搜档网
当前位置:搜档网 › 高考专题复习圆周运动

高考专题复习圆周运动

高考专题复习圆周运动
高考专题复习圆周运动

1、如图所示,在倾角α=30°的光滑斜 面上,有一根长为L =0.8 m 的细绳,一端固定在O 点,另一端系一质量为m =0.2 kg 的小球,小球沿斜面做圆周运动.若要小球能通过最高点A ,则小球在最低点B 的最小速度是 ( )

A .2 m/s

B .210 m/s

C .2 5 m/ s

D .2 2 m/s

3、如图所示,质量m=0.1kg 的小球在细绳的拉力作用下在竖直面内做半径为r=0.2m 的 圆周运动,已知小球在最高点的速率为v =2m/s ,g 取10m/s 2,试求:

(1)小球在最高点时的细绳的拉力T 1=? (2)小球在最低点时的细绳的拉力T 2=?

1、半径为m R 5.0=的管状轨道,有一质量为kg m 0.3=的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是s m /2,2

/10s m g =,则( )

A. 外轨道受到N 24的压力

B. 外轨道受到N 6的压力

C. 内轨道受到N 24的压力

D. 内轨道受到N 6的压力

2、如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O,现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则F ( ) A.一定是拉力 B.一定是推力

C.一定等于零

D.可能是拉力,可能是推力,也可能等于零

2、如图所示,小球A 质量为m ,固定在轻细直杆L 的一端,并随杆一起绕杆的另一端O 点在竖直平面内做圆周运动。如果小球经过最高位置时,杆对球的作用力为拉力,拉力大小等于球的重力。求:(1)球的速度大小。

(2)当小球经过最低点时速度为gL 6,杆对球的作用力大小和球的向心加速度大小。

1、图所示的圆锥摆中,小球的质量m=50g ,绳长为1m ,小球做匀速运动的半径r=0.2m ,求:

(1)绳对小球的拉力大小。 (2)小球运动的周期T 。

4.(2009·广东高考)如图所示,一个竖直放置的圆锥筒可绕其中心轴OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半.内壁上有一质量为m 的小物块.求:

(1)当筒不转动时,物块静止在筒壁A 点受到的摩擦力和支持力的大小;

(2)当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度.

5、有一种叫“飞椅”的游乐项目,示意图如图所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.

1、质量是1×103kg 的汽车驶过一座拱桥,已知桥顶点桥面的圆弧半径是90m ,g=10m/s 2。 求:(1 )汽车以15 m/s 的速度驶过桥顶时,汽车对桥面的压力; (2

)汽车以多大的速度驶过桥顶时,汽车对桥面的压力为零?

如图5所示,火车在平直的轨道上转弯,将挤压外轨,由外轨给火车的弹力提供火车转弯所需的向心力,这样久而久之,将损坏外轨。

θ

G

F

F N

图5 图6

1、铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关.下列说法正确的是( )

A .v 一定时,r 越小则要求h 越大

B .v 一定时,r 越大则要求h 越大

C .r 一定时,v 越小则要求h 越大

D .r 一定时,v 越大则要求h 越大

2

、随着经济的持续发展,人民生活水平的不断提高,近年来我国私家车数量快速增长,高级和一级公路的建设也正加

速进行.为了防止在公路弯道部分由于行车速度过大而发生侧滑,常将弯道部分设计成外高内低的斜面.如果某品牌汽车的质量为m ,汽车行驶时弯道部分的半径为r ,汽车轮胎与路面的动摩擦因数为μ,路面设计的倾角为θ,如图10

所示.(重力加速度g 取10 m/s 2

)(1)为使汽车转弯时不打滑,汽车行驶的最大速度是多少? (2)若取sin θ=1

20,r =60 m ,汽车轮胎与雨雪路面的动摩擦因数为μ=0.3,则弯

道部分汽车行驶的最大速度是多少?

1、如图所示,光滑的水平圆盘中心O 处有一个小孔,用细绳穿过小孔,绳两端各细一个小球A 和B ,两球质量相等,圆盘上的A 球做半径为r=20cm 的匀速圆周运动,要使B 球保持静止状态,求:A 球的角速度ω应是多大?

2、如图所示,用细绳一端系着的质量为M =0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m =0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f =2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g =10m/s 2)

A

B

O

3、汽车与路面的动摩擦因数为μ ,公路某转弯处半径为R (设最大静摩擦力等于滑动摩擦力),问:

(1)若路面水平,汽车转弯不发生侧滑,汽车速度不能超过多少?

(2)若将公路转弯处路面设计成外侧高、内侧低,使路面与水平面有一倾角α ,如图所示,汽车以多大速度转弯时,可以使车与路面间无摩擦力?

4、如图,质量为0.5 kg 的小杯里盛有1 kg 的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1 m ,小杯通过最高点的速度为4 m/s ,g 取10 m/s 2,求: (1) 在最高点时,绳的拉力?

(2) 在最高点时水对小杯底的压力?

(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?

6、长度为L =0.50 m 的轻质细杆OA ,A 端有一质量为m =3.0 k g 的小球,如图5-19所示,小球以O 点为圆心,在竖直平面内做圆周运动,通过最高点时,小球的速率是v =2.0 m/s ,g 取10 m/s 2,则细杆此时受到:( ) A .6.0 N 拉力 B .6.0 N 压力 C .24 N 拉力 D .24 N 压力

7、A 、B 两球质量分别为m 1与m 2,用一劲度系数为K 的弹簧相连,一长为l 1的细线与m 1相连,置于水平光滑桌面上,细线的另一端拴在竖直轴OO`上,如图所示,当m 1与m 2均以角速度w 绕OO`做匀速圆周运动时,弹簧长度为l 2。 求:(1)此时弹簧伸长量多大?绳子张力多大? (2)将线突然烧断瞬间两球加速度各多大?

8、如图所示,长为R 的轻质杆(质量不计),一端系一质量为m 的小球(球大小不计),绕杆的另一端O 在竖直平面

内做匀速圆周运动,若小球最低点时,杆对球的拉力大小为1.5mg ,求: ① 小球最低点时的线速度大小?

②小球以多大的线速度运动,通过最高处时杆对球不施力?

9、(2011年辽宁模拟)如图所示,一光滑的半径为R 的半圆形轨道放在水平面上,一个质量为m 的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,对轨道的压力恰好为零,则小球落地点C 距A 处多远?

F 合

mg

F N

10、(2011年厦门高一检测)如图所示,A 、B 、C 三个物体放在旋转平台上,最大静摩擦因数均为μ,已知A 的质量为2m ,B 、C 的质量均为m ,A 、B 离轴距离均为R ,C 距离轴为2R ,则当平台逐渐加速旋转时( )

A .C 物的向心加速度最大

B .B 物的摩擦力最小

C .当圆台转速增加时,C 比A 先滑动

D .当圆台转速增加时,B 比A 先滑动

11、质量为m 的飞机,以速度v 在水平面内做半径为R 的匀速圆周运动,空气对飞机作用力的大小等于( )

A .m g 2

+(v 2R )2 B .m v 2R C .m (v 2R

)2-g 2 D .mg

12、质量为m 的小球在竖直平面内的圆管轨道内运动,小球的直径略小于圆管的直径,如图5-7-22所示.已知小球

以速度v 通过最高点时对圆管的外壁的压力恰好为mg ,则小球以速度v

2

通过圆管的最高点时( )

A .小球对圆管的内、外壁均无压力

B .小球对圆管的外壁压力等于mg

2

C .小球对圆管的内壁压力等于mg

2

D .小球对圆管的内壁压力等于mg

13、(2010年高考重庆卷)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已

知握绳的手离地面高度为d ,手与球之间的绳长为3

4

d ,重力加速度为g ,忽略手的运动半径和空气阻力.

