搜档网
当前位置:搜档网 › 民用航空无线电导航频率申请表

民用航空无线电导航频率申请表

民用航空无线电导航频率申请表
民用航空无线电导航频率申请表

附件三民用航空无线电导航频率申请表

说明:1、此表除带*符号为多选项,其它均为单选项。请根据申请内容,在相应的□内填“√”。

2、联系人、联系电话及传真号码为使用单位的相关信息。

航空无线电导航台站电磁环境要求

航空无线电导航台站电磁环境要求 1 引言 航空无线电导航是以各种地面和机载无线电导航设备,向飞机提供准确、可靠的方位、距离和位置信息。来自非航空导航业务的各类无线电设备,高压输电线,电气化铁路,工业、科学和医疗设备等引起的有源干扰和导航台站周围地形地物的反射或再辐射,可能会对导航信息造成有害影响。为使航空无线电导航台站与周围电磁环境合理兼容,保证飞行安全,特制订本标准。 本标准适用于航空无线电导航台站电磁环境管理和作为非航空导航设施与航空无线电导航台站电磁兼容的准则。 2 中波导航台(NDB) 2.1中波导航台是发射垂直极化波的无方向性发射台。机载无线电罗盘接收中波导航台发射的信号,测定飞机与中波导航台的相对方位角,用以引导飞机沿预定航线飞行、归航和进场着陆。 2.2中波导航台包括机场近距导航台、机场远距导航台和航线导航台。近距导航台和远距导航台通常设置在跑道中心延长线上,距跑道端1000—11000m之间。航线导航台设置在航路或航线转弯点、检查点和空中走廊进出口。 2.3中波导航台工作在150—700kHz范围内国家无线电管理部门划分给无线电导航业务和航空无线电导航业务的频段。 2.4远距导航台和航线导航台覆盖区半径为150km(白天)。近距导航台的覆盖区半径为70km(白天)。2.5中波导航台覆盖区内最低信号场强,在北纬40o以北为70μV/m(37dB),在北纬40o以南为120μV /m(42dB)。 2.6在中波导航台覆盖区内,对工业、科学和医疗设备干扰的防护率*为9 dB, 对其它各种有源干扰的

防护率为15dB。 2.7 以中波导航台天线为中心,半径500 m以内不得有110kV及以上架空高压输电线;半径150m以内不得有铁路、电气化铁路、架空金属线缆、金属堆积物和电力排灌站;半径120m以内不得有高于8m的建筑物;半径50 m以内不得有高于3 m的建筑物(不合机房)、单棵大树和成片树林。 3 超短波定向台(VHF/UHF DF) 3.1 超短波定向台是一种具有自动测向装置的无线电定向设备,通过接收机载电台信号,测定飞机的方位,引导飞机归航,辅助飞机进场着陆,配合机场监视雷达识别单架飞机。 3.2超短波定向台通常设置在跑道中心延长线上,亦可与着陆雷达配置在一起。 3.3超短波定向台工作在118~150MHz和225~400MHz两个频段中,国家无线电管理部门划分给移动业务和航空移动业务的频段。 * 防护率系指保证导航接收设备正常工作的接收点处信号场强与同频道干扰场强的最小比值,以分贝 (dB)表示。 3.4超短波定向台最低定向信号场强为90μV/m(39dB)。 3.5超短波定向台对工业、科学和医疗设备干扰的防护率为14dB,对其它有源干扰的防护率为20dB。3.6 以定向台大线为中心,半径700m以内不得有110kV及以上的高压输电线;500m以内不得有35kV 及以上的高压输电线、电气化铁路和树林;300 m以内不得有架空金属线缆、铁路和公路;70m以内不得有建筑物(机房除外)和树木;70m以外建筑物的高度不应超过以大线处地面为准的2.5o垂直张角。 4 仪表着陆系统(ILS)

基于航空无线电导航系统仿真研究

基于航空无线电导航系统仿真研究-电气论文 基于航空无线电导航系统仿真研究 杜春辉 (吉林省民航机场集团飞行区管理部导航保障室,吉林长春130035)【摘要】无线电的导航系统是航空飞行的重要组成部分,也是飞行检验仿真的基础。主要分析了Simulink与Matlab在建模仿真中的特点和航空无线电导航系统及其仿真的特点,并进一步的研究了Simulink与Matlab与高层结构(HLA)在兼容性方面所表现出来的强大的兼容性以及可重用性的优点,充分的说明了其在通信系统中的作用,并建立了机载接收分系统、空间信号合成、天线分配网络以及地面航向信标的Simulink 仿真模型,进而得出了正确的波形,进而提出了将Simulink模型加入到基于高层结构的通信系统综合仿真系统联邦的解决措施。 关键词无线电导航系统;仿真;Simulink与Matlab;模型 基于航空的无线电导航系统的全数字的仿真是航空飞行检验的基础,同时其也是仿真系统中不可或缺的组成部分,在整个系统中起着非常重要的作用。随着我国经济与科学技术的迅猛发展,我国的无线电导航技术也逐渐的走向成熟,无线电导航系统简单的来说就是利用无线电导航技术引导飞机进入相应的航线,并为飞机进行着陆引导,该系统对飞机的自动驾驶仪以及确定下滑道、航道等提供了精准的数据,有效的的保证了飞机的安全驾驶。但是,导航信息质量的高低以及着陆系统性能的发挥情况还受到一些因素的影响,主要的影响因素有两个方面,一个方面的影响因素是场地环境条件以及配置地点的影响,以及电磁干扰以及电波的传递条件等外界因素。另一方面是受到设备本身性能的限制。

