搜档网
当前位置:搜档网 › 基于FPGA的QPSK调制解调电路设计与实现

基于FPGA的QPSK调制解调电路设计与实现

基于FPGA的QPSK调制解调电路设计与实现
基于FPGA的QPSK调制解调电路设计与实现

基于FPGA的QPSK调制解调电路设计与实现数字调制信号又称为键控信号,调制过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM)、频移键控(FSK)、相移键控(PSK).根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制).多进制数字调制与二进制相比,其频谱利用率更高.其中QPSK(即4PSK)是MPSK(多进制相移键控)中应用最广泛的一种调制方式。

1 QPSK简介

QPSK信号有00、01、10、11四种状态。所以,对输入的二进制序列,首先必须分组,每两位码元一组。然后根据组合情况,用载波的四种相位表征它们。QPSK信号实际上是两路正交双边带信号, 可由图1所示方法产生。

QPSK信号是两个正交的2PSK信号的合成,所以可仿照2PSK信号的相平解调法,用两个正交的相干载波分别检测A和B两个分量,然后还原成串行二进制数字信号,即可完成QPSK信号的解调,解调过程如图2所示。

图1 QPSK 信号调制原理图

图2 QPSK 信号解调原理图

2 QPSK 调制电路的FPGA 实现及仿真 2.1基于FPGA 的QPSK 调制电路方框图

基带信号通过串/并转换器得到2位并行信号,,四选一开关根据该数据,选择载波对应的相位进行输出,即得到调制信号,调制框图如图3所示。

基带信号clk

start

串/并转换四选一开关

分 频

0°90°180°270°

调制信号

FPGA

图3 QPSK 调制电路框图

系统顶层框图如下

图中输入信号clk为调制模块时钟,start为调制模块的使能信号,x为基带信号,y是qpsk调制信号的输出端,carrier【3..0】为4种不同相位的载波,其相位非别为0、90、、270度,锁相环模块用来进行相位调节,用来模拟通信系统中发送时钟与接收时钟的不同步start1为解调模块的使能信号。y2为解调信号的输出端。

2.2调制电路VHDL程序

程序说明

信号yy 载波相位载波波形载波符号

“00”0°f3

“01”90°f2

“10”°f1

“11”270°f0

在quartus ii下的仿真结果总体结果如下图所示

局部放大图如下

3 QPSK解调电路的FPGA实现及仿真

3.1 QPSK解调电路方框图

当调制为低电平时,译码器1根据记数器输出值,送入加法器相应的数据。加法器把运算结果送到寄存器,译码器2根据寄存器数据通过译码,输出两位并行信号,该信号再通过并/串转换即可得到解调后的基带信号,调制框图如图4所示。

图4 QPSK解调电路框图

3.2解调电路VHDL程序

library ieee;

use ieee.std_logic_arith.all;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity PL_MPSK2 is

port(clk :in std_logic; --系统时钟

start :in std_logic; --同步信号

x :in std_logic; --调制信号

y :out std_logic); --基带信号end PL_MPSK2;

architecture behav of PL_MPSK2 is

signal q:integer range 0 to 7; --计数器

signal xx:std_logic_vector(2 downto 0); --加法器

signal yyy:std_logic_vector(1 downto 0); --2位并行基代信号寄存器

signal yy:std_logic_vector(2 downto 0); --寄存xx数据

begin

process(clk)

begin

if clk'event and clk='1' then

if start='0' then q<=0;

elsif q=0 then

q<=1;yy<=xx; y<=yyy(0); --把加法计数器的数据送入yy寄存器

if x='0' then

xx<="001"; --调制信号x为低电平时,送入加法器的数据“001”

else

xx<="000";

end if;

elsif q=2 then q<=3;

if x='0' then

xx<=xx+"001"; --调制信号x为低电平时,送入加法器的数据“001”

end if;

elsif q=4 then q<=5; y<=yyy(1);

if x='0' then

xx<=xx+""; --调制信号x为低电平时,送入加法器的数据“”

end if;

elsif q=6 then q<=7;

if x='0' then

xx<=xx+"011"; --调制信号x为低电平时,送入加法器的数据“011”

end if;

else q<=q+1;

end if;

end if;

end process;

process(yy) --此进程根据yy寄存器里的数据进行译码

begin

if clk='1' and clk'event then

if yy="101" then yyy<="00"; --yy寄存器“101”对应基带码“00”

elsif yy="011" then yyy<="01"; --yy寄存器“011”对应基带码“01”

elsif yy="" then yyy<="10"; --yy寄存器“”对应基带码“10”

elsif yy="100" then yyy<="11"; --yy寄存器“100”对应基带码“11”

else yyy<="00";

end if;

end if;

end process;

end behav;使用FPGA实现QPSK调制解调电路,多进制数字调制技术与FPGA的结合使得通信系统的性能得到了迅速的提高。

系统联调的全局仿真图如下

局部放大图如下所示

从仿真图中可以看到基带信号x与解调出的信号y2一致,说明解调成功。

AM,DSB,SSB调制和解调电路的设计。

东北大学分校电子信息系 综合课程设计 基于Multisim的调幅电路的仿真 专业名称电子信息工程 班级学号5081411 学生曹翔 指导教师王芬芬 设计时间2011/6/22

