搜档网
当前位置:搜档网 › 高中生物必修二学考知识点

高中生物必修二学考知识点

高中生物必修二学考知识点
高中生物必修二学考知识点

高中生物必修二学考知

识点

WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

第一章遗传因子的发现

第一节孟德尔豌豆杂交试验(一)

一、相对性状

性状:生物体所表现出来的的形态特征、生理生化特征或行为方式等。

相对性状:同一种生物的同一种性状的不同表现类型。

二、孟德尔一对相对性状的杂交实验

1、实验过程(看书)

2、对分离现象的解释(看书)

3、对分离现象解释的验证:测交(看书)

例:现有一株紫色豌豆,如何判断它是显性纯合子(AA)还是杂合子(Aa)?

相关概念

1、显性性状与隐性性状

显性性状:具有相对性状的两个亲本杂交,F1表现出来的性状。

隐性性状:具有相对性状的两个亲本杂交,F1没有表现出来的性状。

附:性状分离:在杂种后代中出现不同于亲本性状的现象)

2、显性基因与隐性基因

显性基因:控制显性性状的基因。

隐性基因:控制隐性性状的基因。

附:基因:控制性状的遗传因子( DNA分子上有遗传效应的片段P55)等位基因:决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。

3、纯合子与杂合子

纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离):

显性纯合子(如AA的个体)

隐性纯合子(如aa的个体)

杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状分离)

4、表现型与基因型

表现型:指生物个体实际表现出来的性状。

基因型:与表现型有关的基因组成。

(关系:基因型+环境→表现型)

5、杂交与自交

杂交:基因型不同的生物体间相互交配的过程。

自交:基因型相同的生物体间相互交配的过程。(指植物体中自花传粉和雌雄异花植物的同株受粉)

附:测交:让F1与隐性纯合子杂交。(可用来测定F1的基因型,属于杂交)

三、基因分离定律的实质:在减I分裂后期,等位基因随着同源染色体的分开而分离。

四、基因分离定律的两种基本题型:

正推类型:(亲代→子代)

●逆推类型:(子代→亲代)

五、孟德尔遗传实验的科学方法:

?正确地选用试验材料;

?分析方法科学;(单因子→多因子)

?应用统计学方法对实验结果进行分析;

?科学地设计了试验的程序。

六、基因分离定律的应用:

1、指导杂交育种:

原理:杂合子(Aa)连续自交n次后各基因型比例

杂合子(Aa ):(1/2)n

纯合子(AA+aa):1-(1/2)n(注:AA=aa)

例:小麦抗锈病是由显性基因T控制的,如果亲代(P)的基因型是TT×tt,则: (1)子一代(F1)的基因型是____,表现型是_______。

(2)子二代(F2)的表现型是__________________,这种现象称为__________。(3)F2代中抗锈病的小麦的基因型是_________。其中基因型为______的个体自交后代会出现性状分离,因此,为了获得稳定的抗锈病类型,应该怎么做?

_______________________________________________________________________

答案:(1)Tt 抗锈病(2)抗锈病和不抗锈病性状分离(3)TT或Tt Tt

从F2代开始选择抗锈病小麦连续自交,淘汰由于性状分离而出现的非抗锈病类型,直到抗锈病性状不再发生分离。

2、指导医学实践:

例1:人类的一种先天性聋哑是由隐性基因(a)控制的遗传病。如果一个患者的双亲表现型都正常,则这对夫妇的基因型是___________,他们再生小孩发病的概率是______。答案:Aa、Aa 1/4

例2:人类的多指是由显性基因D控制的一种畸形。如果双亲的一方是多指,其基因型可能为___________,这对夫妇后代患病概率是______________。

答案:DD或Dd 100%或1/2

第二节孟德尔的豌豆杂交实验(二)

一、基因自由组合定律的实质:

在减I分裂后期,非等位基因随着非同源染色体的自由组合而自由组合。

(注意:非等位基因要位于非同源染色体上才满足自由组合定律)

二、自由组合定律两种基本题型:共同思路:“先分开、再组合”

●正推类型(亲代→子代)

●逆推类型(子代→亲代)

三、基因自由组合定律的应用

1、指导杂交育种:

例:在水稻中,高杆(D)对矮杆(d)是显性,抗病(R)对不抗病(r)是显性。现有纯合矮杆不抗病水稻ddrr和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳定遗传的矮杆抗病水稻ddRR,应该怎么做?

