搜档网
当前位置:搜档网 › 强激光场中原子的电离问题

强激光场中原子的电离问题

强激光场中原子的电离问题
强激光场中原子的电离问题

强激光场中原子的电离问题

【摘要】:由于超强超短脉冲激光技术的发展以及飞行时间谱仪、冷靶反冲离子动量谱仪(COLTRIMS)等测量技术的应用,使得强激光场中的原子电离成为原子分子物理中的一个研究热点。随着实验中所采用的激光光强的增加,微扰论已经不再适用,实验上报道的阈上电离(above-thresholdionization,ATI)中的低能结构(lowenergystructure,LES)以及非次序双电离(nonsequentialdoubleionization,NSDI)中的电子关联等现象有待理论上的进一步研究。本文利用数值求解三维含时薛定谔方程的方法对隧穿区域内ATI过程中低能电子的动力学行为进行了研究,同时利用半经典再散射模型对NSDI中电子的动力学行为进行了研究。我们发现电子的经典效应,例如长程库仑势,在电离过程中占据了重要的地位,同时一些量子效应,例如共振以及电子波包的扩散,对电离过程也有影响。主要内容如下:通过数值求解三维含时薛定谔方程,对ATI过程中的低能电子特性进行了研究。我们发现随着波长和光强的增加,较高能量的低能峰(high-energylow-energystructure,HLES)越来越明显,该结果与实验报道(Nat.Phys.,2009,5,335;Phys.Rev.Lett,2009,103,093001)一致。计算结果也表明,能谱中在小于1eV处还出现了一个比较尖锐的峰(very-low-energystructure,VLES),并且其与纵向动量分布中的双峰结构有对应关系。进一步计算表明,HLES和VLES对原子势有明显的依赖性,将长程势换成短程势以后,两个结构都消失了。因此我们认为长

程库仑势在HLES和VLES的形成过程中起到了关键性的作用。同时我们还发现,在隧穿区域内共振通道依然对ATI过程有贡献,它会干扰经典效应引起的纵向动量分布的双峰结构,使得实验中的双峰结构没有单纯考虑经典效应时那么明显。我们把描述线极化场中NSDI的半经典模型推广到了椭圆极化场。我们研究了椭圆极化场中氖原子的NSDI过程,得到了二价氖离子的产率随椭圆偏振度的变化关系,该结果与实验结果符合的很好。我们还研究了不同偏振度下比率Ne2+/Ne+对波长的依赖关系:在短波区域,比率随着波长的增加快速上升,并且不依赖于偏振度;在长波区域比率达到最大值后开始下降,并且这个最大值依赖于偏振度。从量子力学的观点出发,由于不确定性原理,电离过程中电子初始波函数应该具有有限宽度的动量,这样会导致波包在随后的运动中发生扩散。之前人们在半经典模型中已经考虑了电子波包的横向扩散效应对NSDI的影响[Phys.Rev.A,1996,54,R2551],在本文中我们对半经典模型进行了进一步的改进,即通过引入隧穿电子的非零纵向初速度来模拟电子波包的纵向扩散效应。我们发现非零纵向初速度对双电离过程中的单次返回碰撞轨道(singlereturncollision,SRC)有明显的抑制效应。对于z轴方向(极化方向)的动量关联分布,非零纵向初速度使分布的中心区域明显减少。对于x轴方向(椭圆极化情况中的次极化轴方向)的动量关联分布,考虑非零纵向初速度后$RC的分布明显变窄了。在线极化情况下考虑非零纵向初速度后电子动量关联分布与实验符合得更好。我们用半经典再散射模型计算了线极化场不同光强下氖的电子动量关联分

布。计算结果表明,两种经典碰撞轨道(singlereturncollision,SRC和multireturncollision,MRC)在不同光强区域内对NSDI的贡献不同:在低光强下SRC占据主导地位而在高光强下MRC占据主导地位。通过与量子S矩阵理论得到的结果进行比较,我们发现,现有的S矩阵理论中忽略了离子势对电子的影响,这就使得该理论中没有包含离子对电子波包的库仑聚焦作用,从而导致MRC的贡献被低估。【关键词】:阂上电离非次序双电离再散射机制低能结构单次返回碰撞多次返回碰撞

【学位授予单位】:山西大学

【学位级别】:博士

【学位授予年份】:2012

【分类号】:O562.4

【目录】:中文摘要8-10ABSTRACT10-13引言13-15第一章绪论15-471.1引言151.2超强超短脉冲激光15-181.3强激光场中原子电离的研究进展18-341.3.1阈上电离(ATI)18-251.3.2非次序双电离(NSDI)25-341.4强激光场中原子电离的重要机制:再散射机制34-38参考文献38-47第二章ATI光电子谱中的低能结构47-652.1引言47-482.2求解三维含时薛定谔方程的数值方法介绍48-512.3ATI光电子谱中的低能结构51-612.3.1激光参数对低能结构的影响51-562.3.2

长波长激光中共振对ATI的影响56-572.3.3低能结构形成的原因57-612.4本章小结61-62参考文献62-65第三章NSDI中的电子动力学65-1013.1引言653.2半经典模型简介65-683.3电离电子的轨道分类68-723.4椭圆极化场对NSDI的影响72-773.5隧穿电子纵向初速度对NSDI的影响77-903.5.1线极化情况78-843.5.2椭圆极化情况84-903.6SRC和MRC对NSDI的贡献90-953.7本章小结95-97参考文献97-101总结与展望101-103攻读博士学位期间已发表论文和待发表的论文103-104致谢104-106 本论文购买请联系页眉网站。

MALDI_TOF_MS(基质辅助激光解吸电离飞行时间质谱)培训预习提纲

【MALDI-TOF MS】(基质辅助激光解吸 电离飞行时间质谱)培训预习提纲 一仪器概况 仪器名称:基质辅助激光解析电离-飞行时间质谱仪 Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometer MALDI-TOF 公司:美国应用生物系统 Applied Biosystem 型号:Voyager DE-STR 特点:DE Delayed Extraction 延迟引出 PSD:Post Source Decay 源后裂解 技术指标: Mass Accuracy Linear Mode, External Calibration:

