搜档网
当前位置:搜档网 › 【专业知识】异步电动机运行时振动过大故障原因有哪些

【专业知识】异步电动机运行时振动过大故障原因有哪些

【专业知识】异步电动机运行时振动过大故障原因有哪些
【专业知识】异步电动机运行时振动过大故障原因有哪些

本文极具参考价值,如若有用请打赏支持我们!不胜感激!

【专业知识】异步电动机运行时振动过大故障原因有哪些

【学员问题】异步电动机运行时振动过大故障原因有哪些?

【解答】电动机运行时振动过大,通常是由于电磁和机械两方面原因所引起。

1.电源电压不对称、绕组短路及多路绕组中个别支路断路,或者定子铁芯装得不紧,鼠笼转子导条有较多的断裂或开焊等。这些电磁方面的原因会引起电动机运行时发生振动。电动机转轴弯曲、轴径成椭圆形或转轴及转轴上所附有的转动机件不平衡等,这些机械方面的原因也会引起电动机运行时发生振动。因此,当电动机发生振动过大时,可首先检查传动部件对电动机的影响,然后再脱开联轴器使电动机空转进行检查。

若电动机空转时振动并不大,这可能是由于电动机与所拖动机械的轴中心找得不准,也可能是电动机与所拖动机械间的振动引起电动机的振动。确定振动的原因后,即可会同机械维修人员重新校验,针对机械方面的缺陷进行处理。

2.若电动机空转时振动较大,则原因在电动机本身。这时应切断电源,以判断振动是由于机械方面原因还是电磁方面原因所引起。

切断电源后振动立即消除,说明是电磁方面的原因,应检查绕组并联支路有否断线,鼠笼转子导条是否开焊或断裂。绕组并联支路有否断线可用万用表测电阻值进行分析。绕组并联支路确有断线时,应仔细查出断头后焊牢并作绝缘处理,必要时要重新绕制绕组。