1在无线电导航系统仿真中对Simulink与Matlab的可用性兼容性的研究 根据相关的数据统计表明,很多大学和研究机构将建立较为完善的Simulink 模型应用到HLA仿真中进行研究,都取得了一定的成果。在众多的研究案例中,比较成熟的研究案例有清华大学的Matlab与HLA/RTI的通用适配器,MAK公司的HLA/DIS Toolbox 的研究以及国防科研究的KD-HLA-Simulink工具箱,并将该工具箱完全的集成在Simulink的环境中,同时还为用户提供相应的Simulink的模块,该模块就是所说的HLA模块,该模块的功能是实现与RTI之间的接口。而MAK公司研发的HLA/DIS Toolbox 实际上是在基于HLA/D IS 标准仿真环境与MATLABSimulink之间提供了一个接口,通过这个接口,可以实时的或者是将已经记录的HLA/D IS数据输入到MATLAB中进行数据的分析,或者是将Simunlink或MATLAB的模型整合到HLA/D IS的环境之中,在进行Toolboox的使用时,Simulink与Matlab的应用程序就成为了一个完整的HLA/D IS的联邦成员。总而言之,上述的研究成果都为无线电导航系统的Simulink模型加入到通信系统中的综合仿真系统的建立提供了良好的条件与基础。 2实例 利用Simulink建立了无线电导航系统的米波仪表着陆系统地面分系统以及机载分系统的仿真模型,通过验证和校验。基于HLA的米波仪表着陆系统的仿真的体系架构如图1所示: 机载设备和地面设备是仪表着陆系统的两个重要组成部分,其中地面设备主要

航空无线电导航设备第2部分:甚高频全向信标(VOR)-推荐下载

MH/T4006.2-1998 航空无线电导航设备第2部分;甚高频全向信标(VOR)技术要求 1 范围 本标准规定了民用航空甚高频全向信标设备的通用技术要求,它是民用航空甚高频全向信标制定规划和更新、设计、制造、检验以及运行的依据。 本标准适用于民用航空行业各类甚高频全向信标设备。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的条方应探讨使用下列要求最新的版本的可能性。GB6364-86 航空无线电导航台站电磁环境要求 MH/T4003-1996 航空无线电导航台和空中交通管制雷达站设置场地规范 中国民用航空通信导航设备运行维护规程(1985年10月版) 国际民用航空公约附件十航空电信(第一卷)(第4版1985年4月) 国际民航组织8071文件无线电导航设备测试手册(第3册1972年) 3 定义 本标准采用下列定义。 3.1 甚高全向信标very high frequency omnidirectional range (VOR) 一种工作于甚高频波段,提供装有相应设备的航空器相对于该地面设备磁方位信息的导航设备。 3.2 多普勒甚高频全向信标doppler VOR(DVOR) 利用多普勒原理而产生方位信息的甚高频全向信标。 3.3 基准相位reference phase 甚高频全向信标辐射的两个30Hz调制信号中的一个调制信号的相位与观察点的方位角无关。3.4 可变相位variable phase 甚高频全向信标辐,射的两个30Hz调制信号中的一个调制信号的相位与观察点的方位角有关,在同一时刻的不同方位上,该调制信号的相位不同。 4 一般技术要求 4.1 用途 甚高频全向信标是国际民航组织规定的近程导航设备,它提供航空器相对于地面甚高频全向信标台的磁方位。具体作用如下: a)利用机场范围内的甚高频全向信标,保障飞机的进出港; b)利用两个甚高频全向信标台,可以实现直线位置线定位; c)利用航路上的甚高频全向信标,保证飞机沿航路飞行(甚高频全向信标常和测距仪配合使 用,形成极坐标定位系统,直接为民航飞机定位); d)甚高频全向信标还可以作为仪表着陆系统的辅助设备,保障飞机安全着陆。 4.2 组成 甚高频全向信标设备组成如下: a)发射机系统; b)监视系统; c)控制和交换系统; d)天线系统;

无线电导航的发展历程

1.无线电导航的发展历程 无线电导航是20世纪一项重大的发明 电磁波第一个应用的领域是通信,而第二个应用领域就是导航。早在1912年就开始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率0.1一1.75兆赫兹。1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为0.2一0.4兆赫兹,已停止发展。1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。 1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1 表1主要地基无线电导航系统运行年代表 1.1 无线电导航发展的重大突破 1960年以后,义发展了不少新的地基无线电导航系统。如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NA V-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与 );突破在星基的全球导航系统,还有新的飞机着陆系统。同时还开始发展组合导航与综合导航系统,以及地形辅助导航系统等。表2列出几种常用的系统及主要性能与用量。 表2几种常用的地基系统性能与用量 *D为飞行距离。

