搜档网
当前位置:搜档网 › 勾股定理及其逆定理--知识讲解(基础)

勾股定理及其逆定理--知识讲解(基础)

勾股定理及其逆定理--知识讲解(基础)
勾股定理及其逆定理--知识讲解(基础)

中考总复习:勾股定理及其逆定理(基础)

【考纲要求】

1.了解勾股定理的历史,掌握勾股定理的证明方法;

2.理解并掌握勾股定理及逆定理的内容;

3.能应用勾股定理及逆定理解决有关的实际问题;

4.加强知识间的内在联系,用方程思想解决几何问题.以体现代数与几何之间的内在联系. 【知识网络】

【考点梳理】

考点一、勾股定理 1.勾股定理:

直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:2

2

2

a b c +=)

【要点诠释】勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明:

勾股定理的证明方法很多,常见的是拼图的方法. 用拼图的方法验证勾股定理的思路是:

①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变; ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理. 3.勾股定理的应用

勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是: ①已知直角三角形的任意两边长,求第三边,在ABC ?中,90C ∠=?,则22c a b =+,22b c a =-,

22a c b =-;

②知道直角三角形一边,可得另外两边之间的数量关系; ③可运用勾股定理解决一些实际问题. 考点二、勾股定理的逆定理

1.原命题与逆命题

如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果

把其中一个叫做原命题,那么另一个叫做它的逆命题.

2.勾股定理的逆定理

勾股定理的逆定理:如果三角形的三边长a b c 、、,满足2

2

2

a b c +=,那么这个三角形是直角三角形. 【要点诠释】

①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状;

②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边;

③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形.

3.勾股数

①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数;

②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等; ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);

2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数).

考点三、勾股定理与勾股定理逆定理的区别与联系

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;

联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 【典型例题】

类型一、勾股定理及其逆定理的综合应用

1.(优质试题春?河西区期末)在正方形ABCD 中,E 是BC 的中点,F 为CD 上一点,且,

试判断△AEF 是否是直角三角形?试说明理由.

【思路点拨】首先设正方形的边长为4a ,则CF=a ,DF=3a ,CE=BE=2a .根据勾股定理可求出AF ,AE 和EF 的长度.如果它们三个的长度满足勾股定理,△AEF 为直角三角形,否则不是直角三角形. 【答案与解析】

解:设正方形的边长为4a ,

∵E是BC的中点,,

∴CF=a,DF=3a,CE=BE=2a.

由勾股定理得:AF2=AD2+DF2=16a2+9a2=25a2,EF2=CE2+CF2=4a2+a2=5a2,AE2=AB2+BE2=16a2+4a2=20a2,∴AF2=EF2+AE2,

∴△AEF为直角三角形.

【总结升华】勾股定理的应用.在解答此类题时有一个小窍门,题干中各边长都没有给出确定的值,我们已知各边长的比值,这时我们可以将边长设成具体的值.这样解题时用到的都是数字,表达方便.

举一反三:

【变式】如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为().

A.14

B.16

C.20

D.28

【答案】D.

根据题意可知五个小矩形的周长之和正好能平移到大矩形的四周,故即可得出答案:

∵AC=10,BC=8,

∴AB=6,

图中五个小矩形的周长之和为:6+8+6+8=28.

2.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为().

A.14

B.15

C. 2

2

3 D. 3

【思路点拨】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.在△BDF中,由勾股定理即可求出BD的长.

【答案与解析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.可证∠FDB=90°,∠F=∠CBF,

∴DF=CB=1,BF=2+2=4,

∴BD=2215

-=.故选B.

BF DF

【总结升华】本题考查了勾股定理,解题的关键是作出以A为圆心,AB长为半径的圆,构建直角三角形从而求解.

举一反三:

【变式】(优质试题?黄冈模拟)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P 是母线BC上一点且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()

A.(4+)cm B.5cm C.2cm D.7cm

【答案】B.

【解析】

解:侧面展开图如图所示:

∵圆柱的底面周长为6cm,

∴AC′=3cm.

