最后你会选定一个适合你的! 相关阅读:操作系统常见故障核心知识 1、进程与线程 1 进程与线程的概念

进程和线程的选择

鱼还是熊掌:浅谈多进程多线程的选择 关于多进程和多线程,教科书上最经典的一句话是“进程是资源分配的最小单位,线程是CPU调度的最小单位”,这句话应付考试基本上够了,但如果在工作中遇到类似的选择问题,那就没有这么简单了,选的不好,会让你深受其害。 经常在网络上看到有的XDJM问“多进程好还是多线程好?”、“Linux下用多进程还是多线程?”等等期望一劳永逸的问题,我只能说:没有最好,只有更好。根据实际情况来判断,哪个更加合适就是哪个好。 我们按照多个不同的维度,来看看多线程和多进程的对比(注:因为是感性的比较,因此都是相对的,不是说一个好得不得了,另外一个差的无法忍受) 看起来比较简单,优势对比上是“线程 3.5 v 2.5 进程”,我们只管选线程就是了? 呵呵,有这么简单我就不用在这里浪费口舌了,还是那句话,没有绝对的好与坏,只有哪个更加合适的问题。我们来看实际应用中究竟如何判断更加合适。 1)需要频繁创建销毁的优先用线程 原因请看上面的对比。 这种原则最常见的应用就是Web服务器了,来一个连接建立一个线程,断了就销毁线程,要是用进程,创建和销毁的代价是很难承受的

2)需要进行大量计算的优先使用线程 所谓大量计算,当然就是要耗费很多CPU,切换频繁了,这种情况下线程是最合适的。 这种原则最常见的是图像处理、算法处理。 3)强相关的处理用线程,弱相关的处理用进程 什么叫强相关、弱相关?理论上很难定义,给个简单的例子就明白了。 一般的Server需要完成如下任务:消息收发、消息处理。“消息收发”和“消息处理”就是弱相关的任务,而“消息处理”里面可能又分为“消息解码”、“业务处理”,这两个任务相对来说相关性就要强多了。因此“消息收发”和“消息处理”可以分进程设计,“消息解码”、“业务处理”可以分线程设计。 当然这种划分方式不是一成不变的,也可以根据实际情况进行调整。 4)可能要扩展到多机分布的用进程,多核分布的用线程 原因请看上面对比。 5)都满足需求的情况下,用你最熟悉、最拿手的方式 至于“数据共享、同步”、“编程、调试”、“可靠性”这几个维度的所谓的“复杂、简单”应该怎么取舍,我只能说:没有明确的选择方法。但我可以告诉你一个选择原则:如果多进程和多线程都能够满足要求,那么选择你最熟悉、最拿手的那个。 需要提醒的是:虽然我给了这么多的选择原则,但实际应用中基本上都是“进程+线程”的结合方式,千万不要真的陷入一种非此即彼的误区。

一分钟看懂CPU多发射超标量、多线程、多核之概念和区别

【闲来无事、做做科普、反正也算是marketing job;教你一分钟看懂CPU多发射超标量/多线程/多核之概念和区别】最近在多个场合大肆宣扬多核多线程,收到对多线程表示不解的问题n多,苦思多日,终得一形象生动的模型,你肯定懂的。 因为是比喻和科普、过于严谨的技术控请勿吐槽。 处理器性能提高之公开秘笈:超标量、多线程、多核。 用于说明的生活模型:高速公路及收费站。 简单CPU的原型:单车道马路 + 单收费闸口,车辆只能一辆辆排队通过,并行度为1。 为了提高通行能力同时积极创收,相关部门运用世界顶尖CPU设计理念,对高速公路系统进行了如下拓宽改造: (1)增加车道(图示为3条车道); (2)增加收费通道(图示为2个通道);

(3)每个收费通道放置多个收费员(图示每条通道有a和b两个收费窗口)。 其中(1)+(3)组合手段就是所谓的超标量结构,该图示为双发射超标量。超标量指有多个车道,双发射是指有a和b两位收费员可以同时发卡,把两辆车送到不同车道上去。 手段(2)就是多线程的模型了,原有车道不变、只增加收费通道,这样多个车流来的时候可以同时发卡放行。 从这个比喻来看多线程显然是个非常直观和有用的办法,但为什么在CPU世界中似乎有点模糊难懂的感觉呢?那是因为CPU的指令流喜欢一个挨一个、一列纵队龟速前进,这样的话单通道多收费员还起点作用、多通道就形同虚设了。收费员1.a和1.b会累死,而2.a和2.b则能够睡觉。因此把车流进行整队就很重要——这就是并行编程,即要设法把一列纵队排列成多列纵队。 至于多核的概念,那就简单粗暴很多了,直接在这条马路边上进行征地拆迁、新修一条一模一样的高速公路便是,牛吧。现在大家手机里面的多核,就是并排几条“单收费通道+多车道”的马路,车流稀少、路况不错,不过相关部门表示因为道路利用率底下、经济效益欠佳、回收投资压力巨大。 无论多核还是多线程,都有一个同样的问题需要解决,就是要把车流整成多列纵队,这样多条马路和多个收费通道的并行度才能发挥作用。