≤±0.05% for angiotensin [1,296.6853] and myoglobin [16,952.5]. ?Reflector Mode, External Calibration: ≤±0.008% for ACTH 18-39 [m/z 2,565.1989]. ≤±0.005% for E.coli thioredoxin [m/z 1,1674.4] ±0.005% for ACTH 18-39 Mass Resolution: ?Reflector Resolution: ≥20,000 for insulin (m/z 5,734). ≥12,000 for ACTH clips. ?Linear Resolution: ≥3,000 angiotensin. ≥3,500 for ACTH 18-39 [m/z 2,465.1989]. ≥1,000 for myoglobin (m/z 16,952). ≥100 for BSA (m/z 66,431). Sensitivity:

激光是电离辐射吗

激光是电离辐射吗 众所周知,激光存在着一定的辐射,它对人体有多种危害,那么激光是电离辐射吗?不同波长,不同功率,不同光束特性的激光会对人体产生什么样的危害呢? 激光是电离辐射吗 答案是否定的。激光,即“因受激辐射而产生的放大光”。它是由处于激发状态下的原子、离子或分子在光子作用下,形成受激辐射而产生的一种具有高度方向性、单色性和极大亮度与高能量或高功率密度的光束。激光是20世纪60年代问世的一种新型光源,是一种人造的、特殊类型的非电离辐射。通常激光波长在200nm~1mm,根据波长不同,激光可分为紫外线(200~400nm)、可见光(400~700nm)、红外线(700~1400nm)及远红外线(1400~1×106nm)。 激光已被广泛应用于工业、农业、军事、医疗和科研等领域。

(1)工业。用于激光打孔、切割、焊接、激光打印等。 (2)军事和航天。用于激光雷达、激光通信、激光测距、激光制导、激光瞄准、激光致盲武器等。 (3)医学。用于眼科、外科、皮肤科、肿瘤科、妇产科、耳鼻喉科等多种疾病的诊断、治疗。 (4)环境科学。应用激光探测环境中污染物。 (5)其他。激光雕刻、激光排字、激光唱片、娱乐激光灯、高能量激光笔、低能量激光玩具等技术已进入人们的文化生活。 激光对人体的危害

激光对人体的伤害主要是眼睛,其次是皮肤。 (1)对眼睛和视觉的伤害 激光能烧伤生物组织,尤其对视网膜的灼伤最多见。因为激光束能通过眼自身的屈光系统在视网膜上聚焦成一个非常小的光斑,使光能高度集中而导致灼伤。处在红外区或微波区的激光辐射可被虹膜或晶体吸收造成热损伤,导致虹膜炎和白内障。 激光对眼睛的伤害语气波长、脉冲宽度、间隙时间、光束的能量、入射角度、受照组织特性等因素有关。 眼镜受激光照射后,可突然有眩光感,出现视力模糊或眼前出现固定黑影,甚至视力丧失。激光辐射对视网膜的损害是无痛的,易被人们忽视。长期经常接触小剂量和漫反射激光的照射,工作人员一般不会发现自己视力的损伤,有时有一般神经衰弱,工作后视力疲劳、眼痛等,无特意症状。激光对眼睛的意外伤害,除个别人发生永久性视力丧失外,多数经治疗后均有不同程度的恢复。

激光器的热透镜效应

新型光学谐振器和热透镜效应 Thomas Graf Rudolf Weber, and Heinz-P. Weber 应用物理研究所,Beme Sidlerstrasse 5大学,CH - 301 2 Beme,瑞士 概要 激光谐振腔支持稳定的振荡的最大功率范围主要是由活性介质(热)材料常数和冷却方法所决定。通过控制稳定的基本模式操作的功率范围,可以转移到更高的能量,具有特殊的腔设计和腔内光学但稳定范围的宽度不会受到影响。此外,在泵的活性介质强度增加也加剧了非球面元件的热诱导的扭曲。因此,开发新颖的谐振器时,分析这些热效应具有重大意义。我们目前对热诱导的扭曲,一种新型的多棒激光腔,变量配置的谐振器(VCR)进行分析。对热效应进行了数值模拟和实验的研究。我们目前对各种抽水和冷却方案进行比较后发现复合棒端面泵浦激光器提供最有效的冷却。VCR被开发调控基本模式激光器的功率范围。由于其能力作为法布里- 珀罗谐振器,它克服了稳定性与传统的多棒谐振器相关的问题,并允许一个新的Q开关技术作为一种环形腔运行。 关键词:固态激光器,二极管泵浦激光器,光学谐振器,热透镜效应,热致双折射。 1.介绍 二极管泵浦固态激光器,有着广泛的工业和科学应用。二极管激光器价格的不断下降,应用正在扩展到高功率范围。此外,泵浦方式的改善使二极管激光辐射高效和紧聚焦到激光材料。由于大量吸收功率,这将导致强烈的局部加热。因此,在固态激光材料的热效应已经获得了相当高功率,半导体激光泵浦全固态激光器作为一个发展中的关键问题的重要性被提高。 选中激光材料后,热效应只与冷却的方法有关,然后必须采用适当的谐振器设计。我们在下面的实验和数值调查报告二极管激光的热效应泵浦全固态激光器和特殊的光学谐振器的发展。热透镜效应和应力引起的双折射用于比较四种不同的冷却技术。完全验证的数值有限元(FE)代码,它也适用于区分不同的热透镜效应的贡献- 比如弯曲的表面和折射率变化与温度和应力性曲折分析高功率激光器的功率调整的极限。进一步的功率调节功能则需要使用更长的侧面泵浦激光棒多棒谐振器的使用。多棒谐振器特别适合规模在几十瓦的顺序输出功率,高光束质量的激光器的输出功率。在这种情况下,热扭曲分发到几个激光棒,在同一个腔泵的功率降低。我们报告一个独特的激光谐振腔,变量配置的谐振器(VCR),他具有反向泵浦多棒谐振器的可调性。特别是录像机的稳定性能与传统的多棒的法布里- 珀罗谐振解决了严重的稳定性问题,并允许一个新的Q开关技术。在下面的章节中,我们将首先考虑球面镜片的近似热引起的扭曲,并讨论TEM0模式激光器的规定下能量的限制。 我们对不同的激光棒的冷却方法进行了比较。热致双折射所造成的损失在短期内第3节中讨论。