∵PC′=BC′,

∴PC′=×6=4cm.

在Rt△ACP中,AP2=AC′2+CP2,

∴AP==5.故选:B.

类型二、勾股定理及其逆定理与其他知识的结合应用

3.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到R t△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是________________.

【思路点拨】先根据勾股定理得到AB =2,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD 【答案与解析】

∵∠ACB=90°,AC =BC =1, ∴AB=2,

∴S 扇形ABD =6

360)2(302π

π=?,

又∴Rt△ABC 绕A 点逆时针旋转30°后得到Rt△ADE, ∴Rt△ADE≌Rt△ACB,

∴S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD =

6

π

. 【总结升华】本题考查了扇形的面积公式:360

2

R n S π=.也考查了勾股定理以及旋转的性质.

考点涉及到扇形面积的计算;勾股定理;旋转的性质.

4. 如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处, 折痕为AE ,且EF=3,则AB 的长为( ). A. 3 B. 4 C. 5 D. 6

【思路点拨】先根据矩形的特点求出BC 的长,再由翻折变换的性质得出△CEF 是直角三角形,利用勾股定理即可求出CF 的长,再在△ABC 中利用勾股定理即可求出AB 的长. 【答案与解析】∵四边形ABCD 是矩形,AD=8, ∴BC=8,

∵△AEF 是△AEB 翻折而成,

∴BE=EF=3,AB=AF ,△CEF 是直角三角形, ∴CE=8-3=5,

在Rt△CEF 中,CF=2222534CE EF -=-= ,

设AB=x ,

在Rt△ABC 中,AC 2=AB 2+BC 2,即(x+4)2=x 2+82

,解得x=6, 故选D .

【总结升华】本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.

举一反三:

【变式】(2011台湾)如图为梯形纸片ABCD ,E 点在BC 上,且∠AEC=∠C=∠D=90°,AD =3,BC =9, CD =8.若以AE 为折线,将C 折至BE 上,使得CD 与AB 交于F 点,则BF 长度为何( ).

A .4.5

B .5

C .5.5

D .6

【答案】B .

【高清课堂:勾股定理及其逆定理 例9】

5.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A=30°,∠B=90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2

=AE 2

+BC 2

【思路点拨】根据已知得出假设AE =x ,可得EC =12-x ,利用勾股定理得出DC 2

=DE 2

+EC 2

=4+(12-x )2

,AE 2

+BC 2

=x 2

+36,即可求出x 的值. 【答案与解析】

假设AE =x ,可得EC =12-x ,

∵坡角∠A=30°,∠B=90°,BC =6米, ∴AC=12米,

∵正方形DEFH 的边长为2米,即DE =2米, ∴DC 2

=DE 2

+EC 2

=4+(12-x )2

, AE 2

+BC 2

=x 2

+36, ∵DC 2

=AE 2

+BC 2

∴4+(12-x )2

=x 2

+36, 解得:x =

3

14

故答案为:

3

14.

【总结升华】此题主要考查了勾股定理的应用以及一元二次方程的应用,根据已知表示出CE ,AE 的长度是解决问题的关键.

【高清课堂:勾股定理及其逆定理 例4】

6 . 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长. 【思路点拨】原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,如图1;二是延长BC 至点D ,使CD =4,则BD =AB =10,得等腰三角形ABD ,如图2;三是作斜边AB 的中垂线交BC 的延长线于点D ,则DA =DB ,得等腰三角形ABD ,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可. 【答案与解析】分三类情况讨论如下:

(1)如图1所示,原来的花圃为Rt△ABC,其中BC =6m ,AC =8m ,∠ACB=90°.由勾股定理易知AB =10m ,将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,此时,AD =10m ,CD =6m .故扩建后的等腰三角形花圃的周长为12+10+10=32(m ). (2)如图2,因为BC =6m ,CD =4m ,所以BD =AB =10m ,在Rt△ACD 中,由勾股定理得AD =2284 =45,此时,扩建后的等腰三角形花圃的周长为45+10+10=20+45.