航空无线电导航技术习题

《航空无线电导航技术》习题 1、超短波通信的特点是(C )。 A:不受地形地物的影响B:无衰落现象 C:通信距离限定在视距D:频段范围宽,干扰小2、长波、中波的传播是以(B)传播方式为主。 A:天波B:地波C:直射波D:地面反射波3、短波传播是以(A )传播方式为主。 A:天波B:地波C:直射波D:地面反射波4、超短波传播是以(C )传播方式为主。 A:天波B:地波C:直射波D:地面反射波5、高频通信采用的调制方式是(B)。 A:等幅制B:调幅制C:调频制D:调相制 6、关于短波通信使用频率,下述中正确的是(B )。 A:距离远的比近的高B:白天比晚上的高 C:冬季比夏季的高D:与时间、距离等无关7、天波传输的特点是( A )。 A:传播距离远B:信号传输稳定 C:干扰小D:传播距离为视距 8、地波传输的特点是( A )。 A:信号传输稳定B:传播距离为视距 C:受天气影响大D:传播距离远 9、直射波传播的特点是( C )。

A:传播距离远B:信号传输不稳定 C:传播距离为视距D:干扰大 10、单边带通信的缺点是(D )。 A:频带宽B:功率利用率低C:通信距离近 D:收发信机结构复杂,要求频率稳定度和准确度高 11、飞机与塔台之间的无线电联络使用(B )通信系统。 A:高频B:甚高频C:微波D:卫星12、飞机与区调或站调之间的无线电联络使用(A)通信系统。 A:甚高频B:高频C:微波D:卫星13、目前我国民航常用的空管雷达是(A )。 A:一、二次监视雷达B:脉冲多普勒雷达 C:着陆雷达D:气象雷达 14、相对于单独使用二次雷达,使用一次、二次雷达合装的优点是( C )。 A:发现目标的距离更 B:常规二次雷达条件下提高雷达系统的距离分辨力 C:能够发现无应答机的目标 D:克服顶空盲区的影响 15、二次监视雷达与一次监视雷达相比的主要优点是(A)。 A:能够准确提供飞机的高度信息 B:能够探测气象信息并能够给出气象轮廓 C:能够准确提供飞机的距离信息

对讲机频率申请表格及对讲机使用说明

无线电对讲机使用要求 对讲机目前分为公众对讲机和专业对讲机,公众对讲机是指信息产业部〔2001〕869号文件规定的对讲机,其技术规范附后。此外的对讲机均属专业对讲机,凡购买使用专业对讲机的用户均须办理“中华人民共和国无线电台执照”(以后简称“电台执照”),并在国家指定的技术参数下使用。以下是在北京地区使用专业对讲机的单位用户办理电台执照的流程及电台执照的管理要求。 一、电台执照申办手续 1、不设置中继电台的非组网对讲机(公共频率对讲机)用户,须向北京市无线电管理局提交以下资料,并加盖单位公章。(设置中继电台用户的设台手续,请登录我局网站查询。) (1)《设置无线电台(站)申请公函》原件1份; (2)《无线电台(站)设置申请表》原件1份; (3)《陆地移动电台技术资料申报表》原件1份; (4)申请人证明材料1份(企业提供具有法人资格的营业执照复印件,机关事业单位提供组织机构代码证书复印件)。 2、办理人持以上资料来我局办理设台手续。 3、我局收到用户提交的申请资料,经审查合格后,发出《行政许可受理决定书》及《对讲机频率指配通知单》;用户按照《对讲机频率指配通知单》要求对所有设备进行锁频处理。 4、我局自受理之日起二十个工作日内完成审批,并通知用户领取电台

执照;用户领取电台执照时,须携带锁频处理后的对讲机1-2部进行验机检测,并缴纳频率占用费。 二、频率占用费缴费方式及收费标准 1、频率占用费缴纳分现金和银行转账两种支付方式。银行转账支付的用户,办理电台执照时要向我局财务提供账户名称、银行帐号、开户行名称。 2、收费标准:按照国家规定,使用对讲机须缴纳无线电频率占用费,标准为每台每年100元。自申请之日起,至当年年底超过半年不足一年者,按一年收取,超过一个季度不足半年者按半年收取,不足一个季度按一个季度收取。凡申请时不足半年者须同时提供购机发票。 3、频率占用费须每年缴纳,在执照年检时办理,不跨年度收取。 三、设备更新及新增手续 凡已取得电台执照的单位,设备更新或新增时须填报《变更无线电台(站)申请公函》及《陆地移动电台技术资料申报表》,申明原因,注明新机型、产品序号等,加盖单位公章后提交我局备案,做电台执照变更(旧电台执照收回),新设备使用原电台执照指定的频率。频率占用费按变更日实际设备数量收取。 四、设备减少报废手续 凡已取得电台执照的单位,设备发生损毁、丢失时需填写《变更无线电台(站)申请公函》及《报废无线电发射设备申请表》,申明报废原因,注明