切断电源后若振动继续存在,说明原因出在机械方面,例如:转子或皮带不平衡、

三相异步电动机检修培训讲义

XX电力职业技术学校实践教学中心一、异步电动机的基本结构基本结构:定子定子铁心:嵌放绕组,提供磁路。定子绕组:产生旋转磁场。转子转子铁心:嵌放绕组,提供磁路。转子绕组:感应出电势、电流。转子绕组:笼型绕线型材料:铁心均由硅钢片叠压而成;三相异步机的结构第二部份第二部份三相异步电动机的拆卸与装配三相异步电动机的拆卸与装配一、三相异步电动机的一般拆卸步骤1. 切断电源卸下皮带2. 拆去接线盒内的电源接线和接地线3. 卸下底脚螺母、弹簧垫圈和平垫片4. 卸下皮带轮→→→→ →→ 5. 卸下前端盖可用大小适宜的扁凿,插在端盖突出的耳朵处,按端盖对角线依次向外撬,直至卸下前端盖。6. 卸下风叶罩。7. 卸下风叶。→→ →→ 8.卸下后端盖。9.卸下转子在抽出转子之前,应在转子下婧投ㄗ尤谱槎瞬恐垫上厚纸板,以免抽出转子时碰伤铁心和绕组。10.最后用拉具拆卸前后轴承及轴承内盖。→→ →→ 二端盖的拆装步骤1. 端盖的拆卸步骤: 拆卸端盖前,应在机壳与端盖接缝处做好标记。然后旋下固定端盖的螺丝。通常端盖上都有两个拆卸螺孔,用从端盖上拆下的螺丝旋进拆卸螺孔,就能将端盖逐步顶出来。若没有拆卸螺孔,可用大小适宜的扁凿,插在端盖突出的耳朵处,按端盖对角线依次向外撬,直至卸下端盖。但要注意,前后两个端盖拆下后要标上记号,以免将来安装时前后装错。 a a 拆前端盖拆前端盖 b b 拆后端盖拆后端盖2. 端盖的安装步骤端盖的安装步骤:1铲去端盖口的脏物;2铲去机壳口的脏物再对准机壳上的螺丝孔把端盖装上;3 插上螺丝按对角线一先一后把螺丝旋紧切不可有松有紧以免损伤端盖。 →→ →→→→注意事项: 在固定端盖螺丝时不可一次将一边端盖拧紧应将另一边端盖装上后两边同时拧紧。要随时转动转子看?涫欠衲芰榛钭悦庾芭浜蟮缍选H?风罩和风叶的拆卸步骤1.选择适当的旋具,旋出风罩与机壳的固定螺丝,即可取下风罩。2. 将转轴尾部风叶上的定位螺丝或销子拧下,用小锤在风叶四周轻轻地均匀敲打,风叶就可取下,如图所示。若是小型电动机,则风叶通常不必拆下,可随转子一起抽出。a a拆风罩拆风罩b b拆风叶拆风叶四转子的拆装步骤1. 转子的拆卸方法:1拆卸小型电动机的转子时,要一手握住转子,把转子拉出一些随后用另一只手托住转子铁心渐渐往外移如图所示。要注意,不能碰伤定子绕组。→→一、有关术语和基本参数1.线圈线圈是组成绕组的基本元件,用绝缘导线(漆包线)在绕线模上按一定形状绕制而成。一般由多匝绕成,其形状如图所示。它的两直线段嵌入槽内,是电磁能量转换部分,称线圈有效边;两端部仅为连接有效边的“过桥”,不能实现能量转换,故端部越长材料浪费越多;引线用于引入电流的接线。线圈图2.线圈组几个线圈顺接串联即构成线圈组,异步电机中最常见的线圈组是极相组。它是一个极下同一相的几个线圈顺接串联而成的一组线圈,见下图所示。一、记录绕组原始数据原始数据的内容有:铭牌数据、绕组数据和铁心数据判别绕组的结构型式单层绕组、双层绕组、绕组形式判别极数2P 看铭牌的型号、查结构由线圈节距推算出、万用表判断 1. 拆除旧绕组的方法冲压冷拆法冲压热拆法((11)冷拆法)冷拆法首先将电机加热100 ℃左右,选择被拆电机绕组的非接线端,用磨出刃口的扁鉴对齐槽口将非接线端的上层绕组端部剁掉,一定要对齐槽口,否则不易退出槽中线圈。

高中物理机械振动知识点总结

一. 教案内容: 第十一章机械振动 本章知识复习归纳 二. 重点、难点解读 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线 方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表

机械振动 知识点总结

机械振动 1、判断简谐振动的方法 简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。特征是:F=-kx,a=-kx/m. 要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。 然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。 2、简谐运动中各物理量的变化特点 简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系: 如果弄清了上述关系,就很容易判断各物理量的变化情况 3、简谐运动的对称性 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。 理解好对称性这一点对解决有关问题很有帮助。 4、简谐运动的周期性 5、简谐运动图象 简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。 6、受迫振动与共振 (1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 位移x 回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2

2017高考物理知识点归纳振动和波

实用精品文献资料分享 2017高考物理知识点归纳:振动和波 2017高考物理知识点归纳:振动和波 振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2. 单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r} 3.受迫振动频率特点:f=f驱动力 4.发 生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册 P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速 v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发 射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见 第二册P21〕}注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不 随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