基于Multisim的调幅电路的仿真 1.前言 信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。调制作用的实质就是使相同频率围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。而要还原出被调制的信号就需要解调电路。调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。论文利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。 AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。与AM信号相比,因为不存在载波分量,DSB调制效率是100%。我们注意到DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率,所以选择SSB调制与解调作为课程设计的题目具有很大的实际意义。 论文主要是综述现代通信系统中AM ,DSB,SSB调制解调的基本技术,并分别在时域讨论振幅调制与解调的基本原理, 以及介绍分析有关电路组成。此课程设计的目的在于进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关容。同时加强了团队合作意识,培养分析问题、解决问题的综合能力。 本次综合课设于2011年6月20日着手准备。我团队四人:曹翔、婷婷、赖志娟、少楠分工合作,利用两天时间完成对设计题目的认识与了解,用三天时间完成了本次设计的仿真、调试。 2.基本理论 由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。 所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化,最常用的模拟调制方式是用正弦波作为载波的调幅(AM)、调频(FM)、调相 (PM)三种。解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。与调幅、调频、调相相对应,有检波、鉴频和鉴相[1]。 振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为

QPSK调制解调完整程序(配有自己的注释)

QPSK调制解调完整程序(配有注释) clc; clear all; %假定接收端已经实现载波同步,位同步(盲信号解调重点要解决的问题:载波同步(costas环(未见到相关代码)),位同步(Gardner算法(未见相关代码)),帧同步) % carrier frequency for modulation and demodulation fc=5e6; %QPSK transmitter data=5000 ; %码数率为5MHZ %原码个数 rand_data=randn(1,5000); for i=1:data if rand_data(i)>=0.5 rand_data(i)=1; else rand_data(i)=0; end end %seriel to parallel %同时单极性码转为双极性码 for i=1:data if rem(i,2)==1 if rand_data(i)==1 I(i)=1; I(i+1)=1; else I(i)=-1; I(i+1)=-1; end else if rand_data(i)==1 Q(i-1)=1; Q(i)=1; else Q(i-1)=-1; Q(i)=-1; end end end % zero insertion ,此过程称为成形。成形的意思就是实现由消息到波形的转换,以便发射,脉冲成形应该是在基带调制之后。 zero=5; %sampling rate 25M HZ ,明白了,zero为过采样率。它等于采样率fs/码速率。

for i=1:zero*data % 采样点数目=过采样率*原码数目 if rem(i,zero)==1 Izero(i)=I(fix((i-1)/zero)+1); Qzero(i)=Q(fix((i-1)/zero)+1); else Izero(i)=0; Qzero(i)=0; end end %pulse shape filter,接着,将进行低通滤波,因为随着传输速率的增大,基带脉冲的频谱将变宽 %如果不滤波(如升余弦滤波)进行低通滤波,后面加载频的时候可能会出现困难。 %平方根升余弦滤波器 % psf=rcosfir(rf,n_t,rate,fs,'sqrt') rate:过采样率,rf:滚降因子,n_t:滤波器阶数,fs:采样率 %用在调制或发送之前,用在解调或接受之后,用来降低过采样符号流带宽并不引发ISI(码间串扰) NT=50; N=2*zero*NT; % =500 fs=25e6; rf=0.1; psf=rcosfir(rf,NT,zero,fs,'sqrt');% psf大小为500 Ipulse=conv(Izero,psf); Qpulse=conv(Qzero,psf); %为什么数字信号传输也要过采样,成形滤波? %答:过采样的数字信号处理起来对低通滤波器的要求相对较低,如果不过采样,滤波的时候滤波器需要很陡峭,指标会很严格 %成形滤波的作用是保证采样点不失真。如果没有它,那信号在经过带限信道后,眼图张不开,ISI非常严重。成形滤波的位置在基带调制之后。 %因为经成形滤波后,信号的信息已经有所损失,这也是为避免ISI付出的代价。换句话说,成形滤波的位置在载波调制之前,仅挨着载波调制。 %即:(发送端)插值(采样)-成形-滤波(LPF)-加载频(载波调制)-加噪声至(接收端)乘本振-低通-定时抽取-判决。 %modulation for i=1:zero*data+N %采样点数目改变(因为卷积的缘故) t(i)=(i-1)/(fs); %这里因为假设载频与码速率大小相等,所以用载频fc 乘以过采样率=采样率。 Imod(i)=Ipulse(i)*sqrt(2)*cos(2*pi*fc*t(i)); Qmod(i)=Qpulse(i)*(-sqrt(2)*sin(2*pi*fc*t(i))); end sum=Imod+Qmod;

FM调制解调电路的设计..