(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?

(07山东卷)(16分)如图所示,一水平圆盘绕过圆心的竖直轴转动.圆盘边缘有一质量m =1.0kg 的小滑块。当圆盘转动的角速度达到某一数值时,滑块从圆盘边缘滑落,经光滑的过渡圆管进入轨道ABC 。已知AB 段斜面倾角为53°,BC 段斜面倾角为37°

,滑块与圆盘及斜面间的摩擦因数均为

μ=0.5。A 点离B 点所在水平面的高度h =1.2m 。滑块在运动过程中始终末脱离轨道,不计在过渡圆管处和B 点的机械能损失,最大静摩擦力近似等于滑动摩擦力,取g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)若圆盘半径R =0.2m ,当圆盘的角速度多大时,滑块从圆盘上滑落? (2)若取圆盘所在平面为零势能面,求滑块到达B 点时的机械能。 (3)从滑块到达B 点时起.经0.6s 正好通过C 点,求BC 之间的距离。

ω R

m h

53°

37°

A B C

第二轮复习专题——物体的运动

圆周运动

1.物体做匀速圆周运动的条件:

匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。

2.描述圆周运动的运动学物理量

(1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。它们之间的关系大多是用半

径r 联系在一起的。如:T r r v πω2=?=,222

24T r r r v a πω===

。要注意转速n 的单位为r/min ,它与周期的关系为n

T 60

=

。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有:ωωv r r

v a ===22

,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动的公式有:2

24T

r

a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。

b 点在小轮上,到小轮中心的距离为r 。

c 点和

d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等

解析:本题的关键是要确定出a 、b 、c 、d 四点之间的等量关系。因为a 、c 两点在同一皮带上,所以它们的线速度v 相等;而c 、b 、d 三点是同轴转动,所以它们的角速度ω相等。所以选项C 正确,选项A 、B 错误。

设C 点的线速度大小为v ,角速度为ω,根据公式v=ωr 和a=v 2

/r 可分析出:A 点的向心加速度大小为r

v a A 2

=;D 点

的向心加速度大小为:r

v r r r a D 2

22

)2(4=?=?=ωω。所以选项D 正确。选项CD 正确。 说明:在分析传动装置的各物理量时,要抓住等量和不等量之间的关系。如同轴各点的角速度相等,而线速度与半径成正比;通过皮带传动(不考虑皮带打滑的前提下)或是齿轮传动,皮带上或与皮带连接的两轮边缘的各点及齿轮上图3-1

4r

2r r

r

a b c d

练习

1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,2:1:=c A R R ,3:2:=B A R R 。假设在传动过程中皮带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。

2.图示为某一皮带传动装置。主动轮的半径为r 1,从动轮的半径为r 2。已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑。下列说法正确的是( )。

A .从动轮做顺时针转动

B .从动轮做逆时针转动

C .从动轮的转速为

21

r r n

D .从动轮的转速为

1

2

r r n 3.(92)图3-7中圆弧轨道AB 是在竖直平面内的1/4圆周,在B 点,轨道的切线是水平的。一质

点自A 点从静止开始下滑,不计滑块与轨道间的摩擦和空气阻力,则在质点刚要到达B 点时的加

速度大小为______,刚滑过B 点时的加速度大小为_____。

3.描述圆周运动的动力学物理量———向心力

(1)向心力来源:向心力是做匀速圆周运动的物体所受外力的合力。向心力是根据力的作用效果命名的,不是一种特殊的性质力。向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。例如水平转盘上跟着匀速转动的物体由静摩擦力提供向心力;带电粒子垂直射入匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力;电子绕原子核旋转由库仑力提供向心力;圆锥摆由重力和弹力的合力提供向心力。 做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。 (2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:

222

24T

r m r m r v m F πω=== 其中r 为圆运动半径。 (3)向心力的方向:总是沿半径指向圆心,与速度方向永远垂直。 (4)向心力的作用效果:只改变线速度的方向,不改变线速度的大小。

几种常见的匀速圆周运动的实例图表

图形

受力分析

利用向心力公式

2tan sin mg m l θωθ=

图3-7

A

B

2tan (sin )mg m l d θωθ=+

2tan mg m r θω=

2tan mg m r θω=

2Mg m r ω=

例题 2.如图所示,A、B、C三个物体放在旋转圆台上,动摩擦因数均为μ,A的质量为2m ,B、C质量均为m ,A、B离轴R,C离轴2R,则当圆台旋转时(设A、B、C都没有滑动),A、B、C三者的滑动摩擦力认为等于最大静摩擦力,下列说法正确的是(

) A. C物的向心加速度最大; B. B物的静摩擦力最小;

C. 当圆台转速增加时,C比A先滑动;

D. 当圆台转速增加时,B比A先滑动。

解析:当三者都相对圆盘静止时,角速度相同,所以向心加速度分别为:ω2R 、ω2R 、ω22R ,所以C物的向心加速度最大,选项A 正确。

A、B、C三个物体随圆台转动所需要的向心力由静摩擦力提供,大小分别为:2mω2R 、mω2R 、mω22R ,B物体的静摩擦力最小,选项B 正确。

要比较哪个物体最先打滑,就要比较哪个物体与圆台间的最大静摩擦力,三者为:μ2mg 、μmg 、μmg,可见C 物体先滑动,选项C 正确,B 错误

时,物体随圆盘转动需要的向心力(静摩擦力提供)也要增加,当提供不足时物体就做离心运动。 练习

4. 如图3—12所示,一转盘可绕其竖直轴在水平面内转动,转动半径为R ,在转台边缘放一物块A ,当转台的角速度为ω0时,物块刚能被甩出转盘。若在物块A 与转轴中心O 连线中点再放一与A 完全相同的物

块B (A 、B 均可视为质点),并用细线相连接。当转动角速度ω为多大时,两物块将开始滑

动?