基质辅助激光解吸附电离飞行时间质谱

基质辅助激光解吸附电离飞行时间质谱 在寡糖结构分析中的应用 项目完成单位:国家生物医学分析中心 项目完成人:刘炳玉谷苗桑志红王鸿丽刘峰魏开华杨松成 1.前言 寡糖和多糖具有调节抗体水平、增强免疫功能、抗肿瘤、抗感染等作用,在肝炎、风湿病和爱滋病等重大疾病诊疗上应用价值大。它还具有抗消化性溃疡、降血糖、降血脂、抗血栓、抗辐射、抗毒物损伤、抗晕、祛痰镇咳、诱导干扰素产生、促进血功能恢复以及促进蛋白质和核酸的生物合成等方面的生物活性,在国内外(尤其我国传统医学中)应用十分广泛。糖类化合物结构比蛋白质和核酸复杂得多,包括单糖及其衍生物、寡糖、多糖、复合多糖和糖苷类,糖链由含多元羟基并顺反异构环状己或戊糖通过苷键连接而成,各单糖有五个手性碳且连接位置和构型多种多样。要阐明一种糖结构,必须了解: (1) 分子量;(2) 单糖残基组成; (3) 单糖残基间的顺序; (4) 单糖残基在糖苷键中的位置; (5) 环状结构的类型; (6) 糖苷键的构型。糖的组成复杂,结构相似,没有显色基团,难以不经衍生就进行光谱、色谱分析,但质谱不受此影响。 早期研究糖结构的质谱方法主要是快原子轰击电离质谱(FAB-MS),可以显示碎片离子,但有时候检测不到分子离子峰,而且,FAB-MS的分子量范围小、灵敏度不高[1]。以基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS) 和电喷雾质谱(ESI-MS)为代表的生物质谱打开了质谱分析研究生物大分子的新领域,并很快发展成为能在多个层次上分析研究生物分子的生物质谱学(Biological Mass Spectrometry , BMS) [2-4]。近年来,ESI-MS已在糖的结构分析中显示出强大的生命力。它无需衍生化就能确定寡糖的结构、聚合度及组成,并能精确测定糖蛋白的分子量及其中寡糖的序列及结构均一性,还能区分寡糖是O一还是N-连接的,常被用于糖型(glycoform)的分析[5]。但是,ESI-MS受样品中的无机盐和溶剂中干扰物的影响比较大,常导致其表观灵敏度不高。相反,MALDI-TOF-MS的干扰物忍受力要比ESI-MS强得多,它的表观灵敏度比ESI-MS高;MALDI-TOF-MS的图谱因为没有ESI-MS中的多电荷特性而更容易解析。另外,MALDI-TOF-MS的样品制备以及仪器调节也比ESI-MS系统简单。因此,MALDI-TOF-MS成为当前研究蛋白质等生物大分子的首选技术。Hillenkamp等[6]人报道了用MALDI-TOF-MS精确地测定ng级的葡聚糖,分子量达7000 u。另外,源后裂解技术

激光器激励原理资料

激光器激励原理 —固体激光器 1311310黄汉青 1311343张旭日辅导老师:

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1引用 世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。在这五十年时间里固体激光的发展与应用研究有了极大的飞跃,并且对人类社会产生了巨大的影响。 固体激光器从其诞生开始至今,一直是备受关注。其输出能量大,峰值功率高,结构紧凑牢固耐用,因此在各方面都得到了广泛的用途,其价值不言而喻。正是由于这些突出的特点,其在工业、国防、医疗、科研等方面得到了广泛的应用,给我们的现实生活带了许多便利。 未来的固体激光器将朝着以下几个方向发展: a)高功率及高能量 b)超短脉冲激光 c)高便携性 d)低成本高质量 现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 2激光与激光器

2.1激光 2.1.1激光(LASER) 激光的英文名——LASER,是英语词组Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大)的缩写[1]。2.1.2产生激光的条件 产生激光有三个必要的条件[2]: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。 3固体激光器 3.1工作原理和基本结构 在固体激光器中,由泵浦系统辐射的光能,经过聚焦腔,使在固体工作物质中的激活粒子能够有效的吸收光能,让工作物质中形成粒子数反转,通过谐振腔,从而输出激光。 如图1所示,固体激光器的基本结构(有部分结构没有画出)。固体激光器主要由工作物质、泵浦系统、聚光系统、光学谐振腔及冷却与滤光系统等五个部分组成[4]。