FM 调制/解调电路的设计 摘要:本设计根据锁相环原理,通过两片CD4046搭接基本电路来实现FM 调制/解调电路的设计,将调制电路的输出信号作为解调电路的输入信号,最终实现信号的调制解调。原理分析,我们得到的载波信号的电压P P V -大于3V ,最大频率偏移m f ?≥5KHz ,解调电路输出的FM 调制信号的电压P P V -大于200mV 可以看出我们的具体设计符合设计指标。 关键词:锁相环、调制、解调、滤波器 一、概述 FM 调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。FM 解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。调制电路还需要另设计一个高频信号放大器和加法器。解调电路需要设计一个低通滤波器,来取出解调信号。 技术指标: 1.载波频率fc=46.5KHz,载波信号的电压Vp-p ≥3V ; 2.FM 调频信号的电压Vp-p ≥6V ,最大频率偏移?fm ≥5KHz ; 3.解调电路输出的FM 调制信号的电压Vp-p ≥200mV 。 二、方案设计与分析 调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。其逆过程为频率解调(也称频率检波或鉴频)。 本实验是用CD4046数字集成锁相环(PLL )来实现调频/解调(鉴频)的。 1.FM 调频电路原理图(如图1所示) 将调制信号加到压控振荡器(VCO )的控制端,使压控振荡器得输出频率(在自

调制放大解调设计(正文)有PCB图哦!

目录 第一章前言 (1) 第二章设计说明 (2) 2.1整体功能 (2) 2.2系统结构 (2) 2.3设计条件需求 (2) 第三章单元电路设计 (4) 3.1电源电路设计 (4) 3.2信号发生电路设计 (4) 3.3调制解调电路设计 (5) 3.4整体电路图 (6) 3.5整机原件清单 (7) 第四章调试 (8) 第五章心得体会 (10) 第六章参考文献 (11) 附录 (12)

第一章前言 调制主要应用于广播、语音通信领域。调制就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。这个信号叫做已调信号,而基带信号叫做调制信号。调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。解调是从携带消息的已调信号中恢复消息的过程。在各种信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号。接收端必须恢复所传送的消息才能加以利用,这就是解调。 调制解调器是由调制器和解调器两部分组成。目前调制解调器主要有两种:内置式和外置式。 调制解调器的一个重要性能参数是传输速率,目前市面上28.8K、33.6K 和56K的调制解调器都有,而且56K的调制解调器已经成为市场的主流产品。但由于国内通信线路的限制,以及用户太多、国际出口太少的缘故,平时使用很难达到上述速率。 本设计是设计出调制放大解调设计电路。通过产生正弦波,进行与高频波相乘,再解调出来,经过滤波,去掉杂波后,完成信号的恢复。

QPSK调制解调的simulink仿真

QPSK 调制解调的simulink 仿真与性能分析 一、 设计目的和意义 学会使用MATLAB 中的simulink 仿真软件,了解其各种模块的功能,用simulink 实现QPSK 的调制和仿真过程,得到调制信号经高斯白噪声信道,再通过解调恢复原始信号,绘制出调制前后的频谱图,分析QPSK 在高斯信道中的性能,计算传输过程中的误码率。通过此次设计,在仿真中形象的感受到QPSK 的调制和解调过程,有利于深入了解QPSK 的原理。同时掌握了simulink 的使用,增强了我们学习通信的兴趣,培养通信系统的仿真建模能力。 二、 设计原理 (一)QPSK 星座图 QPSK 是Quadrature Phase Shift Keying 的简称,意为正交移相键控,是数字调制的 一种方式。它规定了四种载波相位,分别为0, 2π, π,32π (或者4 π,34π,54π,74π),星座图如图1(a )、(b )所示。 图1 QPSK 星座图 (二)QPSK 的调制 因为输入信息是二进制序列,所以需要将二进制数据变换成四进制数据,才能和四进制的载波相位配合起来。采取的办法是将二进制数字序列中每两个序列分成一组,共四种组合(00,01,10,11),每一组称为双比特码元。每一个双比特码元是由两位二进制 (a ) (b )

信息比特组成,它们分别代表四进制四个符号中的一个符号。QPSK 每次调制可传输两个信息比特。图2的(a )、(b)、(c)原理框图即为QPSK 的三种调制方式,本次课程设计主要采用的是正交调制方式。 (三)QPSK 的解调 QPSK 信号可以用两个正交的载波信号实现相干解调,它的相干解调器如图3所示,正交路分别设置两个匹配滤波器,得到I (t )和Q (t ),经电平判决和并转串即可恢复出原始信息。 (a )正交调制法 (b )相位选择法 (c )脉冲插入法 图2 QPSK 的主要调制方式