5.(08广东)有一种叫“飞椅”的游乐项目,示意图如图14所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘,转盘可绕穿过其中心的竖直轴转动。当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ,不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系。

6.(97)质量为m 、电量为q 的质点,在静电力作用下以恒定速率v 沿圆弧从A 点运动到B 点,其速度方向改变的角度为 θ(弧度),AB 弧长为s 则A ,B 两点间的电势差U A -U B =_____________,AB 弧中点的场强大小E =________________。 4.竖直平面内圆周运动的临界问题:

由于物体在竖直平面内做圆周运动的依托物(绳、轻杆、轨道、管道等)不同,所以物体在通过最

高点时临界条件不同。

如图3-7所示,由于绳对球只能产生沿绳收缩方向的拉力,所以小球通

过最高点的临界条件是:

向心力只由重力提供,即R

v m mg 2=,则有临界速度gR v =。只有当

gR v ≥时,小球才能通

过最高点。

如图3-8所示,由于轻杆对球既能产生拉力,也能产生支持力,所以小球通过最高点时合外力

可以为零,即小球在最高点的最小速度可以为零。这样gR v =就变成

了小球所受弹力方向变化的临界值,即当v

杆之间无相互作用力;当

v >

gR 时,球受向下的弹力。

可见,物体在最高点的最小速度决定于物体在最高点受的最小合外力,不同情况下的最小合外力

决定了不同情况下的最小速度。

图3-12 O

A

图3-8

mg

O

N 图3-7

mg O

圆周运动,图3中a 、b 分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是 ( ) A.a 处为拉力,b 处为拉力 B.a 处为拉力,b 处为推力 C.a 处为推力,b 处为拉力 D.a 处为推力,b 处为推力

解析:由于小球在竖直面内做圆周运动,所以当小球运动到a 、b 两点时,所受的合力都为指向O

点。

当小球运动到a 点时,受到竖直向下的重力,为使其所受合力指向O 点,则要求杆必对小球施竖

直向上的拉力。

当小球运动到b 点时,小球受到竖直向下的重力mg 的作用,当球的速度较小时(小于gl ,l 为杆的长度),mg 大于球做圆周运动所需的向心力时,杆将对球施竖直向上的推力;当小球的速度较大时(大于gl ),mg 小于球做圆周运动所需的向心力,此时要球杆对小球放竖直向下的拉力,使重力和拉力的合力提供小球在b 点时所需要的向心力。因此小球在b 点时杆对球的作用力是推力还是拉力,取决于小球在b 点时的速度大小。 综上所述,本题的正确选项为A 、B 。 练习

7.如图3-14所示,一细圆管弯成的开口圆环,环面处于一竖直平面内。一光滑小球从开口A 处

进入管内,并恰好能通过圆环的最高点。则下述说法正确的是( ) A.球在最高点时对管的作用力为零 B.小球在最高点时对管的作用力为mg

C.若增大小球的初速度,则在最高点时球对管的力一定增大

D.若减小小球的初速度,则在最高点时球对管的力可能增大

8. 如图3-13所示,半径为R 的光滑半圆球固定在水平面上,顶部有一小物体A 。今给它一个水平初速度gR v 0,则物体将( )

A.沿球面下滑至M 点

B.沿球面下滑至某一点N ,便离开球面做斜下抛运动

C.立即离开半球面做平抛运动

D.以上说法都不正确

5.有关圆周运动问题的分析思路

圆周运动常常和力、运动、能量问题结合在一起,综合性强。解决有关圆周运动问题的思路是: ⅰ.确定研究对象;

图4-4 a

O b

图3-14 v A

O

图3-13

M

m

R v 0

ⅲ.对研究对象进行受力分析;

ⅳ.在向心加速度方向和垂直于向心加速度方向上建立直角坐标系,若需要可对物体所受力进行适当的正交分解; ⅴ.依据牛顿运动定律和向心加速度的公式列方程;

若过程中涉及能量问题一般还要列出动能定理或机械能守恒方程,然后再解方程,并讨论解的合理性。 例4.(09广东)如图17所示,一个竖直放置的圆锥筒可绕其中心轴OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半。内壁

上有一质量为m 的小物

块。求

①当筒不转动时,物块静止在筒壁A 点受到的摩擦力和支持力的大小; ②当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度。

解析:物块受力如图所示

①由平衡条件得 N-mg cos θ=0,f-mg sin θ=0 其中2

2

sin H R H

θ=

+

得摩擦力为 22sin mgH f mg R H θ==

+

支持力为 2

2

cos mgR N mg R H

θ==+

②这时物块的受力如图所示

由牛顿第二定律得 2

t a n 2

R m g

m a

m θω== 得筒转动的角速度为

22tan gH g R R

θ

ω=

=

例5.(07山东卷)(16分)如图所示,一水平圆盘绕过圆心的竖直轴转动.圆盘边缘有一质量m =1.0kg 的小滑块。当圆盘转动的角速度达到某一数值时,滑块从圆盘边缘滑落,经光滑的过渡圆管进入轨道ABC 。已知AB 段斜面倾角为53°,BC 段斜面倾角为37°,滑块与圆盘及斜面间的摩擦因数均为μ=0.5。A 点离B 点所在水平面的高度h =1.2m 。滑块在运动过程中始终末脱离轨道,不计在过渡圆管处和B 点的机械能损失,最大静摩擦力近似等于滑动摩擦力,取g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)若圆盘半径R =0.2m ,当圆盘的角速度多大时,滑块从圆盘上滑落? (2)若取圆盘所在平面为零势能面,求滑块到达B 点时的机械能。 (3)从滑块到达B 点时起.经0.6s 正好通过C 点,求BC 之间的距离。

ω R

m h

53°

37°

A B C

图10

O ′

O

R

H H/2

A 图10

mg

θ

N

ma

解析:(1)滑块在圆盘上做圆周运动时,静摩擦力充当向心力, 根据牛顿第二定律,可得:μmg=mω2R ① 代入数据解得: ω=

R

g

μ=5rad/s ② (2)滑块在A 点时的速度:v A =ωR =1m/s ③ 从A 到B 的运动过程由动能定理:mgh-μmg cos53°-2

22

12153sin A S mv mv h -=? ④

在B 点时的机械能:E B =

J mgh mv S 42

12

-=- ⑤ (3)滑块在B 点时的速度:v B =4m/s ⑥ 滑块沿BC 段向上运动时的加速度大小:a 1=g (sin37°+μcos37°)=10m/s 2 ⑦ 返回时的加速度大小:a 2=g (sin37°-μcos37°)=2m/s 2 ⑧

BC 间的距离:s BC =21

212

)(21

2a v s a a v S S --=0.76m ⑨

练习

9.(09安徽)(20分)过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径R 1=2.0m 、R 2=1.4m 。一个质量为m =1.0kg 的小球(视为质点),从轨道的左侧A 点以v 0=12.0m/s 的初速度沿轨道向右运动,A 、B 间距L 1=6.0m 。小球与水平轨道间的动摩擦因数μ=0.20,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取g =10m/s 2,计算结果保留小数点后一位数字。试求

(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二圆形轨道,B 、C 间距L 应是多少;

(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径R 3应满足的条件;小球最终停留点与起点A 的距离。

10. (06重庆)(20分)(请在答题卡上作答)

如题25图,半径为R 的光滑圆形轨道固定在竖直面内。小球A 、B 质量分别为m 、βm (β

R 1 R 2

R 3 A B

C

D

v 0

第一圈轨道

第二圈轨道

第三圈轨道

L

L

L 1

为待定系数)。A 球从工边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为R 4

1

,碰撞中无机械能损失。重力加速度为g 。试求: (1)待定系数β;

(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;

(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。

6.人造卫星的匀速圆周运动

1. 人造地球卫星一般是沿椭圆轨道运行,为使问题简化,我们认为卫星以一个恰当的速率绕地心做匀速圆周运动,地球对它的万有引力提供它圆运动所需向心力。

2. 卫星的绕行速度v 、角速度ω、周期T 都与轨道半径r 有关:

r 越大,v 越小,ω越小,T 越大()当卫星贴地球表面绕行时,其周期最短,约为84分钟。 3. 运行速度与发射速度:对于人造地球卫星,由r

GM

v =

算出的速度指的是人造地球卫星在轨道上的运行速度,其大小随轨道半径的增大而减小。但由于人造地球卫星发射过程中要克服地球引力做功,增大势能,所以将卫星发射到离地球越远的轨道上,在地面所需要的发射速度却越大。 关于第一宇宙速度的两种推导方法:

