搜档网
当前位置:搜档网 › 高等数学(同济大学版) 课程讲解 1.3函数的极限

高等数学(同济大学版) 课程讲解 1.3函数的极限

高等数学(同济大学版) 课程讲解 1.3函数的极限
高等数学(同济大学版) 课程讲解 1.3函数的极限

课时授课计划

课次序号:03 一、课题:§1.3 函数的极限

二、课型:新授课

三、目的要求:1.理解自变量各种变化趋势下函数极限的概念;

2.了解函数极限的性质.

四、教学重点:自变量各种变化趋势下函数极限的概念.

教学难点:函数极限的精确定义的理解与运用.

五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.

六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,

高等教育出版社;

2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.

七、作业:习题1–3 1(2),2(3),3,6

八、授课记录:

九、授课效果分析:

第三节 函数的极限

复习

1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞

=??>?>-<当时,

; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系.

在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对

于函数极限来说,其自变量的变化趋势要复杂的多.

一、x →∞时函数的极限

对一般函数y =f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.

定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )-A |<ε),则称x →+∞时,f (x )以A 为极限,记为lim x →+∞

f (x )=A .

若?ε>0,?X >0,当x <-X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )-A |<ε),则称x →-∞时,f (x )以A 为极限,记为lim x →-∞

f (x )=A .

例1 证明lim

x =0.

证 0

-?ε>00-<εε,

即x >

2

1

ε.因此,?ε>0,可取X =

2

1

ε,则当x >X 0-<ε,故由定义1得 lim

x =0.

例2 证明lim 100x

x →-∞

=.

证 ?ε>0,要使100x

-=10x <ε,只要x <l gε.因此可取X =|l gε|+1,当x <-X 时,

即有|10x -0|<ε,故由定义1得lim x →+∞

10x =0.

定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )-A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞

f (x )=A .

为方便起见,有时也用下列记号来表示上述极限:

f (x )→A (x →+∞);f (x )→A (x →-∞);f (x )→A (x →∞).

注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞

→+∞

→-∞

===或或,则称y A =为曲线()y f x =的水

平渐近线.

由定义1、定义2及绝对值性质可得下面的定理.

定理1 l i m x →∞

f (x )=A 的充要条件是lim x →+∞f (x )=lim x →-∞

f (x )=A .

例3 证明2

lim

1

x x x →∞--=1.

证 ?ε>0,要使

2

11x x ---=

31

x +<ε,只需|x +1|>3ε,而|x +1|≥|x |-1,故只需|x |-1>

3ε,即|x |>1+3

ε

. 因此,?ε>0,可取X =1+

3ε,则当|x |>X 时,有2

11

x x --+<ε,故由定义2得2

lim

1

x x x →∞-+=1.

二、x →x 0时函数的极限

现在我们来研究x 无限接近x 0时,函数值f (x )无限接近A 的情形,它与x →∞时函数的极限类似,只是x 的趋向不同,因此只需对x 无限接近x 0作出确切的描述即可.

以下我们总假定在点x 0的任何一个去心邻域内都存在f (x )有定义的点.

定义3 设有函数y =f (x ),其定义域D f ?R ,若?ε>0,?δ>0,使得x ∈U

(x 0,δ)(即0<|x -x 0|<δ)时,相应的函数值f (x )∈U (A ,ε)(即|f (x )-A |<ε),则称A 为函数y =f (x )当x →x 0时的极限,记为0

lim x x →f (x )= A ,或f (x )→A (x →x 0).

研究f (x )当x →x 0的极限时,我们关心的是x 无限趋近x 0时f (x )的变化趋势,而不关心f (x )在x =x 0处有无定义,大小如何,因此定义中使用去心邻域.

函数f (x )当x →x 0时的极限为A 的几何解释如下:任意给定一正数ε,作平行于x 轴的两条直线y =A +ε和y =A -ε,介于这两条直线之间是一横条区域.根据定义,对于给定的ε,存在着点x 0的一个δ邻域(x 0-δ,x 0+δ),当y =f (x )的图形上点的横坐标x 在邻域 (x 0-δ,x 0+δ)内,但x ≠x 0时,这些点的纵坐标f (x )满足不等式 |f (x )-A |<ε,或 A -ε

图1-34

例4 证明211

lim 1

x x x →--=2.