激光冷却与捕获原子

激光冷却与捕获原子 获得低温是长期以来科学家所刻意追求的一种技术。它不但给人类带来实惠,例如超导的发现与研究,而且为研究物质的结构与性质创造了独特的条件。例如在低温下,分子、原子热运动的影响可以大大减弱,原子更容易暴露出它们的“本性”。以往低温多在固体或液体系统中实现,这些系统都包含着有较强的相互作用的大量粒子。20 世纪 80 年代,借助于激光技术获得了中性气体分子的极低温(例如,10-10K )状态,这种获得低温的方法就叫激光冷却。 激光冷却中性原子的方法是汉斯(.. ..T W H Ansch )和肖洛(A. L. Schawlow )于 1975 年提出的,80 年代初就实现了中性原子的有效减速冷却。这种激光冷却的基本思想是:运动着的原子在共振吸收迎面射来的光子(图 1)后,从基态过渡到激发态,其动量就减小,速度也就减小了。速度减小的值为 /h Mc νν-?= (1) 处于激发态的原子会自发辐射出光子而回到初态,由于反冲会得到动量。此后,它又会吸收光子,又自发辐射出光子。但应注意的是,它吸收的光子来自同一束激光,方向相同,都将使原子动量减小。但自发辐射出的光子的方向是随机的,多次自发辐射平均下来并不增加原子的动量。这样,经过多次吸收和自发辐射之后,原子的速度就会明显地减小,而温度也就降低了。实际上一般原子一秒钟可以吸收发射上千万个光子,因而可以被有效地减速。对冷却钠原子的波长为 589nm 的共振光而言,这种减速效果相当于 10 万倍的重力加速度!由于这种减速实现时,必须考虑入射光子对运动原子的多普勒效应,所以这种减速就叫多普勒冷却。

由于原子速度可正可负,就用两束方向相反的共振激光束照射原子(图2)。这时原子将优先吸收迎面射来的光子而达到多普勒冷却的结果。 实际上,原子的运动是三维的。1985 年贝尔实验室的朱棣文小组就用三对方向相反的激光束分别沿x、y、z三个方向照射钠原子(图3),在6 束激光交汇处的钠原子团就被冷却下来,温度达到了240μK 。 理论指出,多普勒冷却有一定限度(原因是入射光的谱线有一定的自然宽度),例如,利用波长为589nm 的黄光冷却钠原子的极限为240μK,利用波长为852nm 的红外光冷却铯原子的极限为124μK 。但研究者们进一步采取了其他方法使原子达到更低的温度。1995 年达诺基小组把铯原子冷却到了 2.8nK 的低温,朱棣文等利用钠原子喷泉方法曾捕集到温度仅为24pK 的一群钠原子。 在朱棣文的三维激光冷却实验装置中,在三束激光交汇处,由于原子不断吸收和随机发射光子,这样发射的光子又可能被邻近的其他原子吸收,原子和光子互相交换动量而形成了一种原子光子相互纠缠在一起的实体,低速的原子在其中无规则移动而无法逃脱。朱棣文把这种实体称做“光学粘团”,这是一种捕获原子使之集聚的方法。更有效的方法是利用“原子阱”,这是利用电磁场形成的一种“势能坑”原子可以被收集在坑内存起来。一种原子阱叫“磁阱”,它利用两个平行的电流方向相反的线圈构成(图4)。这种阱中心的磁场为零,向四周磁场不断增

基质辅助激光解吸电离飞行时间质谱分析小分子化合物-分析测试中心

MALDI-TOF MS 分析小分子化合物新方法 对于分子量小于400Da 的化合物, 使用基质辅助激光解吸电离飞行时间质谱 ( MALDI-TOF MS) 的常规方法难以检测,这主要是由于小分子基质带来的干扰。为此,本方法发展了一种MALDI-TOF MS 分析小分子的新策略,将小分子转移到高质量区域测定,成功的分析了赤霉酸等一系列小分子化合物。 1 实验部分 Bruker 公司AUTOFLEX III MALDI-TOF 质谱仪,氮分子激光,波长355nm, 使用前用混合多肽(购自Bruker公司,包括:血管紧张肽I,血管紧张肽II, P物 质, 蛙皮素, 促肾上腺皮质激素1-17, 促肾上腺皮质激素18-39, 生长激素释放抑制激素28)外标法校正仪器。 金属酞箐化合物的合成参照已发表的文献,最终产物经过紫外可见吸收光谱 (UV-Vis ),质谱(MALDI-TOF MS )以及核磁(NMR)表征。 样品和基质分别溶于适当溶剂,二者按照一定比例混合均匀,取1卩混合溶液滴在MALDI样品靶上,或者直接吸取1d样品溶液滴在靶上,待溶剂自然挥发样品结晶 后,送入质谱仪,进行质谱分析。实验中数据采集时所用参数如下:加速电压19kV,反射模式,激光频率10Hz,使用最大激光能量的40-90%,累加30-200 次。使用Bruker 公司的XMASS 软件,flexControl 和flexAnaysis 软件进行数据采集和数据处理。 2 结果与讨论 2. 1 金属酞箐基质的发现 酞箐化合物是一类具有n电子共轭结构的大环化合物,具有良好的热稳定性和化学稳定性一直被广泛用作染料,此外,由于其独特的光、电、磁及对某些气体的敏感性等方面的特性而被应用于化学传感器、非线性光学材料、光盘信息记录材料、太阳能电池材料、燃料电池中的电催化材料、场效应晶体管、气体检测及光动力学治疗癌症等许多方面。 在用MALDI-TOF MS 分析金属酞箐类化合物时,由于该类化合物在紫外可

强激光场中原子的电离问题

强激光场中原子的电离问题 【摘要】:由于超强超短脉冲激光技术的发展以及飞行时间谱仪、冷靶反冲离子动量谱仪(COLTRIMS)等测量技术的应用,使得强激光场中的原子电离成为原子分子物理中的一个研究热点。随着实验中所采用的激光光强的增加,微扰论已经不再适用,实验上报道的阈上电离(above-thresholdionization,ATI)中的低能结构(lowenergystructure,LES)以及非次序双电离(nonsequentialdoubleionization,NSDI)中的电子关联等现象有待理论上的进一步研究。本文利用数值求解三维含时薛定谔方程的方法对隧穿区域内ATI过程中低能电子的动力学行为进行了研究,同时利用半经典再散射模型对NSDI中电子的动力学行为进行了研究。我们发现电子的经典效应,例如长程库仑势,在电离过程中占据了重要的地位,同时一些量子效应,例如共振以及电子波包的扩散,对电离过程也有影响。主要内容如下:通过数值求解三维含时薛定谔方程,对ATI过程中的低能电子特性进行了研究。我们发现随着波长和光强的增加,较高能量的低能峰(high-energylow-energystructure,HLES)越来越明显,该结果与实验报道(Nat.Phys.,2009,5,335;Phys.Rev.Lett,2009,103,093001)一致。计算结果也表明,能谱中在小于1eV处还出现了一个比较尖锐的峰(very-low-energystructure,VLES),并且其与纵向动量分布中的双峰结构有对应关系。进一步计算表明,HLES和VLES对原子势有明显的依赖性,将长程势换成短程势以后,两个结构都消失了。因此我们认为长