JAVA多线程(一)基本概念和上下文切换性能损耗

JAVA多线程(一)基本概念和上下文切换性能损耗 1 多线程概念 在理解多线程之前,我们先搞清楚什么是线程。根据维基百科的描述,线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是行程中的实际运行单位。一条线程指的是进程中一个单一顺序的控制流,一個进程中可以并行多个线程,每条线程并行执行不同的任务。每个线程共享堆空间,拥有自己独立的栈空间。 这里反复出现的概念是线程和进程,我们在这里列出它们的区别: 线程划分尺度小于进程,线程隶属于某个进程; 进程是CPU、内存等资源占用的基本单位,线程是不能独立占有这些资源的; 进程之间相互独立,通信比较困难,而线程之间共享一块内存区域,通信方便; 进程在执行过程中,包含比较固定的入口、执行顺序和出口,而进程的这些过程会被应用程序控制。 多线程是指从软件或者硬件上实现多个线程并发执行的技术。具有多线程能力的计算机因有硬件支持而能够在同一时

间执行多个线程,进而提升整体处理效能。 2 为什么要使用多线程 随着计算机硬件的发展,多核CPU已经屡见不鲜了,甚至手机处理器都早已是多核的天下。这就给我们使用多线程提供了硬件基础,但是,只是因为硬件让我们可以实现多线程,就要这样做吗?一起来看看多线程的优点: 更高的运行效率。在多核CPU上,线程之间是互相独立的,不用互相等待,也就是所谓的“并行“。举个例子,一个使用多线程的文件系统可以实现高吞吐量和低延迟。这是因为我们可以用一个线程来检索存储在高速介质(例如高速缓冲存储器)中的数据,另一个线程检索低速介质(例如外部存储)中的数据,二者互不干扰,也不用等到另一个线程结束才执行; 多线程是模块化的编程模型。在单线程中,如果主执行线程在一个耗时较长的任务上卡住,或者因为网络响应问题陷入长时间等待,此时程序不会响应鼠标和键盘等操作。多线程通过将程序分成几个功能相对独立的模块,单独分配一个线程去执行这个长耗时任务,不影响其它线程的执行,就可以避免这个问题; 与进程相比,线程的创建和切换开销更小。使用多线程为多个客户端服务,比使用多进程消耗的资源少得多。由于启动

进程线程的概念

提起程序这个概念,大家再也熟悉不过了,程序与进程概念是不可分的。程序是为了完成某项任务编排的语句序列,它告诉计算机如何执行,因此程序是需要运行的。程序运行过程中需要占有计算机的各种资源才能运行下去。如果任一时刻,系统中只有一道程序,即单道程序系统,程序则在整个运行过程中独占计算机全部资源,整个程序运行的过程就非常简单了,管理起来也非常容易。就象整个一套房子住了一个人,他想看电视就看电视,想去卫生间就去卫生间,没人和他抢占资源。但为了提高资源利用率和系统处理能力,现代计算机系统都是多道程序系统,即多道程序并发执行。程序的并发执行带来了一些新的问题,如资源的共享与竞争,它会改变程序的执行速度。就象多个人同时住一套房子,当你想去卫生间的时候,如果此时卫生间里有人,你就得等待,影响了你的生活节奏。如果程序执行速度不当,就会导致程序的执行结果失去封闭性和可再现性,这是我们不希望看到的。因此应该采取措施来制约、控制各并发程序段的执行速度。由于程序是静态的,我们看到的程序是存储在存储介质上的,它无法反映出程序执行过程中的动态特性,而且程序在执行过程中是不断申请资源,程序作为共享资源的基本单位是不合适的,所以需要引入一个概念,它能描述程序的执行过程而且可以作为共享资源的基本单位,这个概念就是进程。 进程的生命周期 进程和人一样是有生命的,从诞生到死亡要经历若干个阶段。一般说来进程有三种状态:就绪、执行、等待。由多种原因可以导致创建一个进程,例如一个程序从外存调入内存开始执行,操作系统就要为其创建进程,当然还可以有其它原因,如一个应用进程为完成一个特殊的任务,可以自己创建一个子进程。进程被创建后就是在内存中,处于就绪状态,所谓就绪状态就是具备除了CPU之外的所有资源,万事具备,只欠东风,一旦占有 了CPU,就变成了执行状态,执行中如果需要等待外围设备输入数据,则进程就沦落为 等待状态,操作系统又会从就绪状态队列中调度一个进程占有CPU。等到数据到来后, 等待状态的进程又被唤醒成为就绪状态。这些状态的转换是通过进程控制原语实现的。程序的运行是通过进程体现的,操作系统对进程进行管理和控制,那么操作系统怎么了解到进程的状态呢,怎么把资源分配给进程呢,而且进程做状态转换时CPU现场保存在那呢?这要说到PCB(进程控制快)。PCB是进程的唯一标志,在其中记录了进程的全部信息,它是一种记录型的数据结构,相当于进程的档案。操作系统就通过PCB感知进程的存在,通过PCB了解进程和控制进程的运行。PCB也是放在内存中的,如果PCB太大,有些系 统把PCB中一些不重要的信息放在外存中。 进程执行速度的制约 并发进程由于共享系统内部资源,因此导致进程执行速度上的制约,这种制约分为:间接制约与直接制约。间接制约引起进程之间的互斥执行,直接制约引起进程间的同步执行。例如一个家里如果只有一个卫生间,卫生间这个公有资源使得每个人只能互斥使用它,这就是间接制约。而直接制约是指并发进程各自执行的结果互为对方的执行条件,例如司机与售票员的关系,当司机到站停车后,售票员才能开门,而只有售票员关门后,司机才