证 函数f (x )=21

1x x --在x =1处无定义.?ε>0,要找δ>0,使0<|x -1|<δ时,

21

21

x x ---=|x -1|<ε成立.因此,?ε>0,据上可取δ=ε,则当0<|x -1|<δ时,2121

x x ---<ε成立,由定义3得211

lim 1x x x →--=2.

例5 证明0

lim x x →sin x =sin x 0.

证 由于|sin x |≤|x |,|cos x |≤1,所以

|sin x -sin x 0|=200

cos

sin

22

x x x x +-≤|x -x 0|. 因此,?ε>0,取δ=ε,则当0<|x -x 0|<δ时,|sin x -sin x 0|<ε成立,由定义3得

lim x x →sin x =sin x 0.

有些实际问题只需要考虑x 从x 0的一侧趋向x 0时,函数f (x )的变化趋势,因此引入

下面的函数左右极限的概念.

定义4 设函数y =f (x ),其定义域D f ?R ,若?ε>0,?δ>0,当x ∈0(,)U x δ-

(或x ∈0(,)U x δ+

)时,相应的函数值f (x )∈U (A ,ε),则称A 为f (x )当x →x 0时的左(右)极限,记为0

lim x x -→f (x )=A (0

lim x x +→f (x )=A ),或记为f (0x -)=A (f (0x +)=A ).

由定义3和定义4可得下面的结论.

定理2 0

lim x x →f (x )=A 的充要条件是0lim x x -→f (x )=0

lim x x +→f (x )=A .

例6 设cos ,0

()10

x x f x x x

-≥?,研究0

lim x →f (x ).

解 x =0是此分段函数的分段点,

0lim x -

→f (x )=0

lim x -→cos x =cos0=1,而 0

lim x +→f (x )=0

lim x +

→(1-x )=1. 故由定理2可得,0

lim x →f (x )=1.

例7 设,0

()10x x f x x ≤?=?

>?

,研究0lim x →f (x ).

解 由于 0

lim x -→f (x )=0

lim x -→x =0,0

lim x +→f (x )=0

lim x +→1=1,因为0

lim x -→f (x )≠0

lim x +

→f (x ), 故0

lim x →f (x )不存在.

三、函数极限的性质

与数列极限性质类似,函数极限也具有相类似性质,且其证明过程与数列极限相应定理的证明过程相似,下面未标明自变量变化过程的极限符号“lim”表示定理对任何一种极限过程均成立.

1.唯一性

定理3 若lim f (x )存在,则必唯一. 2.局部有界性

定义5 在x →x 0(或x →∞)过程中,若?M >0,使x ∈U

(x 0)(或|x |>X )时, |f (x )|≤M ,则称f (x )是x →x 0(或x →∞)时的有界变量.

定理4 若lim f (x )存在,则f (x )是该极限过程中的有界变量. 证 我们仅就x →x 0的情形证明,其他情形类似可证.

若0

lim x x →f (x )=A ,由极限定义,对ε=1,?δ>0,当x ∈U (x 0,δ)时,|f (x )-A |

<1,则|f (x )|<1+|A |,取M =1+|A |,由定义5可知,当x →x 0时,f (x )有界. 注意,该定理的逆命题不成立,如sin x 是有界变量,但lim x →∞

sin x 不存在.

3.局部保号性

定理5 若0

lim x x →f (x )=A ,A >0(A <0),则?U

(x 0),当x ∈U

(x 0)时,f (x )>0 (f

(x )<0).

若lim x →∞

f (x )=A ,A >0(A <0),则?X >0,当|x |>X 时,有f (x )>0(f (x )<0).

该定理通常称为保号性定理,在理论上有着较为重要的作用. 推论 在某极限过程中,若f (x )≥0(f (x )≤0),且lim f (x )=A ,则A ≥0(A ≤0).

4. 函数极限与数列极限的关系

定理6 0

l i m x x →f (x )=A 的充要条件是对任意的数列{x n },x n ∈D f (x n ≠x 0),当x n →x 0(n →∞)

时,都有lim n →∞

f (x n )=A ,这里A 可为有限数或为∞.

定理6 常被用于证明某些极限不存在. 例1 证明极限0

1

limcos

x x

→不存在.

证 取{x n }=

12n π,则lim n →∞x n =lim n →∞12n π=0,而lim n →∞cos 1n x =lim n →∞

cos2nπ=1.

又取{x ′n }=()121n π????