(3)如图3,设△ABD 中DA =DB ,再设CD =xm ,则DA =(x +6)m ,在Rt△ACD 中,由勾股定理得x 2

+82

=(x +6)2

,解得x =

3

7

∴扩建后等腰三角形花圃的周长=10+2(x +6)=

3

80

(m ). 图166

8

D

C B

A

图248

6B

C A

D

图3

x +6x 68B

C D

A

【总结升华】对于无附图几何问题,往往需要根据题意画出图形,结合已知条件及图形分析求解,这样便于寻找解题思路. 举一反三:

【变式】“希望中学”有一块三角形形状的花圃ABC ,现可直接测量到∠A=30°,AC=40m ,BC=25m ,请求出这块花圃的面积. 【答案】

作CD ⊥AB . ∵∠A=30°, ∴CD=12AC=1

2

×40=20(m ), AD=

22203AC CD -=(m )

, BD=22BC CD -=15(m ).

(1)当∠ACB 为钝角时,AB=AD+BD=203+15, ∴S △ABC =

12AB ?CD=12

(203+15)×20=(2003+150)(m 2

). (2)当∠ACB 为锐角时,AB=AD-BD=203-15. ∴S △ABC =12AB ?CD=12AB ?CD=12

(203-15)×20=(2003-150)(m 2

).

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理知识点

1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为2 2 2 ()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于 直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形. 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边在ABC ?中,90 C ∠=?,则c =,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理:如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边. ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b , c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>, 时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理及其逆定理(人教版)(含答案)

学生做题前请先回答以下问题 问题1:勾股定理的内容是什么? 问题2:勾股定理逆定理的内容是什么? 问题3:通过回忆勾股定理和勾股定理逆定理的内容,考虑勾股定理和勾股定理逆定理的使用前提分别是什么? 问题4:0.3,0.4,0.5是不是一组勾股数?勾股数的定义是什么? 以下是问题及答案,请对比参考: 问题1:勾股定理的内容是什么? 答:直角三角形两直角边的平方和等于斜边的平方,如果用a,b,c分别来表示直角三角形的两直角边和斜边,那么. 问题2:勾股定理逆定理的内容是什么? 答:如果三角形三边长a,b,c满足,那么这个三角形是直角三角形. 问题3:通过回忆勾股定理和勾股定理逆定理的内容,考虑勾股定理和勾股定理逆定理的使用前提分别是什么? 答:使用勾股定理的前提是已知三角形是直角三角形;勾股定理逆定理使用前提是在知道三角形三边关系后,证明三角形是直角三角形. 问题4:0.3,0.4,0.5是不是一组勾股数?勾股数的定义是什么? 答:0.3,0.4,0.5不是一组勾股数. 勾股数的定义:满足的三个正整数,称为勾股数. 0.3,0.4,0.5满足,但不是正整数,所以不是一组勾股数.

勾股定理及其逆定理(人教版) 一、单选题(共9道,每道10分) 1.三角形的三边,,满足,则三角形的形状是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形 答案:C 解题思路: 试题难度:三颗星知识点:勾股定理的逆定理 2.将一个直角三角形的各边都扩大或缩小相同的倍数后,得到的三角形为( ) A.可能为锐角三角形 B.不可能是直角三角形 C.仍然是直角三角形 D.可能是钝角三角形 答案:C 解题思路: 试题难度:三颗星知识点:勾股定理的逆定理 3.下列长度的三条线段:①9,12,15;②7,24,25;③32,42,52;④; ⑤(为正整数,且),其中可以构成直角三角形的有