线程、进程、多线程、多进程和多任务之间的区别与联系

线程、进程、多线程、多进程和多任务之间的区别与联系

可能学习操作系统开发的读者都听说过这些专业名词,但又多少人理解了? 首先,从定义开始,先看一下教科书上进程和线程定义:进程:资源分配的最小单位。线程:程序执行的最小单位。 1 进程进程是程序执行时的一个实例,即它是程序已经执行到课中程度的数据结构的汇集。从内核的观点看,进程的目的就是担当分配系统资源(CPU时间、内存等)的基本单位。 举例说明进程:想象一位有一手好厨艺的计算机科学家正在为他的女儿烘制生日蛋糕,他有做生日蛋糕的食谱,厨房里有所需的原料:面粉、鸡蛋、糖、香草汁等。在这个比喻中,做蛋糕的食谱就是程序(即用适当形式描述的算法)计算机科学家就是处理器(CPU),而做蛋糕的各种原料就是输入数据。 进程就是厨师阅读食谱、取来各种原料以及烘制蛋糕等一系列动作的总和。现在假设计算机科学家的儿子哭着跑了进来,说他的头被一只蜜蜂蛰了。计算机科学家就记录下他照着食谱做到哪儿了(保存进程的当前状态),然后拿出一本急救手册,按照其中的指示处理蛰伤。这里,我们看到处理机制是从一个进程(做蛋糕)切换到另一个高优先级的进程(实施医疗救治),每个进程拥有各自的程序(食谱和急救手册)。当蜜蜂蛰伤处理完之后,这位计算机科学

家又回来做蛋糕,从他离开时的那一步继续做下去。 2 线程线程是CPU调度的最小单位(程序执行流的最小单元),它被包含在进程之中,是进程中的实际运作单元。一条线程是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。 一个标准的线程有线程ID、当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单元,线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其他线程共享进程所拥有的全部资源。一个线程可以创建和撤销另一个线程,同一进程中的多个线程之间可以并发执行。由于线程之间的相互制约,致使线程在运行中呈现处间断性。 线程也有就绪、阻塞和运行三种基本状态。就绪状态是指线程具备运行的所有条件,逻辑上可以运行,在等待处理机;运行状态是指线程占有处理机正在运行;阻塞状态是指线程在等待一个事件(如某个信号量),逻辑上不可执行。每一个程序都至少有一个线程,若程序只有一个线程,那就是程序本身。举例说明线程:假设,一个文本程序,需要接受键盘输入,将内容显示在屏幕上,还需要保存信息到硬盘中。若只有一个进程,势必造成同一时间只能干一样事的尴尬(当保存时,就不能通过键盘输入内容)。若有多个进程,每个进程负责一个任务,进程A负责接收键盘输入的任务,进程B负责将内容显示在屏幕上的任务,进程C负责保存内容到硬盘中的任务。这里进程A,B,C间的协作涉及到了进程通信问题,而且有共同都需要拥有的东西——-文本内容,不停的切换造成性能上的损失。若有一种机制,可以使任务A,B,C共享资源,这样上下文切换所需要保存和恢复的内容就少了,同时又可以减少通信所带来的性能损耗,那就好了。这种机制就是线程。 总的来说:进程有独立的地址空间,线程没有单独的地址空间(同一进程内的线程共享进程的地址空间)。