_______________________________________________________________________

附:杂交育种

方法:杂交

原理:基因重组

优缺点:方法简便,但要较长年限选择才可获得。

2、导医学实践:

例:在一个家庭中,父亲是多指患者(由显性致病基因D控制),母亲表现型正常。他们婚后却生了一个手指正常但患先天性聋哑的孩子(先天性聋哑是由隐性致病基因p控制),问:

①该孩子的基因型为___________,父亲的基因型为_____________,母亲的基因型为____________。

②如果他们再生一个小孩,则

只患多指的占________,

只患先天性聋哑的占_________,

既患多指又患先天性聋哑的占___________,

完全正常的占_________

答案:①ddpp DdPp ddPp②3/8, 1/8, 1/8, 3/8

第二章减数分裂和有性生殖

第一节减数分裂

一、减数分裂的概念

减数分裂(meiosis)是进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。

(注:体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂一次,新产生的细胞中的染色体数目与体细胞相同。)

二、减数分裂的过程

1、精子的形成过程:精巢(哺乳动物称睾丸)

减数第一次分裂

间期:染色体复制(包括DNA 复制和蛋白质的合成)。 前期:同源染色体两两配对(称联会),形成四分体。

四分体中的非姐妹染色单体之间常常发生对等片段的互换。 中期:同源染色体成对排列在赤道板上(两侧)。 后期:同源染色体分离;非同源染色体自由组合。 末期:细胞质分裂,形成2个子细胞。

减数第二次分裂(无同源染色体......

) 前期:染色体排列散乱。

中期:每条染色体的着丝粒都排列在细胞中央的赤道板上。

后期:姐妹染色单体分开,成为两条子染色体。并分别移向细胞两极。 末期:细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。 2、卵细胞的形成过程:卵巢 三、精子与卵细胞的形成过程的比较

精子的形成

卵细胞的形成

四、注意:

(1)同源染色体①能联会的一对染色体;②形态、大小基本相同;③一条来自父方,一条来自母方。

(2)精原细胞和卵原细胞的染色体数目与体细胞相同。因此,它们属于体细胞,通过有丝分裂的方式增殖,但它们又可以进行减数分裂形成生殖细胞。

(3)减数分裂过程中染色体数目减半发生在减数第一次分裂.......,原因是同源染色体分离.......

并进入不同的子细胞.........。所以减数第二次分裂过程中无同源染色体......。 (4)减数分裂过程中染色体和DNA 的变化规律 (5)减数分裂形成子细胞种类:

假设某生物的体细胞中含n 对同源染色体,则:

它的精(卵)原细胞进行减数分裂可形成2n 种精子(卵细胞);

它的1个精原细胞进行减数分裂形成2种精子。它的1个卵原细胞进行减数分裂形成1种卵细胞。

五、受精作用的特点和意义

特点:受精作用是精子和卵细胞相互识别、融合成为受精卵的过程。精子的头部 进入卵细胞,尾部留在外面,不久精子的细胞核就和卵细胞的细胞核融合,使受精 卵中染色体的数目又恢复到体细胞的数目,有一半来自精子,另一半来自卵细胞。 意义:减数分裂和受精作用对于维持生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异具有重要的作用。 六、减数分裂与有丝分裂图像辨析步骤:

例:判断下列细胞正在进行什么分裂,处在什么时期?