飞机场通讯导航设施

飞机场通讯导航设施 航空通讯有陆空通讯和平面通讯。 陆空通讯飞机场部门和飞机之间的无线电通讯。主要方式是用无线电话;远距离则用无线电报。 飞机场无线电通讯设施 20世纪80年代,载波通讯和微波通讯发达的区域,平面通讯一般不再利用短波无线电通讯设备。无线电发讯台主要安装对飞机通讯用的发射设备;也不再单建无线电收讯台,而将无线电收讯台和无线电中心收发室合建在飞机场的航管楼内。 航空导航分航路导航和着陆导航。 航路导航①中长波导航台(NDB)。是设在航路上,用以标出所指定航路的无线电近程导航设备。台址应选在平坦、宽阔和不被水淹的地方,并且要远离二次辐射体和干扰源。一般在航路上每隔200~250公里左右设臵一座;在山区或某些特殊地区,不宜用NDB导航。 ②全向信标/测距仪台(VOR/DME)全向信标和测距仪通常合建在一起。全向信标给飞机提供方位信息;测距仪则给飞机示出飞机距测距仪台的直线距离。它对天线场地的要求比较高。在一般情况下,要求以天线中心为中心,半径 300米范围内,场地地形平坦又不被水淹。该台要求对二次辐射体保持一定的距离。台址比中、长波导航台的要求严。在地形特殊的情况下,可选用多普勒全向信标/测距仪台(DVOR/DME),以提高设备的场地适应性。该台的有效作用距离取决于发射机的发射功率和飞机的飞行高度。在飞行高度5700米以上的高空航路上,两台相隔距离大于200公里。

③塔康(TACAN)和伏尔塔康 (VORTAC)塔康是战术导航设备的缩 写,它将测量方位和距离合成为一套装臵。塔康和全向信标合建,称伏尔塔康。其方位和距离信息,也可供民用飞机的机载全向信标接收机和测距接收设备接收;军用飞机则用塔康接收设备接收。塔康和伏尔塔康台的设臵以及台址的选择,和全向信标/测距仪台的要求相同。 ④罗兰系统(LORAN)远距导航系统。20世纪 80年代航空上使用的主要是“罗兰-C”。“罗兰-C”系统由一个主台和两个至四个副台组成罗兰台链。“罗兰-C”系统的有效作用距离,在陆上为2000公里,在海面上为3600公里。主台和副台间的距离可达到1400公里。按所定管辖地区的要求,设臵主台和副台;并按一般的长波导航台选址要求进行选址。 ⑤奥米加导航系统(OMEGA)。和“罗兰-C”一样,是一种远程双曲线相位差定位系统。由于选用甚低频波段的10~14千赫工作,作用距离可以很远,两台之间的距离可达9000~10800公里。只要有8个发射台,输出功率为10千瓦,即可覆盖全球。罗兰系统和奥米加导航系统不是一个飞机场的导航设施,而是半个地球的甚至是全球性的导航设施。 飞机场终端区导航①归航台着陆引导设施。飞机接收导航台的无线电信号,进入飞机场区,对准跑道中心线进近着陆,这样的导航台称归航台。归航台建在跑道中心线延长线上。距跑道入口的距离为1000米左右的称近距归航台(简称近台);距离为7200米左右的称远距归航台(简称远台)。归航台一般都和指点标台合建。指点标台

无线电频率使用申请表填表说明

无线电频率使用申请表填表说明 1.本表系用户在设置使用无线电台(站)前申请无线电频率使用许可时填写,包括卫星通 信网(系统)、无线通信网络等。 2.“F____-____-____”栏系指频率使用申请表编号,“F”后由12位数字组成,其中前4 “F1001-2006-0010”,位表示地区编码,中间4位表示年份,后4位表示申请表序号,例如: 表示北京地区2006年第10张频率使用申请表。此栏由无线电管理机构填写。 3.频率申请单位“名称”栏,系指申请使用频率单位的全称。 4.“系统代码”栏,系指频率使用单位所属部门的代码,由无线电管理机构填写。 5.“组织机构代码”栏,系指根据中华人民共和国国家标准《全国组织机构代码编制 规则》(GB11714--1997),由组织机构代码登记主管部门给每个企业、事业单位、机关和社会团体颁发的在全国范围内唯一的、始终不变的法定代码。产业活动单位是本部的,如果没有法定代码,使用其所属的法人单位法定代码的前8位,第九位校验码填“B”。所有单位均应填报本项。 6.“通信地址”栏,系指申请使用频率的单位通信地址。 7.“联系电话”栏,填写联系人的办公电话和手机号码。 8.“电子信箱”栏,填写联系人的电子信箱或单位公务信箱。 9.“无线电系统/网络名称”栏,系指拟建的、由用户命名的无线电通信系统或网络的名 称。 10.“卫星/星座名称”栏,只适用于申请卫星通信网(系统)时填写。申请使用单颗卫星 时,填写卫星名称;申请使用星座时,填写星座名称。 11.“标称轨道经度”栏,系指对地静止卫星星下点的标称地理经度,并在经度值前填写“E” 表示东经、填写“W”表示西经。此栏仅当申请卫星通信网(系统),并且使用对地静止卫星时填写。 12.“信道带宽/波道间隔”栏,系指国家无线电管理机构根据相关标准划定的信道带宽/波 道间隔,或国家标准、行业标准中规定的信道带宽/波道间隔。申请卫星通信网(系统)时,不用填写。 13.“通信业务/系统类型”栏,由无线电管理机构填写。 14.“业务性质”栏,系指拟建的无线电通信系统或网络所属的无线电业务性质,可选择填 写并在相应的“□”内填写“√”号。其中“专用”系指国内各部门开展的专用通信业务;“公众”系指用于国际、国内公众通信的业务;“其他”系指不包括在上述范围内的业务。 15.“技术体制”栏,系指拟建的无线电通信系统或网络的技术体制,例如GSM、WCDMA等 等。申请卫星通信网(系统)时,则不用填写。 16.“使用范围”栏,系指拟建无线电通信网或卫星通信网(系统)的使用范围,可选择填写 并在相应的“□”内填写“√”号。其中“国际/跨边境(界)”系指拟建系统或网络可提供国际漫游;“全国”系指覆盖全国的通信系统或网络,“跨省”系指仅用于两省或两省以上的通信系统,其他类推。 17.“网络用途”栏,根据网络的实际用途进行填写。例如,防洪救灾、应急抢险、保障重 大事件等,公众业务则不必填写。 18.“申请信(波)道的中心频率”栏,当用户按信(波)道申请少数频率时填写此项,按 照配对频率进行填写。“/”的左侧填写较低频率,“/”的右侧填写较高频率。申请卫星通信网(系统)时,不用填写。