(1)由R v m R Mm G 212=,R 为地球半径,M 为地球质量,可得第一宇宙速度R

GM

v =1。(2)由R v m mg 21=,g 为

地表重力加速度,R 为地球半径,可得第一宇宙速度gR v =

1。

4. 地球同步卫星的特点:所谓同步卫星是指卫星与地球以同一角速度旋转,则卫星运行周期等于地球自转周期24小时。为了维持这种同步状态,卫星的轨道平面必定与地球的赤道平面重合。通过计算可知,地球同步卫星的轨道高度,在赤道上空36000km 处。

例6:(05全国Ⅱ卷)已知引力常量G 、月球中心到地球中心的距离R 和月球绕地球运行的周期T 。仅利用这三个数据,可以估算出的物理量有( ) A.月球的质量 B.地球的质量

C.地球的半径 D.月球绕地球运行速度的大小

从上述表达式可看出:

(1)等式两侧的m 消掉了,因此不可能利用这些数据求得m (月球的质量)。

(2)此式中的r 的物理意义:在等式的左侧表示行星到恒星的距离;在等式的右侧表示行星绕恒星运动的轨道半径。因此不可能用此式求出地球的半径。

(3)由上式可推导出M=2

3

24GT

r π,因此可计算出地球的质量。即选项B 正确。 最后,关于“月球绕地球运行速度的大小”,可以从运动学角度进行分析:v=2πR/T ,因此可以求出月球绕地球运行速度的大小,即选项D 正确。

例7.(09北京)已知地球半径为R , 地球表面重力加速度为g ,不考虑地球自转的影响。 (1)推导第一宇宙速度v 1的表达式;

(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h ,求卫星的运行周期T 。 解析:(1)设卫星的质量为m ,地球的质量为M 在地球表面附近满足 G

2R

Mm

= mg 得 GM =R 2g ① 卫星做圆周运动的向心力等于它受到的万有引力 m 2

1v R

= G 2Mm R ②

①式代入②式,得到v 1 =

Rg

(2) 考虑①式,卫星受到的万有引力为2

22

()()Mm mgR F G R h R h ==

++ ③ 由牛顿第二定律 F =2

24()m R h T π+ ④

③、④式联立解得 32()

R h T R

g

π

+=

说明:该类型题的基本思路:一是直接从万有引力定律出发,注意根据题目实际情况考虑是否需要利用GM =gR 2的代换(M 指地球质量,g 指地表重力加速度,R 指地球半径)。二是从圆运动所需向心力的表达式出发去寻找解题的突破口。有关同步卫星的问题很容易出现多项选择正确,所以一定做到概念清楚。

参考答案: 参考答案:

1.3:2:3,1:1:2,3:2:6

2.BC

3.2g,g

4. 3/320ω;

5.tan sin g r L θ

ωθ

=

+

6. 0,qs

m v θ2

7.ACD 8.C

9. (1)10.0N ;(2)12.5m (3)当0

(3)V A =-

gR 2;v B

=0。由此可得:

当n 为奇数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同; 当n 为偶数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同;

圆周运动讲义

物理讲义 1、如图所示,A、B是两个摩擦传动轮,两轮半径大小关系为RA=2RB,则两轮边缘上的() A.角速度之比ωA:ωB=2:1 B.周期之比TA:TB=1:2 C.转速之比nA:nB=1:2 D.向心加速度之比aA:aB=2:1 2、如图所示是自行车传动结构的示意图,其中Ⅰ是半径为r1的牙盘(大齿轮),Ⅱ是半径为r2的飞轮(小齿轮),Ⅲ是半径为r3的后轮,假设脚踏板的转速为 n(r/s),则自行车前进的速度为()A.πnr1r3/r2 B.πnr2r3/r1 C.2πnr1r3/r2 D.2πnr2r3/r1 3、如图所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是() A. B的向心力是A的向心力的2倍 B.盘对B的摩擦力是B对A的摩擦力的2倍 C. A、B都有沿半径向外滑动的趋势 D.若B先滑动,则B对A的动摩擦因数μA小于盘对B的动摩擦因数μB

4、两根长度不同的细线下面分别悬挂着小球,细线上端固定在同一点,若两个小球以相同的角速度,绕共同的竖直轴在水平面内做匀速圆周运动,则两个小球在运动过程中的相对位置关系示意图正确的是() A. B. C. D. 5、一辆汽车匀速率通过一座圆弧形拱形桥后,接着又以相同速率通过一圆弧形凹形桥.设两圆弧半径相等,汽车通过拱形桥桥顶时,对桥面的压力FN1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力为FN2,则FN1与FN2之比=___. 6、铁路转弯处的弯道半径r是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h的设计不仅与r有关,还与火车在弯道上的行驶速率v有关.下列说法正确的是() A.v一定时,r越小则要求h越大 B.v一定时,r越大则要求h越大 C.r一定时,v越小则要求h越大 D.r一定时,v越大则要求h越大 7、如图所示,一个圆形框架以竖直的直径为转轴匀速转动。在框架上套着两个质量相等的小球A、B,小球A、B到竖直转轴的距离相等,它们与圆形框架保持相对静止。下列说法正确的是 A.小球A的合力小于小球B的合力 B.小球A与框架间可能没有摩擦力 C.小球B与框架间可能没有摩擦力 D.圆形框架以更大的角速度转动,小球B受到的摩擦力一定增大 8、如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则()

匀速圆周运动专题

A 从动轮做顺时针转动 B.从动轮做逆时针转动 匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占 据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动 的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1) 线速度大小,方向沿圆周的切线方向,时刻变化; (2) 角速度,恒定不变量; (3)周期与频率; (4) 向心力,总指向圆心,时刻变化,向心加速度 ,方向与向心力相同; (5) 线速度与角速度的关系为 ,、、、的关系为。所以在、、中若一个量确定,其余两个量 也就确定了, 而还和有关。 2. 质点做匀速圆周运动的条件 (1) 具有一定的速度; (2) 受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确 定不变的平面内且一定指向圆心。 3. 匀速圆周运动的动力学特征 (1) 始终受合外力作用, 且合外力提供向心力, 其大小不变,始终指向圆心,因合力始终与速度垂直, 所以合力不做功. (2) 匀速圆周运动的动力学方程 根据题意,可以选择相关的运动学量如 v ,3, T , f 列出动力学方程;,,, 熟练掌握这些方程,会给解题带来方便. 4. 变速圆周运动的动力学特征 (1)受合外力作用,但合力并不总是指向圆心, 且合力的大小也是可以变化的, 故合力可对物体做功, 物体的速率也在变化. (2)合外力的分力(在某些位置上也可以是合外力 )提供向心力. 例题1?在图1中所示为一皮带传动装置,右轮的半径为 r , a 是它边缘上的一点,左侧是一轮轴,大轮 的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为 的边缘上。若在传动过程中,皮带不打滑。则( ) A . a 点与b 点的线速度大小相等 B . a 点与b 点的角速度大小相等 C . a 点与c 点的线速度大小相等 D. a 点与d 点的向心加速度大小相等 说明:在分析传动装置的各物理量时,要抓住等量和不等量之间 如同轴各点的角速度相等,而线速度与半径成正比;通过皮带传 虑皮带打滑的前提下)或是齿轮传动,皮带上或与皮带连接的两轮边缘的各点及 齿轮上的各点线速度大小相等、角速度与半径成反比。 练习 1.如图所示的皮带转动装置,左边是主动轮,右边是一个轮轴, ,。假设在传动过 程中皮带不打滑,则皮带轮边缘上的 A 、B C 三点的角速度之比是 ___________ ;线 r 。 c 点和d 点分别于小轮和大轮 的关系。 动(不考 a r 4r d - 'Jr 图1