减Ⅱ前期 减Ⅰ前期 减Ⅱ前期 减Ⅱ末期 有丝后期 减Ⅱ后期 减Ⅱ后期 减Ⅰ后期 有丝前期 减Ⅱ中期 减Ⅰ后期 减Ⅱ中期 减Ⅰ前期 减Ⅱ后期 减Ⅰ中期 有丝中期

第二节 基因在染色体上

一、萨顿的假说

1.假说内容:基因是由染色体携带着从亲代传递给下一代的。也就是说,基因在染色体上。

2.假说依据:基因和染色体行为存在着明显的平行关系。

(1)基因在杂交过程中保持完整性和独立性。染色体在配子形成和受精过程中,也有相对稳定的形态结构。

(2)体细胞中基因、染色体成对存在,配子中成对的基因只有一个,同样,也只有成对的染色体中的一条。

(3)基因、染色体来源相同,均一个来自父方,一个来自母方。

(4)减数分裂过程中基因和染色体行为相同。

3.方法:类比推理法,得到结论正确与否,还必须进行实验验证。(教材P28“类比推理”)

4.证明萨顿假说的科学家是摩尔根,所用实验材料是果蝇。

二、基因位于染色体上的实验证明

1.实验(图解P29图2-10)

2.实验结论:基因在染色体上。

3.基因和染色体关系:一条染色体上有很多基因,基因在染色体上呈线性排列。(教材P32图2-11)

第三节伴性遗传

1、XY型性别决定方式:

●染色体组成(n对):

雄性:n-1对常染色体 + XY 雌性:n-1对常染色体 + XX

●性比:一般 1 : 1

●常见生物:全部哺乳动物、大多雌雄异体的植物,多数昆虫、一些鱼类和两栖

类。

2、三种伴性遗传的特点:

(1)伴X隐性遗传的特点:

① 男 > 女 ② 隔代遗传(交叉遗传) ③ 母病子必病,女病父必病 (2)伴X 显性遗传的特点:

① 女>男 ② 连续发病 ③ 父病女必病,子病母必病 (3)伴Y 遗传的特点:

①男病女不病 ②父→子→孙

附:常见遗传病类型(要记住...

):

伴X 隐:色盲、血友病 伴X 显:抗维生素D 佝偻病

常隐:先天性聋哑、白化病 常显:多(并)指

第三章 基因的本质

第一节 DNA 是主要的遗传物质

一、1928年格里菲思的肺炎双球菌的转化实验: 1、肺炎双球菌有两种类型类型:

● S 型细菌:菌落光滑,菌体有夹膜,有毒性 ● R 型细菌:菌落粗糙,菌体无夹膜,无毒性 2、实验过程(看书)

3、实验证明:无毒性的R 型活细菌与被加热杀死的有毒性的S 型细菌混合后,转化为有毒性的S 型活细菌。这种性状的转化是可以遗传的。

推论(格里菲思):在第四组实验中,已经被加热杀死S 型细菌中,必然含有某种促成这一转化的活性物质—“转化因子”。 二、1944年艾弗里的实验: 1、实验过程:

2、实验证明:DNA才是R型细菌产生稳定遗传变化的物质。

(即:DNA是遗传物质,蛋白质等不是遗传物质)

三、1952年郝尔希和蔡斯噬菌体侵染细菌的实验

1、T2噬菌体机构和元素组成:

2、实验过程(看书)

3、实验结论:子代噬菌体的各种性状是通过亲代的DNA遗传的。(即:DNA是遗传物质)

四、1956年烟草花叶病毒感染烟草实验证明:在RNA的病毒中,RNA是遗传物质。

五、小结: ?

细胞生物(真核、原核)非细胞生物(病毒)

核酸DNA和RNA DNA RNA

遗传物质DNA DNA RNA

因为绝大多数生物的遗传物质是DNA,所以DNA是主要的遗传物质。

第二节 DNA的结构和DNA的复制:

一、DNA的结构

1、DNA的组成元素:C、H、O、N、P

2、DNA的基本单位:脱氧核糖核苷酸(4种)

3、DNA的结构:

①由两条、反向平行的脱氧核苷酸链盘旋成双螺旋结构。

②外侧:脱氧核糖和磷酸交替连接构成基本骨架。

内侧:由氢键相连的碱基对组成。

③碱基配对有一定规律: A = T;G ≡ C。(碱基互补配对原则)

4、DNA 的特性:

①多样性:碱基对的排列顺序是千变万化的。(排列种数:4n (n 为碱基对对数..