(完整word版)机械振动和机械波知识点复习及练习

机械振动和机械波 一 机械振动知识要点 1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a 、物体离开平衡位置后要受到回复力作用。b 、阻力足够小。 ? 回复力:效果力——在振动方向上的合力 ? 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) ? 描述振动的物理量 位移x (m )——均以平衡位置为起点指向末位置 振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动 ? 概念:回复力与位移大小成正比且方向相反的振动 ? 受力特征:kx F -= 运动性质为变加速运动 ? 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大 ? v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同 3. 简谐运动的图象(振动图象) ? 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化 4. 简谐运动的表达式:)2sin( φπ +=t T A x 5. 单摆(理想模型)——在摆角很小时为简谐振动 ? 回复力:重力沿切线方向的分力 ? 周期公式:g l T π 2= (T 与A 、m 、θ无关——等时性) ? 测定重力加速度g,g=2 24T L π 等效摆长L=L 线+r 6. 阻尼振动、受迫振动、共振 阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。 特点:驱受f f = ? 共振:物体在受迫振动中,当驱动力的频率跟物体的固有频率相等的时候,受迫振动的振 幅最大,这种现象叫共振 ? 条件:固驱f f =(共振曲线) 【习题演练一】 1 一弹簧振子在一条直线上做简谐运动,第一次先后经过M 、N 两点时速度v (v ≠0)相同,那么,下列说法正确的是( ) A. 振子在M 、N 两点受回复力相同 B. 振子在M 、N 两点对平衡位置的位移相同 C. 振子在M 、N 两点加速度大小相等 D. 从M 点到N 点,振子先做匀加速运动,后做匀减速运动 2 如图所示,一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O 出发向最大位移A 处运动过程中经0.15s 第一次通过M 点,再经0.1s 第2次通过M 点。则此后还要经多长时间第3次通过M 点,该质点振动的频率为 3 甲、乙两弹簧振子,振动图象如图所示,则可知( ) A. 两弹簧振子完全相同 B. 两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1

机械振动和机械波知识点总结

机械振动和机械波 、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位 置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力, 它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是: a 物体离开平衡位置后要受到回复力作用。 b 、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。 简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡 位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也 可说是物体在跟位移大小成正比, 方向跟位移相反的回复力作用下的振动, 即F= — kx ,其中 “一”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比, 方向跟位移方向相反 的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用, 简谐振动的特点在于它是 一种周期性运动, 它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能) 都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入 面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“ A ”表示,它是标量,为正 值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动 在振动过程中,动 机械振动;:!振动在媒质中传递

三相异步电动机接线图

三相异步电动机接线图 2010年02月25日星期 10:49 A.M. 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。 一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。

振动和波知识点复习

振动和波知识点 34. 弹簧振子、简谐振动、简谐振动的振幅、周期和频率, 简谐振动的图像。* 弹簧振子---小球所受的摩擦力忽略不计,弹簧的质量忽略不 计,这样的系统叫弹簧振子。 简谐振动---物体在跟偏离平衡位置的位移的大小成正比,并且总指向平衡位置的回复力的、 作用下的振动。 F = - k x 简谐振动的振幅---震动物体离开平衡位置的最大距离,叫做振动的振幅。 ---能表示震动的强弱。 周期和频率---简谐振动物体完成一次全振动所需要的时间,叫做振动的周期。 ---单位时间内完成的全振动的次数,叫做振动的频率。 固有频率---简谐运动的频率由振动系统本身的性质所决定,与振幅无关,这个频率叫做固 有频率。例如:弹簧振子的频率只与劲度系数和振子的质量决定与振幅无关。 简谐振动的图像---简谐振动的位移(相对于平衡位置的位移)---时间的图像,叫做~~~。 起始的时间不同 35.单摆、在小振幅条件下单摆作简谐振动、周期公式。* 单摆---如果悬挂小球的细线的伸缩和质量可以忽略,线长又比小球的直径大得多,这样的 装置叫做单摆。摆角很小时单摆作简谐振动。此时有:l x ≈ θsin 回复力---重力沿切线方向的分量。x l mg F - = kx F -= 周期公式---g l T π2= 周期为2秒的单摆叫做秒摆 用单 2 24T l g π= 36.振动中的能量转化。振幅越大振动的能量就越大,在振动过程中动能和势能发生相互转化,在平衡位置时的动能最大,在位移最大处的势能最大,动能为零。 37.自由振动和受迫振动,受迫振动的频率、共振及其常见的应用。 阻尼振动实际的震动系统不可避免地受到摩擦和其它阻力,即受到阻尼的作用,系统克服阻尼的作用做功,系统的机械能随着时间逐渐减少,振动的振幅逐渐减少,待到能量耗尽之时,振动就停下来了,这种振幅逐渐减小的振动,叫做阻尼振动。