高考一轮复习随堂练习专题圆周运动的临界问题

高考一轮复习随堂练习专题圆周运动的临界问 题 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第3讲 专题 圆周运动的临界问题 1. 图4-3-6 质量为m 的小球由轻绳a 和b 分别系于一轻质木架上的A 点和C 点,如图4-3-6所示,当轻杆绕轴BC 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a 在竖直方向,绳b 在水平方向,当小球运动到图示位置时,绳b 被烧断的同时杆子停止转动,则( ) A .小球仍在水平面内做匀速圆周运动 B .在绳被烧断瞬间,a 绳中张力突然增大 C .若角速度ω较小,小球在垂直于平面ABC 的竖直平面内摆动 D .若角速度ω较大,小球可在垂直于平面ABC 的竖直平面内做圆周运动 解析:绳b 烧断前,竖直方向合力为零,即F a =mg ,烧断b 后,因惯性,要在竖直面 内做圆周运动,且F a ′-mg =m v 2 l ,所以F a ′>F a ,A 错B 对,当ω足够小时,小球不 能摆过AB 所在高度,C 对,当ω足够大时,小球在竖直面内能通过AB 上方最高点, 从而做圆周运动,D 对. 答案:BCD 2. 图4-3-7 m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮,如图4-3-7所示,已知皮带轮半径为 r ,传送带与皮带轮间不会打滑,当m 可被水平抛出时,A 轮每秒的转数最少是( ) g r B. g r gr 解析:当m 被水平抛出时只受重力的作用,支持力N =0.在圆周最高点,重力提供向 心力,即mg =mv 2r ,所以v =gr .而v =2πf ·r ,所以f =v 2πr =12π g r ,所以每 秒的转数最小为12π g r ,A 正确. 答案:A 3.

高一下册物理 圆周运动专题练习(解析版)

一、第六章 圆周运动易错题培优(难) 1.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2 m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( ) A .A 、 B 两个物体同时达到最大静摩擦力 B .B 、 C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动 D 2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】 ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时 2122C mg m r μω= ,计算得出:11 2.5/20.4 g rad s r μω= = = ,当C 的摩擦力达到最大静摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C 可得:2 2222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2g r μω= 当 1 5/0.2 g rad s r μω> = = 时整体会发生滑动,故A 错误,BC 正确; D 、 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC 2.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )

高考专题复习:圆周运动(精选.)

圆周运动 1.物体做匀速圆周运动的条件: 匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。 2.描述圆周运动的运动学物理量 (1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。它们之间的关系大多是用半径r 联系在一起的。如:T r r v πω2= ?=,2 2224T r r r v a πω===。要注意转速n 的单位为r/min ,它与周期的关系为n T 60=。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有: ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动 的公式有:2 24T r a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。 b 点在小轮上,到小轮中心的距离为r 。 c 点和 d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 练习 1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,2:1:=c A R R ,3:2:=B A R R 。假设在传动过程中皮带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。 2.图示为某一皮带传动装置。主动轮的半径为r 1,从动轮的半径为r 2。已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打 图3-1 4r 2r r r a b c d 图3-4

高考物理一轮复习专题热点平抛运动与圆周运动的综合问题讲义

专题热点四 平抛运动与圆周运动的综合问题 一、水平面内圆周运动与平抛运动的综合问题 1.命题角度 此类问题往往是物体先做水平面内的匀速圆周运动,后做平抛运动,有时还要结合能量关系分析求解,多以选择题或计算题形式考查. 2.解题关键 (1)明确水平面内匀速圆周运动的向心力来源,根据牛顿第二定律和向心力公式列方程. (2)平抛运动一般是沿水平方向和竖直方向分解速度或位移. (3)速度是联系前后两个过程的关键物理量,前一个过程的末速度是后一个过程的初速度. 【例1】 地面上有一个半径为R 的圆形跑道,高为h的平台边缘上的P 点在地面上P ′点的正上方,P ′与跑道圆心O 的距离为L (L>R),如图4-1所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问: 图4-1 (1)当小车分别位于A 点和B 点时(∠A OB=90°),沙袋被抛出时的初速度各为多大? (2)若小车在跑道上运动,则沙袋被抛出时的初速度在什么范围内? (3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件? 【解析】 (1)沙袋从P点被抛出后做平抛运动,设它的落地时间为t, 则h =12 gt 2,解得t=错误! 当小车位于A 点时.有x A =v At =L -R 可得v A =(L -R )错误! 当小车位于B点时,有 x B =v B t =L 2+R 2 可得v B =错误! (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为 v 0min =v A =(L-R )\r(\f(g,2h )) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x C =v0m ax t =L +R 可得v 0max =(L+R )错误! 所以沙袋被抛出时的初速度范围为

高考物理一轮复习圆周运动专题训练(附答案)

高考物理一轮复习圆周运动专题训练(附答 案) 质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫圆周运动。以下是圆周运动专题训练,请考生认真练习。 1.(2019湖北省重点中学联考)由于地球的自转,地球表面上P、Q两物体均绕地球自转轴做匀速圆周运动,对于P、Q两物体的运动,下列说法正确的是() A.P、Q两点的角速度大小相等 B.P、Q两点的线速度大小相等 C.P点的线速度比Q点的线速度大 D.P、Q两物体均受重力和支持力两个力作用 2.(2019资阳诊断)水平放置的两个用相同材料制成的轮P和Q靠摩擦传动,两轮的半径Rr=21。当主动轮Q匀速转动时,在Q轮边缘上放置的小木块恰能相对静止在Q轮边缘上,此时Q轮转动的角速度为1,木块的向心加速度为a1,若改变转速,把小木块放在P轮边缘也恰能静止,此时Q轮转动的角速度为2,木块的向心加速度为,则() A.=Rr=21 B.=2 C.=1 D.=a1 3.自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径RB=4RA、RC=8RA,如图3所示。当自

行车正常骑行时A、B、C三轮边缘的向心加速度的大小之比aAaB∶aC等于() A.11∶8 B.41∶4 C.41∶32 D.12∶4 对点训练:水平面内的匀速圆周运动 4.山城重庆的轻轨交通颇有山城特色,由于地域限制,弯道半径很小,在某些弯道上行驶时列车的车身严重倾斜。每到这样的弯道乘客都有一种坐过山车的感觉,很是惊险刺激。假设某弯道铁轨是圆弧的一部分,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢地面与水平面夹角)为,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为() A. 2 B.4 C. 5 D.9 5.(多选)绳子的一端固定在O点,另一端拴一重物在水平面上做匀速圆周运动() A.转速相同时,绳长的容易断 B.周期相同时,绳短的容易断 C.线速度大小相等时,绳短的容易断 D.线速度大小相等时,绳长的容易断 6.(多选)(2019河南漯河二模)两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O点。设法让两个