) ②特异性:每个特定DNA 分子的碱基排列顺序是特定的。

5、DNA 的功能:携带遗传信息(DNA 分子中碱基对的排列顺序代表遗传信息)。

6、与DNA 有关的计算: 在双链DNA 分子中: ① A=T 、G=C

②任意两个非互补的碱基之和相等;且等于全部碱基和的一半 例:A+G = A+C = T+G = T+C = 1/2全部碱基 二、DNA 的复制

(一)半保留复制的证据 1.实验材料:细菌、噬菌体

2.方法:同位素标记法、离心等

3.过程:将大肠杆菌放在含有放射性同位素15N 的培养基培育若干代,大肠杆菌DNA

分子均为15N-DNA 标记的,其密度比14N-DNA 大。然后将被标记的大肠杆菌转移到14

N 培养基中培养,每隔一定时间(相当于分裂繁殖一代的时间)取样一次,离心测定不同世代大肠杆菌DNA 的密度。

4.实验预期:有三种条带(即:轻带、中带、重带

5.实验结论:半保留复制 (二)半保留复制的过程

1、概念:以亲代DNA 分子两条链为模板,合成子代DNA 的过程

2、时间:有丝分裂间期和减Ⅰ前的间期

3、场所:主要在细胞核

4、过程:(看书)①解旋 ②合成子链 ③子、母链盘绕形成子代DNA 分子

5、特点: 半保留复制

6、原则:碱基互补配对原则

7、条件:

①模板:亲代DNA分子的两条链

②原料:4种游离的脱氧核糖核苷酸

③能量:ATP

④酶:解旋酶、DNA聚合酶等

8、DNA能精确复制的原因:

①独特的双螺旋结构为复制提供了精确的模板;

②碱基互补配对原则保证复制能够准确进行。

9、意义:

DNA分子复制,使遗传信息从亲代传递给子代,从而确保了遗传信息的连续性。

10、与DNA复制有关的计算:

复制出DNA数 =2n(n为复制次数)

含亲代链的DNA数 =2

第四章基因的表达

第一节基因控制蛋白质的合成

一、RNA的结构:

1、组成元素:C、H、O、N、P

2、基本单位:核糖核苷酸(4种)

3、结构:一般为单链

二、基因:是具有遗传效应的DNA片段。主要在染色体上

三、基因控制蛋白质合成:

1、转录:

(1)概念:在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。(注:叶绿体、线粒体也有转录)

(2)过程(看书)

(3)条件:模板:DNA的一条链(模板链)

原料:4种核糖核苷酸能量:ATP酶:解旋酶、RNA聚合酶等

(4)原则:碱基互补配对原则(A—U、T—A、G—C、C—G)

(5)产物:信使RNA(mRNA)、核糖体RNA(rRNA)、转运RNA(tRNA)2、翻译:

(1)概念:游离在细胞质中的各种氨基酸,以mRNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。(注:叶绿体、线粒体也有翻译)

(2)过程:(看书)

(3)条件:模板:mRNA

原料:氨基酸(20种)

能量:ATP

酶:多种酶

搬运工具:tRNA

装配机器:核糖体

(4)原则:碱基互补配对原则

(5)产物:多肽链

3、与基因表达有关的计算

基因中碱基数:mRNA分子中碱基数:氨基酸数 = 6:3:1

第二节基因对性状的控制

1、中心法则

2、基因控制性状的方式:

(1)通过控制酶的合成来控制代谢过程,进而控制生物的性状;(2)通过控制蛋白质结构直接控制生物的性状。

第四节基因突变和基因重组

一、生物变异的类型

●不可遗传的变异(仅由环境变化引起)