MHT 4006.3-1998 航空无线电导航设备 第3部分 测距仪(DME)技术要求

MH/T 4006.3-1998 航空无线电导航设备第3部分:测距仪(DME)技术要求 1 范围 本标准规定了民用航空测距仪设备的通用技术要求,它是民用航空测距仪设备制定规划和更新、设计、制造检验以及运行的依据。 本标准适用于民用航空行业各种地面测距仪(DME)设备。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。GB6364-86 航空无线电导航台站电磁环境要求 MH/T 4003-1996 航空无线电导航台和空中交通管制雷达站设置场地规范 中国民用航空通信导航设备动行维修规程(1985年4月版) 国际民用航空公约附件十航空电信(第一卷)(第4版1985年4月) 国际民用航空级织8071文件无线电导航设备测试手册(第3版 1972年) 3 定义 本标准采用下列定义和符号。 3.1 测距仪 distance measuring equipment (DME) 一种工作于超高频波段,通过接收和发送无线电脉冲对而提供装有相应设备的航空器至该地面设备连续而准确斜距的导航设备。 3.2 寂静时间 dead time 应答器接收机在收到一对正确询问脉冲对并产生译码脉冲后的一段封闭时间,以防上对应答脉冲的再次应答,并可防止多路径效应引起和回波响应。 3.3 发键时间 key down time 正在发射莫尔斯码的点或划的时间 3.4 脉冲幅度 pulse amplitude 脉冲包络的最大电压值。 3.5 脉冲上升时间 pulse rise time 脉冲包络前沿10%振幅点至90%振幅点之间的时间。 3.6 脉冲下降时间 pulse decay time 脉冲包络后沿90%振幅点到10%振幅点之间的时间。 3.7 脉冲宽度 pulse duration 脉冲包络前、后沿上50%振幅点之间的时间间隔。 3.8 X、Y模式 mode X、Y 用脉冲对的时间间隔来进行DME发射编码的一种方法,以便一个频率可以重复使用。 3.9 应答效率 reply efficiency 应答器所发射的应答数与其所收一的有效询问总数的比值,以百分比表示。 3.10 等值各向同性辐射功率 equivalent isotropically radiated power 馈送到天线上的功率与天线在给定方向上的增益(相对于各向同性天线的绝对增益或各向同性增益)的乘积。 3.11 pp/s pulse-pairs per second 脉冲对/秒。

无线电导航的发展历程

无线电导航的发展历程 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

1.无线电导航的发展历程 无线电导航是20世纪一项重大的发明 电磁波第一个应用的领域是通信,而第二个应用领域就是导航。早在1912年就开 始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率一兆赫兹。1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为一兆赫兹,已停止发展。1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入 研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。 1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有 多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1 表1主要地基无线电导航系统运行年代表 1.1 无线电导航发展的重大突破 1960年以后,义发展了不少新的地基无线电导航系统。如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NAV-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与);突破在星基的全球导航系统,还有新的飞机着陆系统。同时还开始发展组合导航与综合导航系统,以及地形辅助导航系统等。表2列出几种常用的系统及主要性能与用量。 表2几种常用的地基系统性能与用量 *D为飞行距离。

民用航空无线电通信频率申请表

附件一民用航空无线电通信频率申请表 申请单位(全称) 使用单位(全称) 联系人联系电话传真号码 业务类型(单选)塔台管制(TWR)□地面管制(SMC)□地空数据链(VDL)□进近管制(APP)□区域管制(ACC)□航务管理(OP-CTL)□气象广播/航站自动情报服务(VOLMET/ATIS)□其他[ ] □ 应用方式(单选)主用□备用□临时□服务管制区域(扇区)或席位名称 服务管制区域(扇区)或席位批文号 对应发射台(站)及设备信息 1 台(站)名称台(站)址批文号 设台地点 经纬度54座标:WGS-84座标: 设备生产厂家设备型号 最大发射功率w 海拔高度m 天线距地面高度m 天线型号天线增益dB 滤波器型号电缆型号电缆长度m 2 台(站)名称台(站)址批文号 设台地点 经纬度54座标:WGS-84座标: 设备生产厂家设备型号 最大发射功率w 海拔高度m 天线距地面高度m 天线型号天线增益dB 滤波器型号电缆型号电缆长度m 3 台(站)名称台(站)址批文号 设台地点 经纬度54座标:WGS-84座标: 设备生产厂家设备型号 最大发射功率w 海拔高度m 天线距地面高度m 天线型号天线增益dB