基质辅助激光解吸电离_飞行时间质谱在糖类化合物研究中的应用

收稿日期:2004211228;修回日期:2004212223 作者简介:陈海霞(1974~),女(汉族),山东利津人,副教授,工学博士,从事天然产物化学研究。E 2m ail :chennhxx @yahoo .com .cn 第26卷第2期 2005年5月 质谱学报 Jou rnal of Ch inese M ass Spectrom etry Society V o l .26 N o .2M ay 2005 基质辅助激光解吸电离-飞行时间质谱在糖类化合物研究中的应用 陈海霞,高文远 (天津大学药物科学与技术学院,天津 300072 ) [作者简介]:陈海霞,2002年7月获华中农业大学食品 科技学院工学博士学位,研究方向为天然产物化学; 2002年7月—2004年7月在中国海洋大学药物与食品 研究所从事博士后研究工作,研究方向为糖生物学和糖化学。参与国家基础研究重大项目(973)及国家自然科学基金项目等多项研究工作,在国内外发表论文18余篇,其中以第一作者发表SC I 论文3篇。 摘要:综述了基质辅助激光解吸电离2飞行时间质谱 (M ALD I 2TO F 2M S )的发展、 在糖类化合物结构研究时常选用的基质,以及在不同类型糖化合物分析中的应用。M ALD I 2TO F 2M S 在糖类分析中通常采用的是N 2激光源,基质多为有机小分子如2,52二羟基苯甲酸、2, 4,52三羟基苯乙酮、12羟基异喹啉或22羟基252甲氧基苯 甲酸、Α2氰基242羟基2苯丙烯酸等,基质类型的选择则要取决于糖类的存在形式。糖类化合物如中性糖、酸性糖、 硫酸化糖、糖蛋白、蛋白聚糖及糖脂等均可利用适合的基质而进行M ALD I 2TO F 2M S 分析。 关键词:基质辅助激光解吸电离2飞行时间质谱;基质;糖类化合物 中图分类号:O 657163;O 62911 文献标识码:A 文章编号:100422997(2005)022108207 Appl ica tion of M a tr ix -a ssisted La ser D esorption -Ion iza tion T i m e of Fl ightM a ss Spectrom etry i n Study on Carbohydra tes and Glycocon juga tes CH EN H ai 2x ia ,GAO W en 2yuan (Colleg e of P ha r m aceu tica ls &B iotechnology ,T ianj in U n iversity ,T ianj in 300072,Ch ina ) Abstract :T he developm en t and app licati on of m atrix 2assisted laser deso rp ti on 2i on izati on ti m e of fligh t m ass sp ectrom etry (M ALD I 2TO F 2M S )to the analysis of carbohydrates and their con jugates w ere review ed .T he M ALD I 2TO F 2M S in strum en tati on ,sam p le p rep ara 2ti on ,M ALD I m atrices and app licati on of M ALD I 2TO F 2M S to vari ou s carbohydrate struc 2tu ral typ es w ere discu ssed .T he n itrogen lasers that em it at 337nm (U V range )w ere al 2m o st un iversally em p loyed fo r M ALD I 2TO F 2M S analysis of carbohydrates and their con ju 2

激光机冷却方式-风冷和水冷的区别和注意事项

激光机冷却方式-风冷和水冷的区别和注意事项 为什么一些激光打标机冷却方式是风冷,而有的又是水冷呢?下面,国内知名的自动化激光设 备厂家佛山市富兰激光科技有限公司就为大家讲解一下关于激光打标机水冷和风冷的区别及注意事 项 一、区别: 其实水冷和风冷的作用是一样的,都是对激光打标机发射器还有Q驱进行冷却,确保激光打标机 的正常运作。 激光打标机冷却方式采用水冷还是风冷,主要取决于设备本身的功率。一般大功率激光设备 (50W以上),其激光器所发出的热量比较大,所以用循环水冷,而水冷有一个弊端就是体积比较大。而小功率因其功率都比较小(基本都是不超过50W),所以激光器热量不大,用风冷进行冷却 就可以,这样既浓缩了设备的体积,又降低了设备功耗。 二、注意事项: 1、激光打标机加工时候严禁对电源实行空运转和乱调试,一定要根据实际情况来操作; 2、半导体系列的激光打标机,千万不要在水箱不运转或无水的情况下进行生产和调试,因为 半导体系列的激光机器属于高温热加工,无水降温可能造成严重的后果; 3、在操作的过程中,如果出现异常现象,一定要及时关闭电源,让震镜停止工作后再进行一系列的检查和维修; 4、如果是co2和半导体系列的激光打标机一定要遵从开关机顺序进行操作,防止因误操作所产 生的破坏; 5、无论是水冷还是风冷的激光打标机都应该将水箱或风扇内部的污垢清除干净,做一个定期的 清洁工作,这样不仅对激光打标机有一个良好的操作性,对设备寿命也有很大提高,保证了在工作 中的顺畅。 佛山市富兰激光科技有限公司专业从事各类激光设备的研发、生产、销售和服务,并提供系统 的自动化解决方案。请点击进入我司官网:百度搜索“佛山市富兰激光科技有限公司”即可找到。 各种类型激光打标机,只要您需要,我们就能做到!一站式全程售前售后服务,免费打样,技术指导。本公司坚持以“诚信为本、质量第一、价格合理”的经营理念,坚持“客户第一”的原则为广大客 户提供优质的服务。热诚欢迎各界朋友前来洽谈业务!