圆周运动专题汇编(必须掌握经典题目)

r m 高一期末考试题目 圆周运动专题汇编 ——高一必须掌握的经典题目 一、选择题[共53题] .............................................................................................................. 1 二、填空题[共9题] ................................................................................................................ 9 三、实验题[共2题] .............................................................................................................. 11 四、计算题[共6题] .............................................................................................................. 12 [编者按]高一不可能一步达到高三的水平,到底需要掌握哪些题型?打开历年的高一中考、末考题目,就可以心中有数了。这是笔者从138套历年全国各地高一期末考试题目中挑选的题目,选择题[共53题],填空题[共9题],实验题[共2题],计算题[共6题],共70道,不涉及与机械能联系的题目,汇编成一体,供讲新课的老师参考。 一、选择题[共53题] 1、如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则( ) A .小球在最高点时所受向心力一定为重力 B .小球在最高点时绳子的拉力不可能为零 C .若小球刚好能在竖直面内做圆周运动,则其在最高点速率是gL D .小球在圆周最低点时拉力可能等于重力 2、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r , 如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( ) A . g mr m M + B .g mr m M + C .g mr m M - D . mr Mg 3.关于匀速圆周运动的向心加速度,下列说法正确的是: A .大小不变,方向变化 B .大小变化,方向不变 C .大小、方向都变化 D .大小、方向都不变 4.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有: A .车对两种桥面的压力一样大 B .车对平直桥面的压力大 C .车对凸形桥面的压力大 D .无法判断 5、洗衣机的脱水筒在转动时有一衣物附在筒壁上,如图所示,则此时: A .衣物受到重力、筒壁的弹力和摩擦力的作用 B .衣物随筒壁做圆周运动的向心力是由摩擦力提供的

圆周运动讲义(学霸版)

圆周运动讲义(学霸版) 课程简介:PPT(第1页):同学好,我们又见面了,上次课讲的内容巩固好了么,要是感觉有什么问题,可以课后和我联系,我们今天的内容是关于圆周运动的相关概念和知识点,让我们来一起看一下。PPT(第2页):圆周运动部分是必修2的重点内容,主要内容: 1、通过实例,理解圆周运动的快慢; 2、通过比较,理解圆周运动中各物理量之间的关系; 3、通过拓展阅读,体会三种传动方式中各物理量间的关系与应用。PPT(第3页):我们看一下目录,还是老样子,梳理知识体系和解决经典问题实例。 PPT(第4页):我们先来看一下知识体系的梳理部分。 PPT(第5页):这是我们关于圆周运动的总框架,知识点部分包括:匀速圆周运动、角速度、线速度、向心加速度,匀速圆周运动的向心力,离心现象。 考点包括:圆周运动中的运动学分析、圆周运动中的动力学分析和圆周运动的实例分析。 PPT(第6页):OK,我们先说一下匀速圆周运动、角速度、线速度、向心加速度。 1.匀速圆周运动 (1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。 (2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。

(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。 2.描述匀速圆周运动的物理量 度的大小。 2.大小:F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r 。3.方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。 4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还

可以由一个力的分力提供。 PPT(第8页):好,我们再来看看离心现象。 1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。 2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势。接下来看一下相关考点,主要考点内容包括:圆周运圆周运动中的动力学分析、先看一下考点一-圆周运动中的运动学分析 的理解 成正比; 当ω一定时,v 与r 成正比; 当v 一定时,ω与r 成反比。 2.对a =v 2 r =ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比。

(完整版)高考第二轮复习专题:圆周运动

高考第二轮复习专题: ——物体的圆周运动 圆周运动 1.物体做匀速圆周运动的条件: 匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方 向垂直并指向圆心。 2.描述圆周运动的运动学物理量 (1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。 它们之间的关系大多是用半径r 联系在一起的。如:T r r v πω2=?=,2 2224T r r r v a πω===。要注意转速n 的单位为r/min ,它与周期的关系为n T 60=。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有: ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动的公式有:2 24T r a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧 是一轮轴,大轮的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为r 。c 点和d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 解析:本题的关键是要确定出a 、b 、c 、d 四点之间的等量关系。因为a 、c 两点在同一皮带 上,所以它们的线速度v 相等;而c 、b 、d 三点是同轴转动,所以它们的角速度ω相等。 所以选项C 正确,选项A 、B 错误。 设C 点的线速度大小为v ,角速度为ω,根据公式v=ωr 和a=v 2/r 可分析出:A 点的向心加速度大小为r v a A 2=;D 点的向心加速度大小为:r v r r r a D 2 22)2(4=?=?=ωω。所以选图3-1

2018届一轮复习人教版圆周运动教案

第16讲 圆周运动 【教学目标】 1.掌握描述圆周运动的物理量及其之间的关系. 2.理解向心力公式并能应用;了解物体做离心运动的条件. 【教学过程】 ★重难点一、圆周运动的运动学问题★ 1.圆周运动各物理量间的关系 2.对公式v =ωr 的理解 当r 一定时,v 与ω成正比; 当ω一定时,v 与r 成正比; 当v 一定时,ω与r 成反比。 3.对a =v 2r =ω2r 的理解 当v 一定时,a 与r 成反比; 当ω一定时,a 与r 成正比。 4.常见的三种传动方式及特点 (1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B 。 (2)摩擦传动:如图甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B 。

(3)同轴传动:如图乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB 。 【典型例题】(多选)在汽车无级变速器中,存在如图所示的装置,A 是与B 同轴相连的齿轮,C 是与D 同轴相连的齿轮,A 、C 、M 为相互咬合的齿轮。已知齿轮A 、C 规格相同,半径为R ,齿轮B 、D 规格也相同,半径为1.5R ,齿轮M 的半径为0.9R 。当齿轮M 按如图方向转动时( ) A .齿轮D 和齿轮 B 的转动方向相同 B .齿轮D 和齿轮A 的转动周期之比为1∶1 C .齿轮M 和齿轮C 的角速度大小之比为9∶10 D .齿轮M 和齿轮B 边缘某点的线速度大小之比为2∶3 【答案】ABD 【解析】A 、M 、C 三个紧密咬合的齿轮是同缘传动,因为M 顺时针转动,故A 逆时针转动,C 逆时针转动,又A 、B 同轴转动,C 、D 同轴转动,所以齿轮D 和齿轮B 的转动方向相同,故A 正确;A 、M 、C 三个紧密咬合的齿轮是同缘传动,边缘线速度大小相同,齿轮A 、C 规格相同,半径为R ,根据v =ωr 得,A 、C 转动的角速度相同,A 、B 同轴转动,角速度相同,C 、D 同轴转动,角速度也相同,且齿轮B 、D 规格也相同,所以齿轮D 和齿轮A 的转动角速度相同,故B 正确;A 、M 、C 三个紧 密咬合的齿轮是同缘传动,边缘线速度大小相同,根据v =ωr 得 ωM ωC =r C r M =R 0.9R =109 ,故C 错误;A 、M 、C 三个紧密咬合的齿轮是同缘传动,边缘线速度大小相同,根据v =ωr 得 ωA ωM =r M r A =0.9R R =910,又A 是与B 同轴相连的齿轮,所以ωA =ωB ,所以 ωM ωB =ωM ωA =109 ,根据v =ωr 得 v M v B =ωM r M ωA r B =109×0.9R 1.5R =23 ,故D 正确。 ★重难点二、圆周运动的动力学分析★