基于Simulink的2FSK调制解调系统设计

二○一二~二○一三学年第二学期 电子信息工程系 课程设计计划书 班级: 课程名称: 学时学分: 姓名: 学号: 指导教师: 二○一三年六月一日

一、课程设计目的: 通过课程设计,巩固已经学过的有关数字调制系统的知识,加深对知识的理解和应用,学会应用Matlab Simulink 或SystemView等工具对通信系统进行仿真。 二、课程设计时间安排: 课程设计时间为第一周。首先查找资料,掌握系统原理,熟悉仿真软件,然后编写程序或构建仿真结构模型,最后调试运行并分析仿真结果。 三、课程设计内容及要求: 1 设计任务与要求 1.1 设计要求 (1)学习使用计算机建立通信系统仿真模型的基本方法及基本技能,学会利用仿真的手段对于实用通讯系统的基本理论、基本算法进行实际验证; (2)学习现有流行通信系统仿真软件MATLAB7.0的基本实用方法,学会使用这软件解决实际系统出现的问题; (3)通过系统仿真加深对通信课程理论的理解,拓展知识面,激发学习和研究的兴趣;(4)用MATLAB7.0设计一种2FSK数字调制解调系统; 1.2设计任务 根据课程设计的设计题目实现某种数字传输系统,具体要求如下; (1)信源:产生二进制随机比特流,数字基带信号采用单极性数字信号、矩形波数字基带信号波形; (2)调制:采用二进制频移键控(2FSK)对数字基带信号进行调制,使用键控法产生2FSK 信号; (3)信道:属于加性高斯信道; (4)解调:采用相干解调; (5)性能分析:仿真出该数字传输系统的性能指标,即该系统的误码率,并画出SNR(信噪比)和误码率的曲线图;

2 方案设计与论证 频移键控是利用载波的频率来传递数字信号,在2FSK 中,载波的频率随着二进制基带信号在f1和f2两个频率点间变化,频移键控是利用载波的频移变化来传递数字信息的。在2FSK 中,载波的频率随基带信号在f1和f2两个频率点间变化。故其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= 典型波形如下图所示。由图可见。2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: )cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ 1 1 1 1 t ak s 1(t) cos (w1t+θn ) s 2(t) s 1(t) co s(w1t +θn )cos (w2t+φn) s 2(t) cos (w2t+φn) 2FSK 信号 t t t t t t 2.1 2FSK 数字系统的调制原理 2FSK 调制就是使用两个不同的频率的载波信号来传输一个二进制信息序列。可以用二进制“1”来对应于载频f1,而“0”用来对应于另一相载频w2的已调波形,而这个可以用受矩形脉冲序列控制的开关电路对两个不同的独立的频率源w1、f2进行选择通。如下原理图:

AM调制与解调电路设计

AM 调制与解调电路设计 一.设计要求:设计AM 调制和解调电路 调制信号为:()1S 3cos 272103cos164t V tV ππ=?+=???? 载波信号:()2S 6 cos 2107210 6 cos1640t V tV ππ=??+=???? 二.设计内容:本题采用普通调幅方式,解调电路采用包络检波方法; 调幅电路采用丙类功放电路,集电极调制; 检波电路采用改进后的二极管峰值包络检波器。 1.AM 调幅电路设计: (1).参数计算: ()6cos1640c u t tV π=载波为, ()3cos164t tV πΩ=调制信号为u 则普通调幅信号为am cm U U [1cos164]cos1640a M t t ππ=+ 其中调幅指数 0.5a M = 最终调幅信号为 am U 6[10.5cos164]cos1640t t ππ=+ 为了让三极管处在过压状态cc U 的取值不能过大,本题设为6v 其中选频网络参数为 21 LC c ω= c 1640ωπ= L 200H,C 188F 1BB V μμ===另U (2).调幅电路如下图所示:

调幅波形如下: 可知调幅信号与包络线基本匹配 2.检波电路设计: 参数计算: 取10L R k =Ω 1.电容 C 对载频信号近似短路,故应有1 c RC ω ,取 ()510/10/0.00194c c RC ωω== 2.为避免惰性失真,有m a x /0.00336 a RC M Ω= ,取0.0022,1RC R k C F μ==Ω=,则

3.设 11212250.2,,330, 1.6566 R R R R R R R k R ====Ω=Ω则。因此, 4.c C 的取值应使低频调制信号能有效地耦合到L R 上,即满足min 1 c L C R Ω ,取 4.7c C F μ= 3.调制解调电路如下图所示: o am U U 与波形为: o L U U 与解调信号的波形为:

通信原理实验 QPSK调制解调实验

HUNAN UNIVERSITY 课程实验报告 题目:十QPSK调制解调实验 指导教师: 学生姓名: 学生学号: 专业班级:

实验10 QPSK调制解调实验 一、实验目的 1. 掌握QPSK调制解调的工作原理及性能要求;了解IQ调制解调原理及特性 2. 进行QPSK调制、解调实验,掌握电路调整测试方法了解载波在QPSK相干及非相干时的解调特性 二、实验原理 1、QPSK调制原理 QPSK又叫四相绝对相移调制,它是一种正交相移键控。QPSK利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。 用调相法产生QPSK调制原理框图如图所示,QPSK的调制器可以看作是由两个BPSK调 制器构成,输入的串行二进制信息序列经过串行变换,变成两路速率减半的序列,电平发生器分别产生双极性的二电平信号I(t)和Q(t),然后对Acosωt和Asinωt进行调制,相 加后即可得到QPSK信号。 二进制码经串并变换后的码型如图所示,一路为单数码元,另外一路为偶数码元,这两个支路互为正交,一个称为同相支路,即I支路;另外一路称为正交支路,即Q支路