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

2020年八年级数学 勾股定理(基础)知识讲解

勾股定理(基础) 【学习目标】 1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想; 2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数); 3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂勾股定理知识要点】 要点一、勾股定理 直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222 a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长 可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的 目的. (3)理解勾股定理的一些变式:222a c b =-,222b c a =-,()2 22c a b ab =+-.要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以 . 要点三、勾股定理的作用 1.已知直角三角形的任意两条边长,求第三边; 2.用于解决带有平方关系的证明问题; 3.与勾股定理有关的面积计算; 4.勾股定理在实际生活中的应用. 【典型例题】类型一、勾股定理的直接应用1、在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理222a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C=90°,222a b c +=,a =5,b =12, 所以2222251225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C=90°,222a b c +=,c =26,b =24, 所以222222624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c . (1)已知b =6,c =10,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C=90°,b =6,c =10,∴ 2222210664a c b =-=-=,∴a =8. (2)设3a k =,5c k =, ∵∠C=90°,b =32, ∴222a b c +=. 即222(3)32(5)k k +=. 解得k =8. ∴33824a k ==?=,55840c k ==?=. 类型二、与勾股定理有关的证明

(完整word版)勾股定理及逆定理习题及答案

勾股定理及逆定理习题及答案 1、由于0.3,0.4,0.5不是勾股数,所以0.3,0.4,0.5为边长的三角形不是直角三角形() 2、由于0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数() 3.下列几组数据能作为直角三角形的三边的有( ) (1)9,12,15; (2)15,36,39; (3)12,35,36 ; (4)12,18,22. 4.一个三角形的三边的长分别是15cm,20cm,25cm,则这个三角形的面积是()cm2 . (A)250 (B)150 (C)200 (D)不能确定 5.如图,在△ABC中,AD⊥BC于D,BD=9,AD=12,AC=20,则△ABC是(). (A)等腰三角形(B)锐角三角形(C)钝角三角形(D)直角三角形 6.如图,在一块平地上,张大爷家屋前9 m远处有一棵大树.在一次强风中,这棵大树从离地面6 m处折断倒下,量得倒下部分的长是10 m.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时会砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( ) A.一定不会B.可能会C.一定会D.以上答案都不对 7.为了迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小王搬来一架长为 2.5 m的木梯,准备把梯子架到 2.4 m高的墙上,则梯脚与墙角的距离为( ) A.0.7 m B.0.8 m C.0.9 m D.1.0 m 8.某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航

行,海监船乙船同时以20海里/时的速度离开港口向东航行,则它们离开港口2小时后相距( )海里. 9. 在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足c +a =2b ,c -a = 12 b , 则△ABC 是什么特殊三角形? 1x 2.x 3.(1)(2) (4) B (5)D 6.A 7.A (8)50海里 9. 解:因为c +a =2b ,c -a =12b , 所以(c +a)(c -a)=2b·12b. 所以c 2-a 2=b 2,即a 2+b 2=c 2. 所以△ABC 是∠C =90°的直角三角形.

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.sodocs.net/doc/ca18427876.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.sodocs.net/doc/ca18427876.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A .121 B .110 C .100 D .90 3.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )

A .2 B .2 C .3 D .4 4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( ) A .2n ﹣2 B .2n ﹣1 C .2n D .2n+1 5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( ) A .0个 B .1个 C .2个 D .3个 6.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2 a b +值为( ) A .25 B .9 C .13 D .169 7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .2 C .8 D .10 8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )

勾股定理知识讲解

勾股定理知识点 学习要求: 学习重点是利用计算面积和拼图的方法探索并验证勾股定理借助三角形三边关系来 判断一个三角 形是否是直角三角形。难点是各种拼图的理解和勾股定理的应用。 中考执占: I <7 八、、八\、? 主要考查勾股定理及直角三角形判定条件的应用和勾股数常与三角形其他知识结合 考查。 一、探索勾股定理: 1?勾股定理(重点) 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为c ,那么a 2 b 2 c 2 即:直角三角形的三边关系为:两直角边的平方和等于斜边的平方 注:勾股定理揭示的是直角三角形三边关系的定理, 只使用与直角三角形。 使用勾股定理时 首先确定最长边即斜边。 2 ?勾股定理的证明(难点) 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法二:见右图 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为 S 4 — ab c 2 2ab c 2 2 _ 2 2 2 大正方形面积为 S (a b ) a 2ab b 所以a 2 b 2 c 2 1 11 方法三:S 梯形 (a b ) (a b ) , S 梯形2S ADE S ABE 2 2 2 得证 方法一:4S S 正方形EFGH St 方形 ABCD , 1 4 ab 2 (b a)2 c 2,化简可证. b a