滤波器型号电缆型号电缆长度m 对应接收台(站)及设备信息 1 台(站)名称台(站)址批文号 设台地点 经纬度54座标:WGS-84座标: 设备生产厂家设备型号 天线型号滤波器型号 海拔高度m 天线距地面高度m 附加损耗dB 电缆型号电缆长度m 馈线损耗dBW 2 台(站)名称台(站)址批文号 设台地点 经纬度54座标:WGS-84座标: 设备生产厂家设备型号 天线型号滤波器型号 海拔高度m 天线距地面高度m 附加损耗dB 电缆型号电缆长度m 馈线损耗dBW 3 台(站)名称台(站)址批文号 设台地点 经纬度54座标:WGS-84座标: 设备生产厂家设备型号 天线型号滤波器型号 海拔高度m 天线距地面高度m 附加损耗dB 电缆型号电缆长度m 馈线损耗dBW 注:无线电台(站)覆盖服务管制区域(扇区)示意图见附图 以下由民航局无线电管理机构填写 序号拟指配频率(MHz)发射功率(W)经办人经办日期 1 年月日 2 年月日 3 年月日 说明:1、本表中“业务类型”和“频率应用方式”均为单选项。请根据申请内容,在相应的□内填“√”。 2、在“业务类型”栏里,若选择“其他[ ]”选项,请根据实际在[ ]内填写。

航空无线电导航设备第一部分:仪表着陆系统(ILS)技术要求

航空无线电导航设备 第1部分:仪表着陆系统(ILS)技术要求 MH/T 4006.1-1998 1 范围 本标准规定了民用航空仪表着陆系统设备的通用技术要求,它是民用航空仪表着陆系统设备制定规划和更新、设计、制造、检验以及运行的依据。 本标准适用于民用航空行业各类仪表着陆系统设备。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列要求最新版本的可能性。 GB 6364—86 航空无线电导航台站电磁环境要求 Mt{/T 4003—1996航空无线电导航台和空中交通管制雷达站设置场地规范 中国民用航空通信导航设备运行、维护规程(1985年版) 中国民用航空仪表着陆系统Ⅰ类运行规定(民航总局令第57号) 国际民用航空公约附件十航空电信(第一卷)(第4版1985年4月)国际民航组织8071文件无线电导航设备测试手册(第3册1972年)

3 定义、符号 本标准采用下列定义和符号。 3.1航道线course line 在任何水平面内,最靠近跑道中心线的调制度差(DDM)为。的各点的轨迹。 3.2航道扇区course sector 在包含航道线的水平面内,最靠近航道线的调制度差(DDM)为0.155的各点迹所限定的扇区。 3.3半航道扇区half course sector 在包含航道线的水平面内,最靠近航道线的调制度差(DDM)为0.0775的各点轨迹所限定的扇区。 3.4调制度差difference in depth of modulatlon(DDM) 较大信号的调制度百分比减去较小信号的调制度百分比,再除以100。 3.5位移灵敏度(航向信标)displacement sensitivity(10calizer) 测得的调制度差与偏离适当基准线的相应横向位移的比率。 3.6角位移灵敏度angular displacemeat seusitivity 测得的调制度差与偏离适当基准线的相应角位移的比率。 3.7仪表着陆系统下滑道ILS glide path 在包含跑道中心线的垂直平面内.最靠近水平面的所有调制度差(DDM)

无线电导航原理与系统课件

无线电导航原理与系统课件 无线电导航原理与系统 第三章无线电导航理论基础 一.空间坐标系无线电导航的基本任务就是确定被引导的航行体在运动过程中的状态参数,包括位置、速度、加速度、姿态等,这些参数是在一定的空间坐标系内定义的,因此要进行导航首先必须建立适当的参考坐标系。地球是人类的活动中心,在选择导航空间坐标系的时候,总是以地球为考虑的出发点。首先介绍一下地球的几何形状及其参数, 以便于认识和理解下面介绍的各种空间坐标系。一.空间坐标系地球的几何形状及其参数地球是一个旋转椭球;但是地球又不是一个理想的旋转椭球体,其表面起伏不平,很不规则,有高山、陆地、大海等。在实际应用中,人们采用一个旋转椭球面按照一定的期望指标(如椭球面和真实大地水准面之间的高度差的平方和为最小)来近似大地水准面,并称之为参考椭球面。参考椭球面的大小和形状可以用两个几何参数来描述,即长半轴a和扁率f。一.空间坐标系地球的几何形状及其参数目前应用中两个比较重要的参考椭球系是克拉索夫斯基椭球和WGS-84椭球。我国使用了40多年的1954北京坐标系(京-54坐标系),就是基于克拉索夫斯基椭球系。一.空间坐标系参考椭球上的主要面、线和曲率半径 1 参考椭球的法截面和法截线如图所示,O为参考椭球的中心。过地面点P作椭球面的垂线PK,称之为法线。包含过P点的法线的平面叫法截面。法截面与椭球面的交线叫做法截线。一.空间坐标系一.空间坐标系在实际计算中,为了方便往往在某一范围内把椭球面当作球面来处理,一般取该点所有方向的法截面曲率半径的平均值作为近似球面半径,称为平均曲率半径R,可推导出它的计算公式为:一.空间坐标系一.空间坐标系常用导航坐标系天球坐