机械振动和机械波知识点复习及总结要点

机械振动和机械波知识点复习 一机械振动知识要点 1.机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。回复力:效果力——在振动方向上的合力平衡位置:物体静止时,受(合)力为零的位置:运动过程中,回复力为零的位置(非平衡状态)描述振动的物理量 位移x(m)——均以平衡位置为起点指向末位置 振幅A(m)——振动物体离开平衡位置的最大距离(描述振动强弱)周期T (s)——完成一次全振动所用时间叫做周期(描述振动快慢)全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f(Hz)——1s钟内完成全振动的次数叫做频率(描述振动快慢) 2.简谐运动 概念:回复力与位移大小成正比且方向相反的振动受力特征:运动性质为变加速运动从力和能量的角度分析x、F、a、v、EK、EP 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大、EK同步变化;x、F、a、EP同步变化,同一位置只有v可能不同 3.简谐运动的图象(振动图象) 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律可直接读出振幅A,周期T(频率f)可知任意时刻振动质点的位移(或反之)可知任意时刻质点的振动方向(速度方向)可知某段时间F、a等的变化 4.简谐运动的表达式: 5.单摆(理想模型)——在摆角很小时为简谐振动 回复力:重力沿切线方向的分力周期公式: l (T与A、m、θ无关——等时性) g 测定重力加速度g,g= 等效摆长L=L线+r 2 T 6.阻尼振动、受迫振动、共振

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

物理机械波知识点总结

物理机械波知识点总结 导读:高中物理选修3-4机械波重要知识点 描述机械波的物理量——波长、波速和频率(周期)的关系 ⑴波长λ:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。 ⑵频率f:波的频率由波源决定,在任何介质中频率保持不变。 ⑶波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。 波的干涉和衍射 衍射:波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。 干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。 稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。 判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。干涉和衍射是波所特有的现象。

高中物理选修3-4重要知识点 相对论的时空观 经典物理学的时空观(牛顿物理学的绝对时空观):时间和空间是脱离物质而存在的,是绝对的,空间与时间之间没有任何联系。 相对论的时空观(爱因斯坦相对论的相对时空观):空间和时间都与物质的运动状态有关。 相对论的时空观更具有普遍性,但是经典物理学作为相对论的特例,在宏观低速运动时仍将发挥作用。 时间和空间的相对性(时长尺短) 1.同时的相对性:指两个事件,在一个惯性系中观察是同时的,但在另外一个惯性系中观察却不再是同时的。 2.长度的相对性:指相对于观察者运动的物体,在其运动方向的长度,总是小于物体静止时的长度。而在垂直于运动方向上,其长度保持不变。 高中物理机械振动和机械波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度

高中物理机械振动知识点与题型总结.doc

(一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐 振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)阻尼振动、受迫振动、共振。 简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械能不变,实际的振动总是存在着阻力,振动能量总要有所耗散,因此振动系统的机械能总要减小,其振幅也要逐渐减小,直到停下来。振幅逐渐减小的振动叫阻尼振动,阻尼振动虽然振幅越来越小,但振动周期不变,振幅保持不变的振动叫无阻尼振动。 振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到稳定时其振动周期和频率等于策动力的周期和频率,而与振动物体的固有周期或频率无关。 物体做受迫振动的振幅与策动力的周期(频率)和物体的固有周期(频率)有关,二者相差越小,物体受迫振动的振幅越大,当策动力的周期或频率等于物体固有周期或频率时,受迫振动的振幅最大,叫共振。 【典型例题】 [例1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是() A. 振子在M、N两点受回复力相同 B. 振子在M、N两点对平衡位置的位移相同 C. 振子在M、N两点加速度大小相等 D. 从M点到N点,振子先做匀加速运动,后做匀减速运动 解析:建立弹簧振子模型如图所示,由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的)。建立起这样的物理模型,这时问题就明朗化了。

三相异步电动机接线图

三相异步电动机接线图 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

三相异步电动机接线图 2010年02月25日星期 10:49 A.M. 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和 D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。 三相电机接线图 2011年05月20日星期五 15:07 电机接线盒 电机y接时,接线盒里,连接片的连接方式