勾股定理知识点总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2 +b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=?,则 2 2 c a b = +,22 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,22 14()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2 2 1422 S ab c ab c =? +=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2 S a b a b = +?+梯形,2 112S 22 2 ADE ABE S S ab c ??=+=? + 梯形,化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2 2 21,22,221n n n n n ++++(n 为正整数)2 2 2 2 ,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

勾股定理及其逆定理 一

勾股定理及其逆定理 一、知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 2、勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2 ,那么这个三角形是直角三角形。 3、满足2 22c b a =+的三个正整数,称为勾股数。 二、典型题型 1、求线段的长度题型 2、判断直角三角形题型 3、求最短距离 三、主要数学思想和方法(1)面积法. 例1已知 △ABC 中,∠ACB =90°,AB =5㎝.BC =3㎝,CD ⊥AB 于点D ,求CD 的长. (2)构造法.例8、已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积. (3)分类讨论思想.(易错题) 例3在Rt △ABC 中,已知两边长为3、4,则第三边的长为 . 例4. 在△ABC 中,AB=15,AC=20,BC 边上的高线AD=12。试求BC 的长。 例5、在△ABC 中,AB=17,AC=10,BC 边上的高等于8,则△ABC 的周长为 . 练习: 1、在Rt △ABC 中,已知两边长为5、12,则第三边的长为 2、等腰三角形的两边长为10和12,则周长为________,底边上的高是________,面积是_________。

(5)方程思想. 例6如图4,AB 为一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐苹果,一只猴子从D 往上爬到树顶A 又沿滑绳AC 滑到C 处,另一只猴子从D 滑到B ,再由B 跑到C .已知两只猴子所经路程都是15米.试求大树AB 的高度. 例题7、如图,已知长方形ABCD 中AB=8 cm,BC=10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长. 例9. 如图,在Rt △ABC 中,CD 是斜边AB 上的高线,且AB=10,BC=8,求CD 的长。 练习: 1、如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF 与BD 交于点O ,已知AB=16,AD=12,求折痕EF 的长。 C ' F E O D C B A 图4 C A

人教版勾股定理知识要点--总结及练习

勾股定理知识总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2 ) 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2 +b 2 =c 2 ,那么这个三角形是直角三角形。 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 二、经典例题精讲: 题型一:直接考查勾股定理: 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 题型二:利用勾股定理测量长度: 例题1 如梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸 边,它的顶端B 恰好落到D 点,并求水池的深度AC. 题型三:勾股定理和逆定理并用— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 = 那么△DEF 是直角三角形吗?为什么? 题型四:关于翻折问题: 例1、 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上

的点G 处,求BE 的长. 勾股定理练习(随堂练) 一.填空题: 1. 在Rt △ABC 中,∠C=90° (1)若a=5,b=12,则c=________________________; (2)b=8,c=17,则S △ ABC =________。 2.若一个三角形的三边之比为5∶12∶13,则这个三角形是________(按角分类)。 3. 直角三角形的三边长为连续自然数,则其周长为____________________。 4.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所 行的最短路线的长是_______________________。 二.选择题: 5.观察下列几组数据 :(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组 A. 1 B. 2 C. 3 D. 4 6.三个正方形的面积如图,正方形A 的面积为( ) A. 6 B.4 C. 64 D. 8 7.已知直角三角形的两条边长分别是5和12,则第三边为 ( ) A.13 B.119 C.13或119 D. 不能确定 8.下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2 ∶b 2 ∶c 2 =2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 9.三角形的三边长为(a+b )2 =c 2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. A B 第8题图 A 10 6