无线电频率划分与使用

1.频段划分及主要用途 名称甚低频低频中频高频甚高频超高频特高频 极高 频 符号VLF LF MF HF VHF UHF SHF EHF 频率3-30KH z 30-30 0KHz 0.3-3 MHz 3-30M Hz 30-300MHz 0.3-3GHz 3-30GHz 30-30 0GHz 波段超长波长波中波短波米波分米波厘米波 毫米 波 波长1KKm-1 00Km 10Km- 1Km 1Km-1 00m 100m- 10m 10m-1m 1m-0.1m 10cm-1cm 10mm- 1mm 传 播特性空间波 为主 地波 为主 地波 与天 波 天波 与地 波 空间波空间波空间波 空间 波 主要用途海岸潜 艇通 信;远 距离通 信;超 远距离 导航 越洋 通信; 中距 离通 信;地 下岩 层通 信;远 距离 导航 船用 通信; 业余 无线 电通 信;移 动通 信;中 距离 导航 远距 离短 波通 信;国 际定 点通 信 电离层散 射 (30-60MH z);流星 余迹通信; 人造电离 层通信 (30-144M Hz);对空 间飞行体 通信;移动 通信 小容量微波 中继通信; (352-420MH z);对流层 散射通信 (700-10000 MHz);中容 量微波通信 (1700-2400 MHz) 大容量微波 中继通信 (3600-4200 MHz);大容 量微波中继 通信 (5850-8500 MHz);数字 通信;卫星通 信;国际海事 卫星通信 (1500-1600 MHz) 再入 大气 层时 的通 信;波 导通 信 2.我国陆地移动无线电业务频率划分 29.7-48.5MHz 156.8375-167MHz 566-606MHz 64.5-72.5MHz(广播为主, 与广播业务公用)167-223MHz(以广播业务为 主,固定、移动业务为次) 798-960MHz(与广播公用) 72.5-74.6MHz 223-235MHz 1427-1535MHz 75.4-76MHz 335.4-399.9MHz 1668.4-2690MHz 137-144MHz 406.1-420MHz 4400-5000MHz

无线电干扰对航空器及地面导航设备的影响及原因分析

无线电干扰对航空器及地面导航设备的影响及原因分析 近年来,我国航空业发展迅猛,新建机场以及新开辟航线也如雨后春笋般不断涌现,使得人们的出行更加便利,很多人的生活方式也随之改变。目前,随着航空业规模的不断扩大,航空器及地面导航设备的数量也在不断增多。然而在实际工作中,航空器及地面导航设备受无线电干扰的情况也在近来频繁出现,严重时,甚至导致通讯及通信系统均无法完全处于安全运行的状态。因此,文章从无线电干扰对航空器及地面导航设备的影响进行分析,找出航空器及地面导航设备受到无线电干扰的原因,并提出几点针对性的解决方案。 标签:无线电干扰;航空器;导航设备;飞行;影响 目前,随着通信领域的飞速发展,各类无线电技术也呈现出日新月异的发展态势。这本是一件科技引领社会进步的好事,但在这样的背景下,许多未经批准的电台投入使用、无线电爱好者私下自行组装设备等状况频频发生,导致无线电干扰日益突出,航空业的安全运行环境面临严重威胁。无线电干扰不仅影响航空器及地面导航设备的正常运行,给航空安全问题造成负面影响,同时也给国民经济带来巨大损失。在航空领域,通信与通讯安全至关重要,这不仅关系到我国社会经济的进步,同时也与社会文明息息相关。在航空器运行过程中,一旦受到无线电干扰,其后果是非常严重的。所以,文章从以下几个方面对航空器及地面导航设备的无线电干扰问题进行探讨。 1 无线电干扰对航空器及地面导航设备的影响 1.1 互调干扰 互调干扰指的是发信机与收信机同时被输进两个或两个以上的频率信号时,电路就会呈现非线性特征。如果此时有另一个信号与当前信号的频率相同,那么也有可能通过发信机以及收信机,从而使有用信号受到干扰。互调干扰不仅能够降低通话质量,更严重者,甚至导致飞行员在飞行过程中无法与地面管制员取得联系,使得飞机安全无法得到全面的保障。不仅如此,互调干扰还可能导致机载电路失灵,从而影响设备正常运行甚至造成发射机的烧毁烧坏,给飞行安全带来严重隐患。 1.2 带外干扰 帶外干扰指的是接收机的杂散响应与发射机的杂散辐射产生的干扰。其中,杂散响应指的是接收机不仅可以收到有用的信号,还可以收到其他同相或同频率的信号。通常,杂散响应与接收机自身振动的频率有极大的关联。而杂散辐射干扰在UHF与VHF低频段出现[1],通常发射机通过晶体振荡器来获得高频率稳定度。要得到发射频率,主振频率要经多次倍频。倍频放大器与倍频器之间的非线性作用产生大量谐波,谐波的频率是主振频率的整数倍。如果倍频异常,谐波就会对接收机造成干扰。当机载或地面导航设备发生故障时,其工作频率会发生