●可遗传的变异(由遗传物质的变化引起)

基因突变

基因重组

染色体变异

二、可遗传的变异

(一)基因突变

1、概念:是指DNA分子中碱基对的增添、缺失或改变等变化。

2、原因:物理因素:X射线、激光等;

化学因素:亚硝酸盐,碱基类似物等;

生物因素:病毒、细菌等。

3、特点:

①发生频率低:

②方向不确定

③随机发生

基因突变可以发生在生物个体发育的任何时期;

基因突变可以发生在细胞内的不同的DNA分子上或同一DNA分子的不同部位上。

④普遍存在

⑤多害少利

4、结果:使一个基因变成它的等位基因。

5、时间:细胞分裂间期(DNA复制时期)

6、应用——诱变育种

①方法:用射线、激光、化学药品等处理生物。

②原理:基因突变

③实例:高产青霉菌株的获得

④优缺点:加速育种进程,大幅度地改良某些性状,但有利变异个体少。

7、意义:

①是生物变异的根本来源;

②为生物的进化提供了原始材料;

③是形成生物多样性的重要原因之一。

(二)基因重组

1、概念:是指生物体在进行有性生殖的过程中,控制不同性状的基因重新组合的过程。

2、种类:

①减数分裂(减Ⅰ后期)形成配子时,随着非同源染色体的自由组合,位于这些染色体上的非等位基因也自由组合。组合的结果可能产生与亲代基因型不同的个体。

②减Ⅰ四分体时期,同源染色体上(非姐妹染色单体)之间等位基因的交换。结果是导致染色单体上基因的重组,组合的结果可能产生与亲代基因型不同的个体。

③重组DNA 技术(基因工程)

(注:转基因生物和转基因食品的安全性:用一分为二的观点看问题,用其利,避其害。我国规定对于转基因产品必须标明。) 3、结果:产生新的基因型

4、应用(育种):杂交育种(见前面笔记)

5、意义:①为生物的变异提供了丰富的来源;

②为生物的进化提供材料;

③是形成生物体多样性的重要原因之一

(三)染色体变异 1、染色体结构变异:

实例:猫叫综合征(5号染色体部分缺失) 类型:缺失、重复、倒位、易位(看书并理解.....

) 2、染色体数目的变异 ①类型

● 个别染色体增加或减少:

实例:21三体综合征(多1条21号染色体) ● 以染色体组的形式成倍增加或减少: 实例:三倍体无子西瓜 ②染色体组:

(1)概念:细胞中的一组非同源染色体,在形态和功能上各不相同,但共同控制生物体的生长发育遗传和变异的一组染色体。

(2)特点:①一个染色体组中无同源染色体,形态和功能各不相同;

②一个染色体组携带着控制生物生长的全部遗传信息。

(3)染色体组数的判断:

①染色体组数= 细胞中任意一种染色体条数

例1:以下各图中,各有几个染色体组?

答案:3 2 5 1 4

②染色体组数= 基因型中控制同一性状的基因个数

例2:以下基因型,所代表的生物染色体组数分别是多少?

(1)Aa ______ (2)AaBb _______

(3)AAa _______ (4)AaaBbb _______

(5)AAAaBBbb _______ (6)ABCD ______

答案:2 2 3 3 4 1

③单倍体、二倍体和多倍体

由配子发育成的个体叫单倍体。

有受精卵发育成的个体,体细胞中含几个染色体组就叫几倍体,如含两个染色体组就叫二倍体,含三个染色体组就叫三倍体,以此类推。体细胞中含三个或三个以上染色体组的个体叫多倍体。

3、染色体变异在育种上的应用

①多倍体育种:

方法:用秋水仙素处理萌发的种子或幼苗。

(原理:能够抑制纺锤体的形成,导致染色体不分离,从而引起细胞内染色体数目加倍)

原理:染色体变异

相关主题