??+????

,则lim n →∞x ′n =lim n →∞()121n π+=0,而lim n →∞cos 1'n x =lim n →∞cos(2n +1)π=-1, 由于 lim n →∞

cos

1n x ≠lim n →∞cos 1

'n

x ,故0lim n →cos 1x 不存在.

课堂总结

1.两种变化趋势下函数极限的定义;

2.左右极限(单侧极限);

3.函数极限的性质:惟一性、局部有界性、局部保号性、函数极限与数列极限的关系.

【重磅】同济大学高等数学上第七版教学大纲(64学时)

福建警察学院 《高等数学一》课程教学大纲 课程名称:高等数学一 课程编号: 学分:4 适用对象: 一、课程的地位、教学目标和基本要求 (一)课程地位 高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。 (二)教学目标 通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。 (三)基本要求 1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟

悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。 2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。 二、教学内容与要求 第一章函数与极限 【教学目的】 通过本章学习 1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分 解,掌握基本初等函数的性质及其图形,理解初等函数的概念。 2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。 3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与 左、右极限之间的关系,了解函数极限的性质。 4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。 5、掌握极限运算法则。 6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 7、掌握无穷小的比较方法,会用等价无穷小求极限。 8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、了解连续函数的运算和初等函数的连续性, 10、了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

同济大学2017年硕士数学系招生介绍_同济大学考研网

同济大学2017年硕士数学系招生介绍 一、学科介绍 1984年同济大学基础数学专业经国务院学位委员会批准获得硕士学位授予权,至2000年相继获得其余四个二级学科硕士点;1998年被批准获得基础数学博士学位授予权;2003年被批准获得应用数学博士学位授予权;至此,同济大学数学学科包括五个二级硕士学科(基础数学、应用数学、计算数学、概率论与数理统计、运筹学与控制论)和两个博士二级学科(基础数学和应用数学)。2005年获得数学一级学科博士点,即数学类的每个二级学科均可招收和培养博士研究生;2006年在国务院学位委员会进行的博士点评估中,基础数学博士点取得了满分的好成绩。 二、研究方向 1、基础数学 (01多复变函数;02整体微分几何;03代数数论与模形式;04代数群、李群及其表示理论;05算子代数及其应用;06密码学) 2、计算数学 (01计算金融;02微分方程数值解;03数值逼近;04数值代数) 3、概率论与数理统计 (01应用统计;02极限理论及其统计分析;03多元统计分析) 4、应用数学 (01组合数学与图论;02金融数学;03偏微分方程及其应用;04泛函微分方程理论及应用) 5、运筹学与控制论 (01线性及非线性优化;02非线性最优控制理论与应用;03复杂系统理论与应用;04脉冲控制理论与应用;05最优化方法) 三、人才培养 在研究生培养方面,数学系取得了很好的成绩。从2007年至今,数学系共有14位博士和硕士研究生

获得上海市研究生优秀成果奖;2011年获得全国百篇优秀博士论文提名奖1次;获教育部学术新人奖3人次;每年都有数十篇研究生论文获SCI/ISTP检索,有些研究生论文发表在SCI一区的数学刊物上。毕业研究生多数已成为用人单位的业务骨干,到高校任教的毕业生教学科研成果丰硕,有些已经晋升为教授,获得了用人单位的普遍好评。国际合作与交流方面,数学系与欧美知名高校签订研究生双学位培养协议,每年都有众多研究生到欧美国家的知名高校及研究所进行学术交流访问。 文章来源:文彦考研