2、QPSK解调原理 由于QPSK可以看作是两个正交2PSK信号的合成,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK信号相干解调器构成,其原理框图如图 三、实验步骤 在实验箱上正确安装基带成形模块(以下简称基带模块)、IQ调制解调模块(以下简称IQ模块)、码元再生模块(以下简称再生模块)和PSK载波恢复模块。 1、QPSK调制实验 a、关闭实验箱总电源,用台阶插座线完成连接 * 检查连线是否正确,检查无误后打开电源。 b、按基带成形模块上“选择”键,选择QPSK模式(QPSK指示灯亮)。 c、用示波器观察基带模块上“NRZ-I,I-OUT,NRZ-Q,Q-OUT”的信号;并分别与“NRZ IN”信号进行对比,观察串并转换情况。 NRZ-I 与NRZ IN I-OUT与NRZ IN NRZ-Q 与NRZ IN Q-OUT与NRZ IN d、观测IQ调制信号矢量图。

2FSK调制解调通信原理课程设计

` 课程设计报告 课程名称:通信系统课程设计 设计名称:2FSK调制解调仿真实现 姓名: 学号: 班级: 指导教师: 起止日期:

课程设计任务书 学生班级:学生姓名:学号: 设计名称:2FSK调制解调仿真实现 起止日期:指导教师: 课程设计学生日志

课程设计考勤表 课程设计评语表

2FSK 的调制解调仿真实现 一、 设计目的和意义 1、 熟练地掌握matlab 在数字通信工程方面的应用。 2、 了解信号处理系统的设计方法和步骤。 3、 理解2FSK 调制解调的具体实现方法,加深对理论的理解,并实现2FSK 的调制解调,画出各个阶段的波形。 4、 学习信号调制与解调的相关知识。 5、 通过编程、调试掌握matlab 软件的一些应用,掌握2FSK 调制解调的方法,激发学习和研究的兴趣; 二、 设计原理 1.2FSK 介绍: 数字频率调制又称频移键控(FSK ),二进制频移键控记作2FSK 。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK 信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。 其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= 典型波形如下图所示。由图可见,2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: ) cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ z

BPSK和QPSK调制解调原理及MATLAB程序

2.1 PSK调制方式 PSK原理介绍(以2-PSK为例) 移相键控(PSK)又称为数字相位调制,二进制移相键控记作2PSK。绝对相移是利用载波的相位(指初相)直接表示数字信号的相移方式。二进制相移键控中,通常用相位0 和π来分别表示“0”或“1”。2PSK 已调信号的时域表达式为s2psk(t)=s(t)cosωct, 2PSK移相键控中的基带信号与频移键控和幅度键控是有区别的,频移键控和幅度键控为单极性非归零矩形脉冲序列,移相键控为为双极性数字基带信号,就模拟调制法而言,与产生2ASK 信号的方法比较,只是对s(t)要求不同,因此2PSK 信号可以看作是双极性基带信号作用下的DSB 调幅信号。 在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。通常用已调信号载波的 0°和 180°分别表示二进制数字基带信号的 1 和 0。二进制移相键控信号的时域表达式为 e2PSK(t)=[ n n a g(t-nT s)]cosw c t 其中, an与2ASK和2FSK时的不同,在2PSK调制中,an应选择双极性。 1, 发送概率为P an= -1, 发送概率为1-P 若g(t)是脉宽为Ts, 高度为1的矩形脉冲时,则有 cosωct, 发送概率为P e2PSK(t)= -cosωct, 发送概率为1-P 由上式(6.2-28)可看出,当发送二进制符号1时,已调信号e2PSK(t)取0°相位,发送二进制符号0时,e2PSK(t)取180°相位。若用φn表示第n个符号的绝对相位,则有 0°, 发送 1 符号 φn= 180°, 发送 0 符号 由于在2PSK信号的载波恢复过程中存在着180°的相位模糊,所以2PSK信

FM调制解调电路的设计说明

DOC 格式. FM 调制/解调电路的设计 摘要:本设计根据锁相环原理,通过两片CD4046搭接基本电路来实现FM 调制/解调电路的设计,将调制电路的输出信号作为解调电路的输入信号,最终实现信号的调制 解调。原理分析,我们得到的载波信号的电压P P V -大于3V ,最大频率偏移m f ?≥5KHz , 解调电路输出的FM 调制信号的电压P P V -大于200mV 可以看出我们的具体设计符合设 计指标。 关键词:锁相环、调制、解调、滤波器 一、概述 FM 调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。FM 解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。调制电路还需要另设计一个高频信号放大器和加法器。解调电路需要设计一个低通滤波器,来取出解调信号。 技术指标: 1.载波频率fc=46.5KHz,载波信号的电压Vp-p ≥3V ; 2.FM 调频信号的电压Vp-p ≥6V ,最大频率偏移?fm ≥5KHz ; 3.解调电路输出的FM 调制信号的电压Vp-p ≥200mV 。 二、方案设计与分析 调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。其逆过程为频率解调(也称频率检波或鉴频)。 本实验是用CD4046数字集成锁相环(PLL )来实现调频/解调(鉴频)的。 1.FM 调频电路原理图(如图1所示) 将调制信号加到压控振荡器(VCO )的控制端,使压控振荡器得输出频率(在自振频率(中心频率)o f 上下)随调制信号的变化而变化,于是生成了调频波。