勾股定理及其逆定理专题练习

勾股定理及其逆定理专题练习 (一)几何法证明勾股定理. 1、如图所示, 90=∠=∠BCE ADE ,a CE AD ==,b BC DE ==,c BE AE ==,利用面积法证明勾股定理. (二)勾股定理的应用. 一、勾股定理的简单计算: 1、直角三角形的三边长为连续偶数,则这三个数分别为__________. 2、已知一个直角三角形的两边长分别为3和4,则第三边长是__________. 3、直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4、在△ABC 中,∠C=90°,AB =5,则2AB +2AC +2BC =_______. 二、勾股定理与实际问题: 1、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有_____米. 2、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为____________m . 3、如图,从电线杆离地面6m 处向地面拉一条长10m 的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有__________m . b c c a a b D C A E B

4、如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需___________米. 5、将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中(如图).设筷子露在杯子外面的长为hcm ,则h 的取值范围是___________. 三、勾股定理与图形变换: 1、如图,已知ABC ?中, 5.22=∠B ,AB 的垂直平分线交BC 于D ,26=BD ,BC AE ⊥于E ,求AE 的长. 2、如图,将长方形ABCD 沿直线AB 折叠,使点C 落在点F 处,BF 交AD 于E ,48==AB AD ,,求BED ?的面积.

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理及其逆定理+(习题及答案)

勾股定理及其逆定理 例题示范 例1:如图,强大的台风使得一棵树在离地面3m 处折断倒下,树的顶部落在离树的底部4m 处,这棵树折断之前有多高? 解:如图,由题意,得 AC =3,BC =4,∠ACB =90° 在Rt △ABC 中,∠ACB =90°, 由勾股定理,得 AC 2+BC 2=AB 2 ∴32+42=AB 2 ∴AB =5 ∴AB +AC =5+3=8 答:这棵树折断之前高8m . 例2:如图,在△ABC 中,AB =13cm ,AC =5cm ,BC =12cm . 求证:∠C =90°. C B A 证明:如图 在△ABC 中,AB =13,AC =5,BC =12 ∵52+122=132 ∴AC 2+BC 2=AB 2 ∴△ABC 为直角三角形,且∠C =90°. 巩固练习 1. 如图,在Rt △ABC 中,∠C =90°,若BC =8,AB =17,则AC 的长为________. C B A 2. 已知甲、乙两人从同一地点出发,甲往东走了12km ,乙往南走了5km ,这时甲、乙两人之间的 距离为___________. C B A

3. 如图,分别以直角三角形的三边为直径作半圆,三个半圆的面积从小 到大依次记为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( ) A .S l +S 2>S 3 B .S l +S 2

勾股定理知识点总结、经典例题

知识点及例题 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。 在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。 ,所以。

知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41. 如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。 经典例题透析类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因,

勾股定理知识点总结归纳

精心整理 第18章勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① ② 定理 常见方法如下: 方法一:4 EFGH S S S ? += 正方形正方形ABCD ,1 4( 2 ab b ?+- 方法二: 四个直角三角形的面积与小正方形面积的和为S= 大正方形面积为22 () S a b a =+=+ 所以222 a b c += 方法三:1()() 2 S a b a b =+?+ 梯形 ,2 2 22 ab c ?+,化简得 证 3. 它只适用于直角三角形,对于锐角三角 因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4. ① 在ABC ?中,90 C ∠=?,则c,b=,a= ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5、利用勾股定理作长为的线段 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。 b a

作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形 ,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, 为了有利于画图让其他两边的长为整数, 而10又是9和1 作法:如图所示在数轴上找到A 点,使OA=3,作以O 为圆心做弧,弧与数轴的交点B 即为 。 注:逆命题与勾股定理逆定理 可以判断真假的陈述句叫做命题, 写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 23(正确) 4(正确) 思路点拨:解析:1. 2. 3.?(正确) 4.(正确) 总结升华: 6.74页 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

相关主题