高一物理圆周运动专题练习(解析版)

一、第六章圆周运动易错题培优(难) 1.如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T,取g=10m/s2。则下列说法正确的是() A.当ω=2rad/s时,T3+1)N B.当ω=2rad/s时,T=4N C.当ω=4rad/s时,T=16N D.当ω=4rad/s时,细绳与竖直方向间夹角大于45° 【答案】ACD 【解析】 【分析】 【详解】 当小球对圆锥面恰好没有压力时,设角速度为,则有 解得 AB.当,小球紧贴圆锥面,则 代入数据整理得 A正确,B错误; CD.当,小球离开锥面,设绳子与竖直方向夹角为,则 解得 , CD正确。 故选ACD。

2.如图,质量为m的物块,沿着半径为R的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是() A.滑块对轨道的压力为B.受到的摩擦力为 C.受到的摩擦力为μmg D.受到的合力方向斜向左上方 【答案】AD 【解析】 【分析】 【详解】 A.根据牛顿第二定律 根据牛顿第三定律可知对轨道的压力大小 A正确; BC.物块受到的摩擦力 BC错误; D.水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D正确。 故选AD。 3.如图甲所示,半径为R、内壁光滑的圆形细管竖直放置,一可看成质点的小球在圆管内做圆周运动,当其运动到最高点A时,小球受到的弹力F与其过A点速度平方(即v2)的关系如图乙所示。设细管内径略大于小球直径,则下列说法正确的是() A.当地的重力加速度大小为R b B.该小球的质量为a b R C.当v2=2b时,小球在圆管的最高点受到的弹力大小为a D.当0≤v2<b时,小球在A点对圆管的弹力方向竖直向上【答案】BC 【解析】 【分析】 【详解】 AB.在最高点,根据牛顿第二定律 2 mv mg F R -=

匀速圆周运动临界问题专题

匀速圆周运动临界专题 任务一:水平面内的圆周运动:物体在水平面内做的一般是匀速圆周运动.这样的物体在竖直方向上受力平衡,在水平方向上受的合外力提供它做圆周运动所需的向心 力. 同学们通过下面的练习,体会下面在水平面内的匀速圆周运动特点。 1.如图所示,水平转盘上放一小木块。转速为60rad/ min时,木块离轴8cm恰 好与转盘无相对滑动,当转速增加到120rad/min时,为使小木块刚好与转盘保 持相对静止,那么木块应放在离轴多远的地方?(注:汽车在水平面上转弯类 ............. 似这种情况) ...... 任务二:竖直平面内的圆周运动:物体在竖直面内作圆周运动的情况关键在于:最高点和最低点的状态分析。依据物体在圆周最高点的受力状态可以大致分为:物体最高点无支撑力的情况(例:绳球模型)和物体最高点有支撑力的情况(例:杆球模型) 图1绳球模型图3轻杆模型图4圆管轨道 1.如图1、2 所示,没有支撑物的小球在竖直平面作圆周运动过最高点的情况 ○1临界条件 ○2能过最高点的条件,此时绳或轨道对球分别产生______________ ○3不能过最高点的条件 2.如图3、4所示,为有支撑物的小球在竖直平面做圆周运动过最高点的情况 竖直平面内的圆周运动,往往是典型的变速圆周运动。对于物体在竖直平面内的变速圆周运 动问题,中学阶段只分析通过最高点和最低点的情况,并且经常出现临界状态,下面对这类 问题进行简要分析。 ○1能过最高点的条件,此时杆对球的作用力 ○2当0gr时,杆对小球的力为其大小为____________ 讨论:绳与杆对小球的作用力有什么不同? (第1题)

2021届高三物理一轮复习力学曲线运动生活中的圆周运动专题练习

2021届高三物理一轮复习力学曲线运动生活中的圆周运动专题练习 一、填空题 1.在使用体温计之前,都要将里面的水银甩回到泡里,在甩动的时候,手要拿着________端,这是利用了________现象. 2.如图所示,光滑水平面上,小球m在拉力作用下做匀速圆周运动,若小球运动到P点时,拉力F突然为零,则小球沿____ (填“Pa”、“Pb”或“Pc”,下同)方向运动;若F

圆周运动-高中物理讲义

简单学习网课程讲义 学科:物理 专题:圆周运动 圆周运动 题一 题面:如图所示,两个内壁光滑、半径不同的半球形碗, 放在不同高度的水平面上,使两碗口处于同一水平面。现 将质量相同的两小球(小球半径远小于碗的半径),分别 从两个碗的边缘由静止释放,当两球分别通过碗的最低点 时() A.两小球的速度大小相等 B.两小球的速度大小不相等 C.两小球对碗底的压力大小相等 D.两小球对碗底的压力大小不相等 题二 题面:一根内壁光滑的细圆管,形状如图所示,放在竖直平面内, 一个球自A口的正上方高h处自由下落。第一次小球恰能抵达B点; 第二次落入A口后,自B口射出,恰能再进入A口,则两次小球下 落的高度之比h l∶h2。 题三 题面:如图是离心轨道演示仪的结构示意图。光滑弧形轨道 下端与半径为R的光滑圆轨道相接,整个轨道位于竖直平面 内。质量为m的小球从弧形轨道上的A点由静止滑下,进入 圆轨道后沿圆轨道运动,最后离开圆轨道。小球运动到圆轨 道的最高点时,对轨道的压力恰好与它所受到的重力大小相等。重力加速度为g,不计空气阻力。求: (1)小球运动到圆轨道的最高点时速度的大小; R h A

(2)小球开始下滑的初始位置A 点距水平面的竖直高度h 。 题四 题面:一根长为L 的细绳,一端拴在水平轴O 上,另一端有一个质量为m 的小球,现使细绳位于水平位置,并且绷直,如图所示,给小球一个作用,使它得 到一定的向下的初速度。 (1)这个初速度至少多大,才能使小球绕O 点在竖直面内做圆 周运动? (2)如果在轴O 竖直上方A 点处钉一个钉子,已知AO =23L ,小球以上问中的最小速度开始运动,当它运动到O 点的竖直上方, 细绳刚接触到A 点的钉子时,细绳受到的力有多大? 题五 题面:一水平放置的圆盘绕竖直固定轴转动,在圆盘上沿半径开有一条宽度为2 mm 的均匀狭缝。将激光器与传感器上下对准,使二者间连线与转轴平行,分别置于圆盘的上下两侧,且可以同步地沿圆盘半径方向匀速移动,激光器连续向下发射激光束。在圆盘转动过程中,当狭缝经过激光器与传感器之间时,传感器接收到一个激光信号,并将其输入计算机,经处理后画出相应图线。图甲为该装置示意图,图乙为所接收的光信号随时间变化的图线,横坐标 表示时间,纵坐标表示接收到的激光信号强度,图中△t 1=1.0×10-3s ,△t 2=0.8×10-3s . (1)利用图乙中的数据求1 s 时圆盘转动的角速度; (2)如果圆盘半径足够大,传感器将接收到许多激光信号,求图 乙中第n 个激光信号的宽度Δt n . 讲义参考答案 题一答案: BC 甲 乙