进程和线程的区别

进程和线程的区别 进程和线程的概念 先了解一下操作系统的一些相关概念,大部分操作系统(如Windows、Linux)的任务调度是采用时间片轮转的抢占式调度方式,也就是说一个任务执行一小段时间后强制暂停去执行下一个任务,每个任务轮流执行。任务执行的一小段时间叫做时间片,任务正在执行时的状态叫运行状态,任务执行一段时间后强制暂停去执行下一个任务,被暂停的任务就处于就绪状态等待下一个属于它的时间片的到来。这样每个任务都能得到执行,由于CPU的执行效率非常高,时间片非常短,在各个任务之间快速地切换,给人的感觉就是多个任务在“同时进行”,这也就是我们所说的并发(并发简单来说多个任务同时执行)。 进程 计算机的核心是CPU,它承担了所有的计算任务;而操作系统是计算机的管理者,它负责任务的调度、资源的分配和管理,统领整个计算机硬件;应用程序侧是具有某种功能的程序,程序是运行于操作系统之上的。 进程是一个具有一定独立功能的程序在一个数据集上的一次动态执行的过程,是操作系统进行资源分配和调度的一个独立单位,是应用程序运行的载体。进程是一种抽象的概念,从来没有统一的标准定义。进程一般由程序、数据集合和进程控制块三部分组成。程序用于描述进程要完成的功能,是控制进程执行的指令集;数据集合是程序在执行时所需要的数据和工作区;程序控制块(Program Control Block,简称PCB),包含进程的描述信息和控制信息,是进程存在的唯一标志。 进程具有的特征: 动态性:进程是程序的一次执行过程,是临时的,有生命期的,是动态产生,动态消亡的; 并发性:任何进程都可以同其他进程一起并发执行; 独立性:进程是系统进行资源分配和调度的一个独立单位; 结构性:进程由程序、数据和进程控制块三部分组成。 进程的生命周期 ? 在早期只有进程的操作系统中,进程有五种状态,创建、就绪、运行、阻塞(等待)、退出。

进程与线程的区别[试题]

进程与线程的区别[试题] 进程与线程的区别: 通俗的解释 一个系统运行着很多进程,可以比喻为一条马路上有很多马车 不同的进程可以理解为不同的马车而同一辆马车可以有很多匹马来拉----这些马就是线程 假设道路的宽度恰好可以通过一辆马车道路可以认为是临界资源 那么马车成为分配资源的最小单位(进程) 而同一个马车被很多匹马驱动(线程)----即最小的运行单位 每辆马车马匹数>=1 所以马匹数=1的时候进程和线程没有严格界限,只存在一个概念上的区分度马匹数>1的时候才可以严格区分进程和线程 专业的解释: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。

进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。如果有兴趣深入的话,我建议你们看看《现代操作系统》或者《操作系统的设计与实现》。对就个问题说得比较清楚。 +++++++++++++++++++++++++++++++++++++++++++++++ 进程概念 进程是表示资源分配的基本单位,又是调度运行的基本单位。例如,用户运行自己的程序,系统就创建一个进程,并为它分配资源,包括各种表格、内存空间、磁盘空间、I,O设备等。然后,把该进程放人进程的就绪队列。进程调度程序选中它,为它分配CPU以及其它有关资源,该进程才真正运行。所以,进程是系统中的并发执行的单位。