倍频电路设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:倍频电路设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1. 采用晶体管或集成电路设计一个倍频电路; 2. 额定电压5V,电流10~15 mA ; 3. 输入频率4MHz,输出频率12 MHz 左右; 4. 输出电压≥ 1 V,输出失真小; 5. 完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要..................................................................... I Abstract.................................................................. II 1 绪论 (1) 2 设计内容及要求 (2) 2.1 设计目的及主要任务 (2) 2.1.1 设计的目的 (2) 2.1.2 设计任务及主要技术指标 (2) 2.2 设计思想 (2) 3 设计原理及方案 (3) 3.1 设计原理 (3) 3.1.1锁相环组成介绍 (3) 3.1.2锁相环原理 (5) 3.1.3 NE564芯片介绍 (6) 3.2 设计方案 (7) 4 电路制作及硬件调试 (9) 5 心得体会 (10) 参考文献 (11)

QPSK调制解调完整程序(配有自己的注释)知识分享

Q P S K调制解调完整程序(配有自己的注释)

QPSK调制解调完整程序(配有注释) clc; clear all; %假定接收端已经实现载波同步,位同步(盲信号解调重点要解决的问题:载波同步(costas环(未见到相关代码)),位同步(Gardner算法(未见相关代码)),帧同步) % carrier frequency for modulation and demodulation fc=5e6; %QPSK transmitter data=5000 ; %码数率为5MHZ %原码个数 rand_data=randn(1,5000); for i=1:data if rand_data(i)>=0.5 rand_data(i)=1; else rand_data(i)=0; end end %seriel to parallel %同时单极性码转为双极性码 for i=1:data if rem(i,2)==1 if rand_data(i)==1 I(i)=1; I(i+1)=1; else I(i)=-1; I(i+1)=-1; end else if rand_data(i)==1 Q(i-1)=1; Q(i)=1; else Q(i-1)=-1; Q(i)=-1; end

end end % zero insertion ,此过程称为成形。成形的意思就是实现由消息到波形的转换,以便发射,脉冲成形应该是在基带调制之后。 zero=5; %sampling rate 25M HZ ,明白了,zero为过采样率。它等于采样率fs/码速率。 for i=1:zero*data % 采样点数目=过采样率*原码数目 if rem(i,zero)==1 Izero(i)=I(fix((i-1)/zero)+1); Qzero(i)=Q(fix((i-1)/zero)+1); else Izero(i)=0; Qzero(i)=0; end end %pulse shape filter,接着,将进行低通滤波,因为随着传输速率的增大,基带脉冲的频谱将变宽 %如果不滤波(如升余弦滤波)进行低通滤波,后面加载频的时候可能会出现困难。 %平方根升余弦滤波器 % psf=rcosfir(rf,n_t,rate,fs,'sqrt') rate:过采样率,rf:滚降因子,n_t:滤波器阶数,fs:采样率 %用在调制或发送之前,用在解调或接受之后,用来降低过采样符号流带宽并不引发ISI(码间串扰) NT=50; N=2*zero*NT; % =500 fs=25e6; rf=0.1; psf=rcosfir(rf,NT,zero,fs,'sqrt');% psf大小为500

基于MATLAB的2FSK调制解调课设

摘要 FSK是信息传输中使用得较早的一种调制方式,它的主要优点是: 实现起来较容易,抗噪声与抗衰减的性能较好。在中低速数据传输中得到了广泛的应用。所谓FSK就是用数字信号去调制载波的频率。二进制的基带信号是用正负电平来表示的。FSK--又称频移键控法。FSK 是信息传输中使用得较早的一种调制方式,它的主要优点是: 实现起来较容易,抗噪声与抗衰减的性能较好。在中低速数据传输中得到了广泛的应用。所谓FSK就是用数字信号去调制载波的频率。 关键词:2FSK 基带信号载波调制解调

目录 摘要 0 一引言 (1) 二设计原理 (2) 2.1 2FSK介绍 (2) 2.2 2FSK调制原理 (2) 2.3 2FSK解调原理 (3) 三详细设计步骤 (4) 四设计结果及分析 (5) 4.1 信号产生 (5) 4.2 信号调制 (7) 4.3 信号解调 (8) 4.4 课程设计程序 (10) 五心得体会 (15) 六参考文献 (16)