同济大学高等数学教学大纲

《高等数学A》课程教学大纲 (216学时,12学分) 一、课程的性质、目的和任务 高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。 通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学; 5、无穷级数(包括傅立叶级数); 6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题 的能力。 二、总学时与学分 本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。 三、课程教学基本要求及基本内容 说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。 高等数学A(一) 一、函数、极限、连续、 1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。 2. 理解复合函数和反函数的概念。 3. 熟悉基本初等函数的性质及其图形。 4. 会建立简单实际问题中的函数关系式。 5. 理解极限的概念,掌握极限四则运算法则及换元法则。 6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。会用两个重要极限求极限。 8. 理解无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷小求极限。 9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。 10.了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。 二、一元函数微分学 1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。会用导数描述一些物理量。 2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。 3.了解高阶导数的概念。 4.掌握初等函数一阶、二阶导数的求法。 5.会求隐函数和参数式所确定的函数的一阶、二阶导数。会求反函数的导数。 6.理解罗尔(Ro lle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理和泰勒(Taylo r)定理。 7.会用洛必达(L’Ho sp ital)法则求不定式的极限。 8.理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值和最小值的应用问题。 9.会用导数判断函数图形的凹凸性,会求拐点,会描绘函数的图形(包括水平和铅直渐进线)。 10.了解有向弧与弧微分的概念。了解曲率和曲率半径的概念并会计算曲率和曲率半径。 11.了解求方程近似解的二分法和切线法。 三、一元函数积分学 1.理解原函数与不定积分的概念及性质,掌握不定积分的基本公式、换元法和分步积分法。会求简单的有理函数及三角函数有理式的积分。 2.理解定积分的概念及性质,了解函数可积的充分必要条件。

数学与应用数学专业培养方案-同济大学数学系

数学与应用数学专业培养方案 一、专业历史沿革 同济大学数学系始建于1945年,程其襄、杨武之、朱言钧、樊映川、张国隆、陆振邦等一大批知名专家曾在此任教。解放后,几经国家调整,本系时有间断。于1980年,(应用)数学系正式恢复,陆续引进一批国内外培养的具有博士学位的青年教师,原有师资队伍的结构有了变化,充实了教学与科研力量。从20世纪90年代开始,学校又先后引进国内知名数学家、博土生导师陈志华、陆洪文、姜礼尚教授等来数学系工作,教学和科研整体实力有很大提高。数学与应用数学专业在建系后就已设立,文革期间中断了招生,1978年恢复高考后数学与应用数学专业也随之恢复了招生。至今本专业已培养了毕业生3000多人,数学系的学生遍布国内外的许多国家,有的继续从事做数学的教学及科学研究工作,有的在大型国企和外企,特别是银行、金融、计算机等行业工作,很多毕业生已成为杰出科学家和行业精英。 二、学制与授予学位 四年制本科。 本专业所授学位为理学学士。 三、基本学分要求

四、专业培养目标 本专业培养具备扎实数学基础,并具备运用数学知识和计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育、信息、金融保险等部门及企事业单位从事研究、教学、管理及计算机软件开发等具有国际视野的复合型高级专门人才,或能继续在国内外攻读研究生学位的高级专门人才。 五、专业培养标准

六、主干学科 数学。 七、核心课程 数学分析、高等代数、解析几何、常微分方程、复变函数、实变函数、概率论(理)、数值分析(理)、数理方程(理)等。 八、教学安排一览表 见附表一。 九、实践环节安排表 见附表二。 十、课外安排一览表 见附表三。 十一、有关说明 1. 公共基础课中的有3门计算机课程,其中在硬件技术基础、数据库技术基础、多媒体技术基础、Web技术基础和软件开发技术基础5门课程中应至少选修1门。 2. 培养方案中打*的课程为研究生阶段设置的课程,供要求较高的学生选修。 3. 各类选修课要求与建议: 本专业学生在如下的专业选修课中,选修15学分。 金融衍生物定价理论、现代金融市场概论、金融工程案例分析、运筹学(理)、应用随机过程、泛函分析(研)*、抽象代数(研)*、微分流形(研)*、矩阵分析(研)*、李群与李代数(研)*、偏微分方程(研)*、有限元方法(研)*、运筹学通论(研)*、图论及其应用(研)*、有限差分方法与谱方法(研)*。其中金融衍生物定价理论、现代金融市场概论、金融工程案例分析这三门课程是金融数学方向的课群组,如果想选修金融数学方向建议3门课程全部选修。已经取得保研资格的学生,建议选修打*的10门研究生专业基础课中的相关课程。 公共选修课至少选修8学分,课程任选,其中至少要有一门艺术类课程。

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划 课次序号: 03 一、课 题:§1.3 函数的极限 二、课 型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–3 1(2),2(3),3,6 八、授课记录: 九、授课效果 分析: 第三节 函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.

定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞ f (x )?A . 若?ε>0,?X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞ f (x )?A . 例1 证明lim x 0. 证 0 -,故?ε>00-<εε, 即x >21 ε.因此,?ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 lim x ?0. 例2 证明lim 100x x →-∞ =. 证 ?ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞ 10x ?0. 定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞ f (x )?A . 为方便起见,有时也用下列记号来表示上述极限: f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞). 注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞ ===或或,则称y A =为曲线()y f x =的水 平渐近线. 由定义1、定义2及绝对值性质可得下面的定理. 定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞ f (x )?A . 例3 证明2lim 1 x x x →∞--?1.