圆周运动专题训练(含答案)

圆周运动专题训练(含答案) (时间:45分钟,满分:100分) 一、单项选择题(本题共6小题,每小题7分,共计42分,每小题只有一个选项符合题意) 1.发射人造卫星是将卫星以一定的速度送入预定轨道.发射场一 般选择在尽可能靠近赤道的地方,如图1所示.这样选址的优点是, 在赤道附近() A.地球的引力较大 B.地球自转线速度较大图1 C.重力加速度较大 D.地球自转角速度较大 解析:为了节省能量,而沿自转方向发射,卫星绕地球自转而具有的动能在赤道附近最大,因而使发射更节能.故选B. 答案:B 2.某同学设想驾驶一辆由火箭作动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球速度可以任意增加,不计空气阻力,当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,对此下列说法正确的是(R=6400 km,取g=10 m/s2)() A.汽车在地面上速度增加时,它对地面的压力增大 B.当汽车离开地球的瞬间速度达到28 440 km/h C.此“航天汽车”环绕地球做圆周运动的最小周期为1 h D.在此“航天汽车”上弹簧测力计无法测量力的大小 解析:汽车受到的万有引力提供向心力和重力,在速度增加时,向心力增大,则重力减小,对地面的压力则减小,选项A错误.若要使汽车离开地球,必须使汽车的速度达到 第一宇宙速度7.9 km/s=28 440 km/h,选项B正确.此时汽车的最小周期为T=2π r3 GM= 2πR3 gR2=2π R g=5 024 s=83.7 min,选项C错误.在此“航天汽车”上弹簧产生形变仍 然产生弹力,选项D错误. 答案:B 3.(2010·上海高考)月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则 () A.g1=a B.g2=a C.g1+g2=a D.g2-g1=a

江苏省南京物理竞赛讲义-1.2圆周运动

1.2圆周运动 一、匀速圆周运动 1、基本物理量 半径r 、线速度v 、角速度ω、周期T 、频率f 、转速n 、向心加速度a n 、向心力F n 2、物理量之间的关系 v r ω= 1 T f = n f = 222r v rf rn T πππ= == 222f n T πωππ=== 22 224==n n v F ma m m r m r r T πω== 例1、半径为R 的圆柱夹在互相平行的两板之间,两板分别以速 度v1,v2反向运动,圆柱与板无相对滑动。问圆柱上与板接触 的A 点的加速度是多少? 例2、如图一半径为R 的刚性圆环竖直地在刚性水平地面上作纯滚动, 圆环中心以不变的速度v o 在圆环平面内水平向前运动.求圆环圆心等高 的P 点的瞬时速度和加速度. 例3、缠在线轴上的线绕过滑轮B 后,以恒定速度v0被拉出, 如图所示,这时线轴沿水平面无滑动滚动。求线轴中心点 O 的 速度随线与水平方向的夹角 α 的变化关系。(线轴的内、外半径 分别为r 和R ) 二、变速圆周运动

速率变化的圆周运动,加速度不再沿着半径方向。可以加速度分解为半径方向的向心加速度a n 和切线方向的切向加速度a t 。向心加速度a n 改变速度方向,切向加速度a t 改变速度大小。此时,角速度的大小也在变化,角速度变化的快慢叫做角加速度β。 =t dv d r dt dt a r ωβ= 例4、如图所示,在离水面高度为h 的岸边,有人用绳子拉船靠 岸,若人拉绳的速率恒为v 0,试求船在离岸边s 距离处时的速度 和加速度。 例5、如图所示,直杆AB 以匀速v 0搁在半径为r 的固定圆 环上做平动,试求图示位置时, 杆与环的交点M 的速度 和加速度。 例6、一个半径为R 的半圆柱体沿水平方向向右以加速度a 运动。 在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运动,如图所 示。当杆与半圆柱体接触点P 与柱心的连线与竖直方向的夹角为θ时,半圆柱体的速度为v ,求此时竖直杆运动的速度和加速度。 例7、图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类

匀速圆周运动的多解问题 专题辅导 不分版本

匀速圆周运动的多解问题 郭建 白头然 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。 例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少? 解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω 解得角速度为:ωππ= +=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件? 解析:速度相同包括大小相等和方向相同。由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。即质点P 应转过()n +34周(n =0123,,,…),经历的时间 t n T n =+=()()()3401231,,,… 质点P 的速度v R T = 22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得 v =F m t ()3 联立以上三式,解得:F mR n T n = +=84301232π()(),,,…

圆周运动专题汇编

Ⅰ Ⅱ Ⅲ 圆周运动专题汇编 一、线速度和角速度问题 1.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点.左侧是一轮轴, 大轮的半径为4r ,小轮的半径为2r .b 点在小轮上,到小轮中心的距离为r .c 点和d 点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则( ) A. a 点与b 点的线速度大小相等 B. a 点与b 点的角速度大小相等 C. a 点与c 点的线速度大小相等 D. a 点的向心加速度小于d 点的向心加速度 2.下图是自行车传动机构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮, Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为 ( ) A . 2 3 1r r nr π B . 1 3 2r r nr π C . 1 3 22r r nr π D . 2 3 12r r nr π 3.如图为常见的自行车传动示意图。A 轮与脚登子相连,B 轮 与车轴相连,C 为车轮。当人登车匀速运动时,以下说法中正确的是 A.A 轮与B 轮的角速度相同 B.A 轮边缘与B 轮边缘的线速度相同 C.B 轮边缘与C 轮边缘的线速度相同

D.A 轮与C 轮的角速度相同 4.图3所示是自行车的轮盘与车轴上的飞轮之间的链条传动装置。P 是轮盘的一个齿,Q 是飞轮上的一个齿。下列说法中正确的是( ) A .P 、Q 两点角速度大小相等 B .P 、Q 两点向心加速度大小相等 C .P 点向心加速度小于Q 点向心加速度 D .P 点向心加速度大于Q 点向心加速度 5.如图所示为一种“滚轮——平盘无极变速器”的示意图, 它由固定于主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动.如果认为滚轮不会打滑,那么主动轴转速n 1、从动轴转速n 2、 滚轮半径r 以及滚轮中心距离主动轴轴线的距离x 之间的关系是 ( ) A . n 2=n 1x r B.n 2=n 1r x C.n 2=n 1x 2 r 2 D.n 2=n 1 x r 6.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点。左侧是一轮轴, 大轮的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为r ,c 点和d 点 分别位于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则下列中正确的是: ( ) A. a 点与b 点的线速度大小相等 B. a 点与b 点的角速度大小相等 C. a 点与c 点的线速度大小相等 D. a 点向心加速度大小是d 点的4倍 7.如图所示,自行车的传动是通过连接前、后齿轮的金属链条来实现的。下列关于自行车 Q 图 3 P Q

相关主题