一、引言 2FSK信号的产生方法主要有两种:一种是调频法,一种是开关法。这两种方法产生的2FSK信号的波形基本相同,只有一点差异,即由调频产生的2FSK信号在相邻码元之间的相位是连续的,而开关法产生的2FSK信号则分别由两个独立的频率源产生两个不同频率的信号,故相邻码元之间的相位不一定是连续的。本设计采用后者——开关法。2FSK信号的接受也分为相干和非相干接受两种,非相干接受方法不止一种,它们都不利用信号的相位信息。故本设计采用相干解调法。

二、 设计原理 2.1 2FSK 介绍: 数字频率调制又称频移键控(FSK ),二进制频移键控记作2FSK 。数字频移键控 是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK 信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。 其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= (3-1) 典型波形如下图所示。由图可见,2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: ) cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ (3-2) 1 1 1 1 t ak s 1(t)cos (w1t+θn ) s 2(t) s 1(t) co s(w1t+θn ) cos (w2t+φn) s 2(t) cos (w2t+φn) 2FSK 信号t t t t t t 2.2 2FSK 调制原理 2FSK 调制就是使用两个不同的频率的载波信号来传输一个二进制信息序列。可以用二进制“1”来对应于载频f1,而“0”用来对应于另一相载频w2的已调波形,而这个可以用受矩形脉冲序列控制的开关电路对两个不同的独立的频率源w1、f2进行选择通。本次课程设计采用的是前面一种方法。如下原理图:

基于Multisim调制解调仿真电路设计

基于Multisim调制解调仿真电路设计 春芽电子科技春芽ing 摘要 通信电路系统中实现调制解调方法很多,而锁相环鉴频是利用现代锁相环技术来鉴频实现调制解调因为工作稳定、失真度小、信噪比高等优点被广泛应用。本课题分别设计2ASK、2PSK、2FSK的调制解调电路,功能是数字基带信号经过调制输出模拟信号,然后运用锁相环进行解调出数字信号,所以调制解调电路都运用Multisim软件进行仿真分析。对2ASK、2FSK、2PSK解调电路时低通滤波器输出的波形失真比较大,经过抽样判决电路整形后可以再生数字基带脉冲。整个硬件电路设计中,尽量做到电路简单实用,基本达到功能要求。 关键词:调制解调,Multisim仿真,锁相环 Abstract Communication circuit system to achieve a lot of modulation and demodulation, and the phase-locked loop frequency demodulation is the use of modern technology to achieve phase locked loop demodulation because the work is stable, low distortion, high signal noise ratio is widely used. This topic design of 2ASK, 2PSK, 2FSK modulation and demodulation circuit function is digital base band signal after the modulation output analog signal, then use the PLL to demodulate the digital signal, so modulation and demodulation circuit use Multisim software simulation analysis. The waveform distortion of the low pass filter output of 2ASK, 2FSK and 2PSK demodulation circuits is relatively large, and the digital baseband pulse can be regenerated by the sampling decision circuit. Throughout the hardware circuit design, as far as possible to achieve a simple and practical circuit, the basic requirements to achieve functional. Keywords: Modulation and Demodulation, Multisim Simulation, Phase Locked Loop

实验九 QPSK调制与解调

实验九、QPSK 、QDPSK 调制与解调 一、实验目的 1、掌握QPSK 调制与解调的基本原理及实现方法。 2、掌握QDPSK 调制与解调的基本原理及实现方法。 3、分析QPSK 、QDPSK 系统的有效性和可靠性。 二、实验原理 为提高通信的有效性,最常用的办法的是采用多进制的数字调制。MPSK 和MDPSK 就是多进制的数字相移键控即多相制信号,前者称为多进制绝对相移键控,后者称为多进制相对(差分)相移键控,它们都用M 个相位不同的载波来表示M 个不同的符号。一般来说,有n M 2=,因此,一个符号可以代表n bit 的二进制码元。 1、QPSK 信号分析 QPSK (Quadrature Phase Shift Keying ,正交相移键控)又叫四相绝对相移键控(4PSK ),它利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表2bit 信息,故每个四进制符号又被称为双比特码元。把组成双比特码元的前一信息比特记为a 码,后一信息比特记为b 码,为使接收端误码率最小化,双比特码元(a ,b )通常按格雷码(Gray code )方式排列,即任意两个相邻的双比特码元之间只有一个比特发生变化。图9.1给出了双比特码元(a ,b )与载波相位的对应关系,其中图(a )表示A 方式,图(b )表示B 方式。 图9.1 QPSK 信号相位矢量图 (a )A 方式(2/π系统) (b )B 方式(4/π系统)