复变函数与积分变换期末试题 同济大学13-14 二A

同济大学课程考核试卷(A卷) 2013—2014学年第二学期 命题教师签名:审核教师签名: 课号:122144课名:复变函数与积分变换考试考查:考试 此卷选为:期中考试( )、期终考试(√)、重考( )试卷 (注意:本试卷共六大题,三大张,满分100分.考试时间为120分钟。要求写出解题过程,否则不予计分) 1. (24%) 定义双曲函数sinh z=1 2e z?e?z,cosh z=1 2 e z+e?z (1)(8%)计算它们的导数(要求仍用双曲函数表示)。 (2)(8%)这两个函数是否有零点?说明理由。 (3) (8%)求出cosh z sinh z 在扩充复平面上一切孤立奇点的类型 2.(16%)设f(z)为解析函数。 (1)(4%) 以下哪个函数可能是f(z)的实部? A. x2+y2 B. x2y2 C. 1 x2+y2+1 D. x2?y2 (2)(6%)在第(1)题基础上,进一步要求f1=1,求f z。 (3)(6%) 求积分 f z dz C 这里C为连接(0,0)和(2,0)的半圆弧。

3. (24%)设f z=sin z 1?z (1) (8%) 求f(z)在0点的Taylor展开式中前三个非零项。 (2) (8%)求f(z)在1点的Laurent展开式中前三个非零项。 (3) (8%)求积分 dz f(z) z=14.(1) (8%)求积分 dθ 2π (2) (8%)求函数 f x= 1?|x|?1

5. (10%) 求解微分方程初值问题 x′′t+4x t=e t,x0=0,x′0=0.6.(10%) 证明:对任何一条给定的落在单位圆内部,且与单位圆正交的圆弧,必定存在一个由单位圆盘到其自身的分式线性变换,将该圆弧变为区间[-1,1]。

(完整版)大一高数第一章函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

同济大学高等数学习题答案共49页

习题一解答 1.在1,2,3,4,四个数中可重复地先后取两个数,写出这个随机事件的样本空间及事件A=“一个数是另一个数的2倍”,B=“两个数组成既约分数”中的样本点。 解Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1)(4,2),(4,3),(4,4)}; A={(1,2),(2,1),(2,4),(4,2)}; B={(1,2),(1,3},(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,1)(4,3)} 2. 在数学系学生中任选一名学生.设事件A={选出的学生是男生},B={选出的学生是三年级学生},C={选出的学生是科普队的}. (1)叙述事件ABC的含义. (2)在什么条件下,ABC=C成立? (3)在什么条件下,C?B成立? 解 (1)事件ABC的含义是,选出的学生是三年级的男生,不是科普队员. (2)由于ABC?C,故ABC=C当且仅当C?ABC.这又当且仅当C?AB,即科普队员都是三年级的男生. (3)当科普队员全是三年级学生时,C是B的子事件,即C?B成立. 3.将下列事件用A,B,C表示出来: (1)只有C发生;

(2)A 发生而B ,C 都不发生; (3)三个事件都不发生; (4)三个事件至少有一个不发生; (5)三个事件至少有一套(二个不发生)发生; (6)三个事件恰有二个不发生; (7)三个事件至多有二个发生; (8)三个事件中不少于一个发生。 解 (1)ABC ; (2)ABC : (3)ABC (4)A B C U U ; (5)AB BC AC U U ; (6)ABC ABC ABC U U ; (7)ABC ; (8)A B C U U 。 4.设 A , B , C 是三个随机事件,且 =====)()(,4 1)()()(CB P AB P C P B P A p 0,81 )(=AC P ,求A ,B ,C 中至少有 一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是 P (D )=P (A +B +C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ). 又因为

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

【免费下载】同济大学复变函数

( ) 题号一二三四五六七总分 得分 ,则(2 、管路敷设技术术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接行检查和检测处理。、电气课件中调试编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气技术资料,并且了解现场设备高中资料试、电气设备调试高中资料试卷技术料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资高中资料试卷主要保护装置。