进程和线程的管理

2. 进程和线程的管理 例题解析 例2.2.1 试说明进程和程序之间的区别和联系。 解进程和程序是既有区别又有联系的两个概念。 (1)进程是动态的,程序是静态的。程序是一组有序的指令集合,是一个静态的概念;进程则是程序及其数据在计算机上的一次执行,是一个动态的集合。离开了程序,进程就失去了存在的意义,但同一程序在计算机上的每次运行将构成不同的进程。程序可看作是电影的胶片,进程可以看作电影院放电影的过程。 (2)一个进程可以执行多个程序,如同一个电影院的一场电影可放映多部影片。 (3)一个程序可被多个进程执行,如同多个影院同时利用一个电影的胶片放映同一部电影。 (4)程序可以长期保存,进程只能存在于一段时间。程序是永久存在的,而进程有从被创建到消亡的生命周期。 例2.2.2 举例说明多道程序系统失去了封闭性和再现性。 解例如,有两个循环程序A和B,共享一个变量N。程序A每执行一次时,都要做N:=N+1操作;程序B则每执行一次时,都要执行print(N)操作,然后再将N的值置成“0”。程序A和B在多道程序系统中同时运行。假定某时刻变量N的值为n,可能出现下述三种情况: (1)N:=N+1 在print(N)和N:=0之前,此时得到N值变化过程为n+1、n+1、0; (2)N:=N+1 在print(N)和N:=0之后,此时得到N值变化过程为n 、0 、1; (3)N:=N+1 在print(N)之后和N:=0之前,此时得到N值变化过程为n、n+1、0。 所以,在A、B程序多次执行过程中,虽然其每次执行时的环境和初始条件都相同,但每次得到的结果却不一定相同。 例2.2.3 为什么将进程划分成执行、就绪和阻塞三个基本状态? 解根据多道程序执行的特点,进程的运行是走走停停的。因此进程的初级状态应该是执行和等待状态。处于执行状态的进程占用处理机执行程序,处于等待状态的进程正在等待处理机或者等待其它某种事件的发生。但

Java线程总结

Java线程总结 在论坛上面常常看到初学者对线程的无可奈何,所以总结出了下面一篇文章,希望对一些正在学习使用java线程的初学者有所帮助。 首先要理解线程首先需要了解一些基本的东西,我们现在所使用的大多数操作系统都属于多任务,分时操作系统。正是由于这种操作系统的出现才有了多线程这个概念。我们使用的w indows,linux就属于此列。什么是分时操作系统呢,通俗一点与就是可以同一时间执行多个程序的操作系统,在自己的电脑上面,你是不是一边听歌,一边聊天还一边看网页呢?但实际上,并不上c pu在同时执行这些程序,c pu只是将时间切割为时间片,然后将时间片分配给这些程序,获得时间片的程序开始执行,不等执行完毕,下个程序又获得时间片开始执行,这样多个程序轮流执行一段时间,由于现在c pu 的高速计算能力,给人的感觉就像是多个程序在同时执行一样。 一般可以在同一时间内执行多个程序的操作系统都有进程的概念。一个进程就是一个执行中的程序,而每一个进程都有自己独立的一块内存空间,一组系统资源。在进程概念中,每一个进程的内部数据和状态都是完全独立的。因此可以想像创建并执行一个进程的系统开像是比较大的,所以线程出现了。在java中,程序通过流控制来执行程序流,程序中单个顺序的流控制称为线程,多线程则指的是在单个程序中可以同时运行多个不同的线程,执行不同的任务。多线程意味着一个程序的多行语句可以看上去几乎在同一时间内同时运行。(你可以将前面一句话的程序换成进程,进程是程序的一次执行过程,是系统运行程序的基本单位) 线程与进程相似,是一段完成某个特定功能的代码,是程序中单个顺序的流控制;但与进程不同的是,同类的多个线程是共享一块内存空间和一组系统资源,而线程本身的数据通常只有微处理器的寄存器数据,以及一个供程序执行时使用的堆栈。所以系统在产生一个线程。或者在各个线程之间切换时,负担要比进程小的多,正因如此,线程也被称为轻负荷进程(light-w eight proc ess)。一个进程中可以包含多个线程。 多任务是指在一个系统中可以同时运行多个程序,即有多个独立运行的任务,每个任务对应一个进程,同进程一样,一个线程也有从创建,运行到消亡的过程,称为线程的生命周期。用线程的状态(state)表明线程处在生命周期的哪个阶段。线程有创建,可运行,运行中,阻塞,死亡五中状态.通过线程的控制与调度可使线程在这几种状态间转化每个程序至少自动拥有一个线程,称为主线程。当程序加载到内存时,启动主线程。 [线程的运行机制以及调度模型] java中多线程就是一个类或一个程序执行或管理多个线程执行任务的能力,每个线程可以独立于其他线程而独立运行,当然也可以和其他线程协同运行,一个类控制着它的所有线程,可以决定哪个线程得到优先级,哪个线程可以访问其他类的资源,哪个线程开始执行,哪个保持休眠状态。 下面是线程的机制图: 线程的状态表示线程正在进行的活动以及在此时间段内所能完成的任务.线程有创建,可运行,运行中,阻塞,死亡五中状态。一个具有生命的线程,总是处于这五种状态之一: 1.创建状态 使用new运算符创建一个线程后,该线程仅仅是一个空对象,系统没有分配资源,称该线程处于创建状态(new thread) 2.可运行状态

相关主题