根据相位矢量图,得到双比特码元与载波相位之间的对应关系,如表9.1所示。 A 方式的QPSK 信号可表示为 )2 cos()cos()(πωθωn t t t s c n c +=+=,3 ,2 ,1 ,0=n B 方式的QPSK 信号可表示为 )4 1 2cos()cos()(πωθω++ =+=n t t t s c n c ,3 ,2 ,1 ,0=n 由于QPSK 信号普遍采用正交调制(又称IQ 调制)法产生,故QPSK 信号统一表示为 t Q t I t t s c c n c ωωθωsin cos )cos()(?-?=+= 这样,将a 码送入I 路,b 码送入Q 路,然后将I 路信号与载波t c ωcos 相乘,Q 路信号与正交载波t c ωsin 相乘,之后通过加法器相加,即可得到QPSK 信号。 2、QPSK 调制 以B 方式为例,QPSK 信号的产生方法有两种:一是正交调制法,二是相位选择法。 (1)正交调制(IQ 调制)法 二进制调相信号通常采用键控法,而多进制调相信号普遍采用IQ 调制法产生。正交调制法产生QPSK 信号的原理框图如图9.2所示,它可以看成由两个2PSK 调制器构成,上支路将a 码与余弦载波相乘,下支路将b 码与余弦载波相乘,这样产生载波相互正交的两路2PSK 信号,再将这两路信号相加,通过矢量合成便是QPSK 信号。 图9.2 正交调制法产生QPSK 信号 (a )原理框图 (b )矢量合成原理 图中输入的数字基带信号)(t A 是二进制的单极性不归零码,通过“串/并变换”电路变成并行的两路码元a 和b 后,其每个码元的传输时间是输入码元的2倍,且单极性信号将变为双极性信号。其变换关系式将“1”变为“+1”、“0”变为“-1”。“串/并变换”过程如图9.3所示,图中0、1、2等表示为二进制基带码元的序号。 从电路实现的角度看,串并变换实现了双比特码元和I 、Q 两路信号幅度之间的映射,如表9.2所示。IQ 信号幅度只有2种取值,设为2/1是为了保证输出QPSK 信号幅度为1。 ) 1(a )0(a ) 1(b ) 0(b ) 1 ,1() 0 ,0() 0 ,1() 1 ,0(

2FSKFSK 通信系统调制解调综合实验电路设计

学生学号实验课成绩 学生实验报告书 实验课程名称 开课学院 指导教师姓名 学生姓名 学生专业班级 200-- 200学年第学期

实验教学管理基本规范 实验就是培养学生动手能力、分析解决问题能力的重要环节;实验报告就是反映实验教学水平与质量的重要依据。为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。 1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照 执行或暂不执行。 2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报 告外,其她实验项目均应按本格式完成实验报告。 3、实验报告应由实验预习、实验过程、结果分析三大部分组成。每部分均在实验成绩中占一 定比例。各部分成绩的观测点、考核目标、所占比例可参考附表执行。各专业也可以根据具体情况,调整考核内容与评分标准。 4、学生必须在完成实验预习内容的前提下进行实验。教师要在实验过程中抽查学生预习情况, 在学生离开实验室前,检查学生实验操作与记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。 5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。在完成所有实 验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。 6、实验课程成绩按其类型采取百分制或优、良、中、及格与不及格五级评定。

实验课程名称:__通信原理_____________

图3-1数字键控法实现2FSK信号的原理图 图中两个振荡器的载波输出受输入的二进制基带信号s(t)控制。由图3-1 可知,s(t)为“1”时,正脉冲使门电路1接通,门2断开,输出频率为f1;数字信号为“0”时,门1断开,门2接通,输出频率为f2。在一个码元Tb期间输出ω1或ω2两个载波之一。由于两个频率的振荡器就是独立的,故输出的2FSK信号:在码元“0”“1”转换时刻,相邻码元的相位有可能就是不连续的。这种方法的特点就是转换速率快,波形好,频率稳定度高,电路简单,得到广泛应用。对应图3-1(a)与(b) ,2FSK调制器各点的时间波形如图3-2所示,图中波形g可以瞧成就是两个不同频率载波的2ASK信号波形e 与波形f 的叠加。可见,2FSK信号由两个2ASK信号相加构成。其信号的时域表达式: ()()()()() ∑ ∑+ - + + - = k b k k b k FSK t kT t g a t kT t g a t S2 2 1 1 cos cos? ω ? ω 图3-2 2FSK调制器各点的时间波形 本次综合设计实验调制部分正就是采用此方法设计的。整个调制系统包括:载波振荡器、反相器、调制器与加法器等单元电路组成。 1、2 解调设计方案 数字频率键控( 2FSK) 信号常用解调方法有很多种,在设计中利用过零检测法。 过零检测法就是利用信号波形在单位时间内与零电平轴交叉的次数来测定信号频率。解调系统组成原理框图如图3-3所示电路: g f e d c b a 位定时 抽样判决 LPF 脉冲展宽 整流 微分 限幅 图3-3 2FSK过零检测解调电路原理框图 输入的FSK 信号经限幅放大后成为矩形脉冲波,再经过微分电路得到双向尖脉冲,然后整流得到单向尖脉冲,每个尖脉冲表示一个过零点,尖脉冲的重复频率就就是信号频率的两倍。将尖脉冲去触发一单稳电路, 产生一定宽度的矩形脉冲序列,该序列的平均分量与脉冲重复频率成正比,即与输入信号成正比。所以经过低通滤波器输出的平均分量的变化反映了输入信号频率的变化,这样把码元“ 1”与“ 0”在幅度上区分开来,恢复出数字基带信号。其原理框图及各点波形如图3-4 所示。

相关主题