3 设 在复平面解析, 并满足,则( 0 )4 ( 0 )5 设为正整数,( )6 ( )7 是的( )级极点。8 把( 直线 )映为单位圆。9 设 ,则( )10 设,则( )。二. (10分)设函数在复平面上解析,并满足。利用复数的三角表示式和C-R 条件证明:在复平面上 恒等于零。 解:由于,又由于、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

同济大学高等数学2

同济大学高等数学(下)期中考试试卷2 一.简答题(每小题8分) 1.求曲线?????+=+=-=t z t y t t x 3cos 12sin 3cos 在点??? ??1,3,2 π处的切线方程. 2.方程1ln =+-xz e y z xy 在点)1,1,0(的某邻域内可否确定导数连续的隐函数),(y x z z =或),(x z y y =或),(z y x x =?为什么? 3.不需要具体求解,指出解决下列问题的两条不同的解题思路: 设椭球面1222222 =++c z b y a x 与平面0=+++D Cz By Ax 没有交点,求椭球面与平面 之间的最小距离. 4.设函数),(y x f z =具有二阶连续的偏导数,3x y =是f 的一条等高线,若 1)1,1(-=y f ,求)1,1(x f . 二.(8分)设函数f 具有二阶连续的偏导数,),(y x xy f u +=求y x u ???2 . 三.(8分)设变量z y x ,,满足方程),(y x f z =及0),,(=z y x g ,其中f 与g 均具有连续的偏导数,求dx dy . 四.(8分)求曲线 ???=--=01, 02y x xyz 在点)110(,,处的切线与法平面的方程. 五.(8分)计算积分) ??D y dxdy e 2,其中D 是顶点分别为)0,0(.)1,1(.)1,0(的 三角形区域. 六.(8分)求函数22y x z +=在圆9)2()2(22≤- +-y x 上的最大值和最小值. 七.(14分)设一座山的方程为2221000y x z --=,),(y x M 是山脚0=z 即等量线 1000222=+y x 上的点. (1)问:z 在点),(y x M 处沿什么方向的增长率最大,并求出此增长率; (2)攀岩活动要山脚处找一最陡的位置作为攀岩的起点,即在该等量线上找一点M 使得上述增长率最大,请写出该点的坐标. 八.(14分) 设曲面∑是双曲线2422=-y z (0>z 的一支)绕z 轴旋转而成,曲面上一点M 处的切平面∏与平面0=++z y x 平行. (1)写出曲面∑的方程并求出点M 的坐标; (2)若Ω是∑.∏和柱面122=+y x 围成的立体,求Ω的体积.

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

同济大学复变函数以往考题

2009年B 卷 一、研究方程(10分) 方程1-=z e 在复数范围内是否有解?若有解,求出其所有的解。若无解,说明理由。 二、计算与证明(20分) 1. 已知22ln ),(y x y x u +=,x y y x v arctan ),(=。 1)证明:),(),()(y x iv y x u z f +=在复平面的第I,IV 象限(不包含y 轴)上解析。 2)对上述的 )(z f ,计算复积分?γz z f d )(,这里γ为由i -经1到i 的折线段。(8分) 2. 已知xy y x u =),(。问是否存在定义在全平面的函数),(y x v ,使得函数),(),()(y x iv y x u z f +=在复平面上解析?如存在求出一个满足条件的),(y x v ,如不存在,请说明理由。(5分) 三、 计算(20分) 已知函数z z f sin 1)(=。 1. 求 )(z f 在1点的Taylor 级数(只需展开至平方项),并指出该级数的收敛半径。(7分) 2. 求)(z f 的一切孤立奇点,并判断其类型。(8分) 3. 复平面上的极限z z z sin lim 0→是否存在?若存在,求出该极限,若不存在,说明理由。 四、计算(20分) 1. 计算广义积分?+∞ ++04 221d os x x x x c α,这里α为非负常数。(10分) 2. 利用上题结论,计算42211 )(x x x f ++=的Fourier 变换。(10分) 五、利用积分变换法求解常微分方程定解问题(10分) ???===+0 )0(',0)0()()(''x x e t x t x t 六、研究保形映照(第1题15分,第2题5分,共20分) 设D 为圆域}2|1{|<-z 和}2|1{|<+z 的公共部分。 1. 构造D 到上半平面}0{Im >z 的可逆保形映照)(z f ,且满足0)0(',)0(>=f i f 2. 该映射在i ±点是否保形?说明理由。

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (3)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

相关主题