激光冷却法原理

激光冷却法原理 激光冷却法的基本原理是光压在光的传播路径上会对物质产生一定压力称之为光压在进行冷却的时候用多束激光从不同方向照射目标体使其粒子受到光压的作用以阻止其热振动以达到冷却的效果,激光冷却法是现在最先进的冷却方法之一,可以打到非常接近绝对零度的超低温。 众所周知,激光是高功率的光束,它能产生高温,因而有激光手术、激光焊接等应用。但是激光居然还能用来冷却,而且可以冷却到绝对温度百万分之一度以下,却似乎有点不太好理解。 激光冷却涉及到多个物理原理,概括起来主要有光的多普勒效应、原子能级量子化、光具有动量。另外,激光的高度单色性和可调激光技术也非常重要。光的多普勒效应是指,如果你迎着光源的方向运动,观察到光的频率将会增加;如果背离光源方向运动,观察到的光的频率将会降低。 原子可以吸收电磁辐射的能量,使其本身的能量升高;也可以释放出电磁辐射,同时自身的能量降低。原子的能级量子化,是指原子只能吸收和放出某些特定频率的电磁波。按量子理论,电磁波的能量只能以某种不可分割的单位--能量子--与别的物质相作用。而每一份能量子所含的能量正比电磁波的频率,所以,只吸收和释放某些特定频率的电磁波,就意味着原子的能量只能取某些特定的值,故称为能级量子化。 光与其它实物粒子一样,也具有动量。当一个原子吸收一份电磁波的能量子(即光子)时,它同时也获得了一定的动量。光的动量与光的波长成反比,方向与光的传播方向相一致。 现在假设某种原子只吸收频率为f0的电磁波。如果我们把激光的频率调在略小于f0的频率上(可调激光技术可以让我们精确地调节所需激光的频率),并把这样一束激光射在由那种原子组成的样品上,将会发生什么现象呢? 我们知道,在高于绝对零度的任何温度下,组成样品的原子都在作无规则的热运动。当其中某个原子的运动方向指向激光的光源时,由于多普勒效应,在这个原子看来激光的频率会略高一些。因为我们把激光的频率调在略低于 f0,多普勒效应可以使得飞向光源方向的原子看到的激光频率正好等于f0。这样,这个原子就有可能吸收激光的能量。在它吸收能量时,它同时也获得了动量。由于激光传播的方向与原子运动的方向相反,获得的动量将使原子的运动速度变慢。

基质辅助激光解吸电离飞行时间质谱分析小分子化合物分析测试中心

MALDI-TOF MS分析小分子化合物新方法对于分子量小于400Da的化合物, 使用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS) 的常规方法难以检测,这主要是由于小分子基质带来的干扰。为此,本方法发展了一种MALDI-TOF MS分析小分子的新策略,将小分子转移到高质量区域测定,成功的分析了赤霉酸等一系列小分子化合物。 1 实验部分 Bruker公司AUTOFLEX III MALDI-TOF 质谱仪,氮分子激光,波长355nm,使用前用混合多肽(购自Bruker公司, 包括:血管紧张肽I, 血管紧张肽II, P物质, 蛙皮素, 促肾上腺皮质激素1-17, 促肾上腺皮质激素18-39, 生长激素释放抑制激素28)外标法校正仪器。 金属酞箐化合物的合成参照已发表的文献,最终产物经过紫外可见吸收光谱(UV-Vis),质谱(MALDI-TOF MS)以及核磁(NMR)表征。 样品和基质分别溶于适当溶剂,二者按照一定比例混合均匀,取1μl混合溶液滴在MALDI 样品靶上,或者直接吸取1μl样品溶液滴在靶上,待溶剂自然挥发样品结晶后,送入质谱仪,进行质谱分析。实验中数据采集时所用参数如下:加速电压19kV,反射模式,激光频率10Hz,使用最大激光能量的40-90%,累加30-200次。使用Bruker公司的XMASS软件,flexControl和flexAnaysis软件进行数据采集和数据处理。 2 结果与讨论 2. 1金属酞箐基质的发现 酞箐化合物是一类具有π电子共轭结构的大环化合物,具有良好的热稳定性和化学稳定性一直被广泛用作染料,此外,由于其独特的光、电、磁及对某些气体的敏感性等方面的特性而被应用于化学传感器、非线性光学材料、光盘信息记录材料、太阳能电池材料、燃料电池中的电催化材料、场效应晶体管、气体检测及光动力学治疗癌症等许多方面。 在用MALDI-TOF MS分析金属酞箐类化合物时,由于该类化合物在紫外可

激光技术PPT讲稿

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 激光技术PPT讲稿 激光冷却技术 PPT 讲稿同学们,下午好。 我今天选择的主题是激光冷却技术。 这门技术从它的产生,进一步发展到完善有几十年的时间跨度,是一段很有意思的历程。 我是来自201 班的彭锡亮。 今天的介绍将分四个部分: 通过对于温度跨度的探讨来了解激光冷却技术出现的原因,然后介绍激光冷却技术的基本原理和进一步的发展。 最后,简要介绍该技术的应用和前景。 一、引言谈到温度,最直接的感受就是气温。 我们人类是恒温动物,温度范围从 35-42摄氏度。 那么宇宙的温度跨度如何?我们知道物理学的研究对象是宇宙中客观存在的万事万物。 宇宙的温度跨度决定我们实验室中所应实现的温度。 1、常见物体的温度? 0.00000017K: 金属铷发生玻色爱因斯坦凝聚0.000002K: 金属钠发生玻色爱因斯坦凝聚‐268.95℃( 4.2K): 金属汞出现超导现象‐260℃( 13.15K): 星际尘埃温度: 在寒冷的宇宙空间,星际尘埃的温度可低达‐260℃‐130℃ 1 / 9