大学物理振动与波动

振动与波动 选择题 0580.一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示), 作成一复摆.已知细棒绕通过其一端的轴的转动惯量23 1 ml J =,此摆作微小振 动的周期为 (A) g l π2. (B) g l 22π. (C) g l 322π . (D) g l 3π. [ C ] 3001. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π. (B) π/2. (C) 0 . (D) θ. [ C ] 3003.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2 的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为 (A) g m x m T 122?π= . (B) g m x m T 212?π=. (C) g m x m T 2121?π= . (D) g m m x m T )(2212+π=?. [ B ] 3004.劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为 (A) 21212)(2k k k k m T +π =. (B) ) (221k k m T +π= . (C) 2121)(2k k k k m T +π=. (D) 2 122k k m T +π=. [ C ] 3255.如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质 量为m 的物体,则这三个系统的周期值之比为 (A) 1∶2∶2/1. (B) 1∶2 1 ∶2 .

选修3-4机械振动知识点汇总

高中物理机械振动知识点汇总 一. 教学内容: 第十一章机械振动 本章知识复习归纳 二. 重点、难点解析 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是 T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)阻尼振动、受迫振动、共振。 简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械能不变,实际的振动总是存在着阻力,振动能量

高考物理知识点合集选修3-4 振动和波动 光

十五、选修3-4 振动和波动 光 知识点1 机械振动和机械波 基础回扣 (一)机械振动 1.简谐运动的两种模型 模型 弹簧振子 单摆 示意图 简谐运动 条件 ①弹簧质量要忽略 ②无摩擦等阻力 ③在弹簧弹性限度内 ①摆线为不可伸缩的轻细线 ②无空气阻力等 ③最大摆角小于等于5° 回复力 弹簧的弹力提供 摆球重力沿与摆线垂直方向(即切向)的分力 平衡位置 弹簧处于原长处 最低点 周期 T=2π√m k ,与振幅无关 T=2π√g ,与振幅、摆球质量无关 能量转化 弹性势能与动能的相互转化,机械能守恒 重力势能与动能的相互转化,机械能守恒 说明:振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的线段的长度。加速度与回复力的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。当物体靠近平衡位置时,a 、F 、x 都减小,v 增大;当物体远离平衡位置时,a 、F 、x 都增大,v 减小。 2.简谐运动的表达式 (1)动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。 (2)运动学表达式:x=A sin(ωt+φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相。 3.简谐运动的图像 (1)从平衡位置开始计时,函数表达式为x=A sin ωt,图像如图甲所示。

(2)从最大位移处开始计时,函数表达式为x=A cos ωt ,图像如图乙所示。 4.自由振动、受迫振动和共振的比较 自由振动 受迫振动 共振 受力情况 受回复力 受周期性驱动力 受周期性驱动力 振动周期 或频率 由系统本身性质决定,即固有周期或 固有频率 由驱动力的周期或频率决定,即T=T 驱或 f=f 驱 T 驱=T 固或f 驱=f 固 振动能量 振动物体的机械能不变 由产生驱动力的物体提供,机械能不守恒 振动物体获得的能量最大 常见例子 弹簧振子或单摆(摆角θ<5°) 机器工作时底座发生的振动 共振筛、转速计等 (二)机械波 1.机械波的传播特点 (1)波传到任意一点,该点的起振方向都和波源的起振方向相同。 (2)介质中每个质点都做受迫振动,因此,任一质点的振动频率和周期都和波源的振动频率和周期相同。 (3)波从一种介质进入另一种介质,由于介质的情况不同,它的波长和波速可能改变,但频率和周期都不会改变。 (4)波经过一个周期T 完成一次全振动,波恰好向前传播一个波长的距离,所以v=λ T =λf。 2.波的传播方向与质点振动方向的互判方法 内容 图像 “上下 坡”法 沿波的传播方向,“上坡”时质点向下振动,“下坡”时质点向上振动 “同侧” 法 波形图上某点表示传播方向和振动方向的箭头在图线同侧 “微平 移”法 将波形沿传播方向进行微小的平移,再由对应同一x 坐标的两波形曲线上的点来判断振动方向 3.波动图像和振动图像的理解和应用 图像类型 振动图像 波动图像 研究对象 一振动质点 沿波传播方向的所有质点 研究内容 一质点的位移随时间的变化规律 某时刻所有质点的空间分布规律

相关主题