( 143.15K): 地球最低气温: 地球上最低气温出现在南极最高峰文森峰,这里年平均气温‐129℃,夏日平均气温‐117.7℃。 ‐52.3℃( 220.85K): 中国最冷气温1969 年 2 月 13 日黑龙江省漠河气象站0℃( 273.15K): 水的凝固点100℃: 水的沸点700℃: 烟头、蚊香的温度800℃: 火山熔岩温度6000℃: 太阳表面温度1000000℃: 日冕温度10000000℃中子星表面510000000℃: 人类创造的最高温度: 美国新泽西的普林斯顿等离子物理实验室中的托卡马克核聚变反应堆利用氘和氚的等离子混合体于 1994 年 5 月27 日创造出来的2、为什么要研究激光冷却技术?科学技术研究的需要,举例: 实现玻色爱因斯坦凝聚对于温度的要求。 1925 年爱因斯坦等人提出理论,但实验验证却在 1995 年。 还有很多科学研究需要。 冷却原子最初是为了降低它们的热运动速度,以便精确地测

寡糖衍生化及基质辅助激光解吸电离

DOI :10.3724/SP.J.1096.2010.00307寡糖衍生化及基质辅助激光解吸电离 飞行时间质谱分析方法研究 韩欢欢 马岩王璐张万军卫军营张养军钱小红*(军事医学科学院放射与辐射医学研究所,北京蛋白质组研究中心,蛋白质组学国家重点实验室,北京102206)摘要为提高中性寡糖在基质辅助激光解吸电离飞行时间质谱(MALDI-TOF )中的检测灵敏度,建立了以 1-(4-氰基苯基)-4-哌啶碳酰肼(CPH )为衍生化试剂对寡糖的标记方法。寡糖的还原端与CPH 的酰肼基团反 应生成腙,使得寡糖被CPH 标记,衍生物以MALDI-TOF 质谱进行分析。结果表明:在反应温度95?,醋酸浓 度为0.125%(V /V ),CPH 过量100倍的条件下,衍生产率可达最大,并且CPH 衍生可使中性寡糖在MALDI-TOF 质谱中的检测灵敏度提高10倍。本方法简便快速,灵敏度高,适合微量寡糖链的质谱分析。 关键词基质辅助激光解吸电离飞行时间质谱;1-(4-氰基苯基)-4-哌啶碳酰肼;中性寡糖 2009-07-15收稿;2009-11-11接受 本文系国家重点基础研究规划项目(Nos.2006CB910801,2006CB910803,2007CB914104)、国家高技术研究发展计划项目 (No.2006AA02A308)、国家自然科学基金项目(Nos.30621063, 20635010,20735005,20875101)和国家重点实验室自主课题(No.2008ZX10207)资助项目。 *E-mail :qianxh1@https://www.sodocs.net/doc/cb8653572.html, 1引言 糖基化作为一种普遍的蛋白质翻译后修饰反应,在生命过程中起着重要作用。糖蛋白上的寡糖链 能够影响蛋白的稳定性及蛋白的构象, 参与胞外胞内的信号转导,并能引发与其它分子之间特异的相互作用 [1,2] 。基质辅助激光解吸电离飞行时间(MADLI-TOF )质谱以其简单、快速和较高的灵敏度已经成 为糖结构分析中的重要手段[3,4]。但是,由于寡糖的亲水性强,缺乏易于结合质子的碱性基团,离子化效率较低,使得MALDI- TOF 质谱对寡糖链结构的分析远远落后于对蛋白/肽段的结构分析。为提高寡聚糖在质谱中的检测灵敏度,研究者进行了各种尝试,主要通对寡糖的化学修饰来提高寡糖的质谱检测 灵敏度。如在寡聚糖的还原端通过衍生化加上各种结构中含有质子的基团(如季铵碱[5,6]和吡啶[7]), 或加上易得质子的基团(如胍基[7]);通过增强寡聚糖的疏水性来提高其检测灵敏度,因为疏水性强的分析物更容易与基质形成均匀的混晶从而产生更强的信号 [8],如将苯肼[9,10]、苾酪[11]基团标记在寡聚 糖的还原端从而提高寡聚糖在质谱中的检测灵敏度。1-(4-氰基苯基)-4-哌啶碳酰肼(CPH )包含哌啶基团,该基团在含氮杂环化合物中具有较强的碱性(p K a =11.2),推测其可能会使寡聚糖易于质子化,并且其结构中的苯环能够增强寡聚糖的疏水性。目前尚未见采用含哌啶基团的试剂对寡糖进行衍生化以提高其质谱检测灵敏度的报道。本研究以麦芽七糖为样品,通过优化反应条件,建立了CPH 的寡糖衍生化方法,衍生化后的麦芽七糖的质谱检测灵敏度提高了10倍。此方法应用于葡聚糖和去唾液酸化胎球蛋白的N -糖链质谱分析,获得了满意的结果。2 实验部分2.1仪器与试剂 4800ProteomicsAnalyzer 基质辅助激光解吸电离飞行时间串联质谱仪(美国ABI 公司),仪器控制软件为4700Series Explorer Software ,数据处理软件为Date Explorer Software 4.5;石墨化碳黑萃取柱(美国Alltech 公司);离心机(美国Sigma 公司);冷冻干燥离心机(美国Thermo 公司)。 1-(4-氰基苯基)-4-哌啶碳酰肼(美国Maybridge 公司);碘乙酰胺(IAA )与乙腈(比利时Acros 公 司);麦芽七糖(DP7),去唾液酸化的胎球蛋白(Asialofetuin ),肽-N -糖苷酶F (PNGase F ),2,5-二羟基苯 甲酸(DHB ),5-甲氧基水杨酸(美国Sigma 公司);葡聚糖(包含聚合度1 20的葡萄糖聚合物,美国 第38卷 2010年3月 分析化学(FENXI HUAXUE )研究报告Chinese Journal of Analytical Chemistry 第3期307 312

激光为什么能使原子“冷却

所谓激光冷却,实际上就是在激光的作用下使原子减速。 .激光为什么能使原子减速? 光可以看成是一束粒子流,这种粒子就叫光子。光子一般来说是没有质量的。但是具有一定的动量。光子撞到原子上可以把它的动量转移给那个原子。这种情况要发生,必须是光子有恰好的能量,或者可以这样说,光必须有恰好的频率或颜色。这是因为光子的能量正比于光的频率,而光的频率又决定光的颜色。因此组成红光的光子比起组成蓝光的光子能量要低些。是什么决定光子应有多大能量才能对原子起作用呢?是原子的内部结构(能级)。原子处于一定的能级状态,能级的跃迁就是原子吸收和发射光子的过程。原子的能级是一定的,它吸收和发射光子的频率也是一定的。如果正在行进中的原子被迎面而来的激光照射,只要激光的频率和原子的固有频率一致,就会引起原子的跃迁,原子会吸收迎面而来的光子而减小动量。与此同时,原子又会因跃迁而发射同样的光子,不过它发射的光子是朝着四面八方的,因此,实际效果是原子的动量每碰撞一次就减小一点,直至最低值。动量和速度成正比,动量越小,速度也越小。 因此所谓激光冷却,实际上就是在激光的作用下使原子减速。 然而,实际上原子束是以一定的速度前进的。迎面而来的激光在原子“看来”,频率好象有所增大。这就好比在高速行进的火车上听迎面开来的汽车的喇叭声一样,你会觉得汽车是尖啸而过,和平常大不相同。这就是所谓多普勒效应。也就是说,对于火车上的观察者来说,汽车喇叭声的频率是增大了。运动中的原子和迎面而来的激光也会有同样的效应。因此,只有适当调低激光的频率,使之正好适合运动中的原子的固有频率,就会使原子产生跃迁,从而吸收和发射光子,达到使原子减速的目的。因此这种冷却的方法称为多普勒冷却。理论预计,对于钠原子,多普勒冷却的极限值为240μK。用激光可以把各种原子冷却,使之降到毫开量级的极低温度,这就是20世纪70到80年代之间物理学家做的事情。1985年朱棣文和他的同事在美国新泽西州荷尔德尔(Holmdel)的贝尔实验室进一步用两两相对,沿三个正交方向的六束激光使原子减速。他们让真空中的一束钠原子先是被迎面而来的激光束阻止了下来,然后把钠原子引进六束激光的交汇处。这六束激光都比静止钠原子吸收的特征颜色稍微有些红移。其效果就是不管钠原子企图向何方运动,都会遇上具有恰当能量的光子,并被推回到六束激光交汇的区域。在这个小区域里,聚集了大量的冷却下来的原子,组成了肉眼看去像是豌豆大小的发光的气团。由六束激光组成的阻尼机制就像某种粘稠的液体,原子陷入其中会不断降低速度。大家给这种机制起了一个绰号,叫“光学粘胶”。上述实验中原子只是被冷却,并没有被陷俘。重力会使它们在1秒钟内从光学粘胶中落下来。为了真正陷俘原子,就需要有一个陷阱。1987年做成了一种很有效的陷阱,叫做磁光陷阱。它用六束激光,如上述排列,再加上两个磁性线圈,以便给出略微可变化的磁场,其最小值处于激光束相交的区域。由于磁场会对原子的特征能级起作用(这种作用叫做塞曼效应),就会产生一个比重力大的力,从而把原子拉回到陷阱中心。这时原子虽然没有真正被捉住,但却是被激光和磁场约束在一个很小的范围里,从而可以在实验中加以研究或利用。

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

各种激光器的比较

各种激光器比较 一、气体激光器 (1):原子激光器 典型特例,He—Ne激光器,他发出的激光波长为0.6328um,输出功率几毫瓦到100毫瓦之间,能量转换功率低,约为0.01%。激光器器方向性,单色性好,谱线宽度窄。该激光器常用来外科医疗,激光美容,建筑测量,准直指示,激光陀螺等。 (2):离子激光器 典型特例,Ar+离子激光器,波长大约为0.488um的蓝光,输出功率约为150W。能量转换功率为1%。长用此激光器用做彩色电视,信息储存,全息照相等方面。 (3):分子激光器 典型特例,CO2激光器,波长约为10.6um的红外线。输出功率与管长成正比,1M的管长可获得100W的输出功率。能量转换效率较高,大约为30%。单色性好。能量输出强,常用来美容,工业和军事上。 (4):准分子激光器 是稀有气体与卤素气体的混合,发出的波长是紫外波。输出功率小,大约为百微焦。能量转换功率约为1%。 总述:气体激光器,连续输出功率大,方向性好,其器件造价低廉,结构简单。 二、液体激光器 典型特例,若丹明6G染料,他的波长在紫外到红外之间,最大特点是连续可调。能量转换功率较高,这种激光器特点是制备容易,可循环操作,便宜。 三、固体激光器 典型特例,红宝石激光器。它的波长在可见光到近红外波段,输出功率高,约为20kw。能量转换率低,仅为0.1%。单色性差。但结构紧凑,牢固耐用,易于光纤耦合。这种激光器广泛用于测距,材料加工,军事等方面。 四、半导体激光器 典型特例,砷化镓,硫化镉等。他的输出波长在近红外波段。920nm到1.65um之间。输出功率小,能量转换功率高,但是单色性差。这种激光器最大特点是体积小,重量轻,结构简单,寿命长。因此,广泛使用于光纤通信,光信息储存,光信息处理等方面。

相关主题