无线电导航系统 罗兰-C

无线电导航系统罗兰-C 【概述】 罗兰的全称是远程导航,是一种远程双曲线无线电导航系统,作用距离可达2000公里,工作频率为100千赫。罗兰-C是低频、脉冲式的双曲线无线电导航与定位系统,它是在40年代由美国麻省理工学院应美国陆军的要求而研制的。罗兰-C是一种远距离(1850km)、低频(100kHz)的含标准时间频率信息的双曲线无线电导航系统、定位系统,它的作用距离大,覆盖面广,导航、定位精度高,在全球范围内得到广泛应用。 它使用两个同步发射器信号到达的时间差来定位。较低的频率允许地波沿地球表面曲面传播较远的距离,多脉冲允许接收机把天波与地波区分开来。根据不同的几何条件、接收机测时精度及传播条件,罗兰-C可以提供100~200m的精度。 【原理】 罗兰C定位原理 到两定点距离差为一常数: 双曲线(具有双值性) 副台延时:ts=β主副+Δ β主副:主台→副台电波传播时间 Δ:副台编码延时 船台测时间差:Δt=β主副+Δ+t副-t主 β主副:消除双值性;Δ:识别各副台 罗兰C系统由设在地面的1个主台与2~3个副台合成的台链和飞机上的接收设备组成。测定主、副台发射的两个脉冲信号的时间差和两个脉冲信号中载频的相位差,即可获得飞机到主、副台的距离差。距离差保持不变的航迹是一条双曲线。再测定飞机对主台和另一副台的距离差,可得另一条双曲线。根据两条双曲线的交点可以定出飞机的位置。这一位置由显示装置以数据形式显示出来。由于从测量时间差而得到距离差的测量方法精度不高,只能起粗测的作用。副台发射的载频信号的相位和主台的相同,因而飞机上接收到的主、副台载频

信号的相位差和距离差成比例。测量相位差就可得到距离差。由于100千赫载频的巷道宽度(见奥米加导航系统)只有1.5公里,测量距离差的精度很高,能起精测的作用。测量相位差的多值性问题,可以用粗测的时间差来解决(见无线电导航)。罗兰C导航系统既测量脉冲的时间差又测量载频的相位差,所以又称它为低频脉相双曲线导航系统。1968年研制成功的罗兰D导航系统提高了地面发射台的机动性,是一种军用战术导航系统。 【应用领域】 罗兰C 系统是一种陆基远程无线电导航系统,用于舰船、飞机及陆地车辆的导航定位。该系统的主要特点是覆盖范围大, 岸台采用固态大功率发射机, 峰值发射功率可达2MW, 因此其抗干扰能力强,可靠性高。我国建有3 个罗兰C 导航台链, 是一种为我国完全掌握的无线电导航资源, 可覆盖我国沿海的大部分地区, 在战时具有重要意义。卫星导航是通过在地球上空布设若干个导航卫星, 发播导航电文, 接收机通过接收到卫星导航电文数据来解算出位置数据。由于卫星导航覆盖范围广( 可全球覆盖) 、全天候、高精度等优点, 得到了广泛应用。目前可用的卫星导航系统有美国的GPS、俄罗斯的GLONASS 以及我国的双星导航卫星, 欧洲的GALILEO 导航卫星系统将在2008 年建成使用, 日本也计划发展区域卫星导航系统。但卫星导航系统也有其弱点, 卫星导航系统是星基导航, 由于卫星距地面较高, 卫星发射信号功率受到限制等因素, 使得卫星导航信号微弱, 易被干扰。由于星基无线电导航和陆基无线电导航各有其优缺点, 并且各自独立, 因此, 研究罗兰C 和卫星导航的优势互补以及它们的组合应用具有一定的现实意义。 【背景】 Loran(罗兰)是远程导航的缩写,罗兰C(Loran C)是于五十年代末在第二次世界大战中期成功研制罗兰A的基础上改进并投入使用的远程双曲线导航系统,1974年向民用开放。罗兰C的地面发射系统是由至少3个发射台组成的台链,彼此精确同步。用户接收来自2个台的信号时,只要测出它们到达的时间差,便知道自己处于一条以这两个台为焦点的双曲线上;同时又测出另外两个台信号的时间差,便又得知处于另一条双曲线上;显而易见,用户必然处于这两条双曲线的交点上,从而可确定出用户的位置。从1945年到1974年,罗兰仅由美、苏两个大国掌握,苏联建立了类似于罗兰C的恰卡(Chayka)导航系统,后加拿大加入美国的罗兰C应用体系,八十年代中期国际航空界正式启用罗兰C,随后欧盟建立了多个罗兰C台链,日本、韩国、我国、印度也都相继建了台链。到目前为止,全世界共建成了30多个罗兰C台链。在陆基无线电导航系统中,罗兰C的用户是最多的,大多数是用于航海,也用作航空和陆上导航。虽然GPS的问世对罗兰C的应用有较大影响,但罗兰C具有它的独到之处,不可能完全被GPS所取代;若把罗兰C与GPS组合使用,则将在覆盖范围、实用性、完善性等方面得到改善。由此可知,罗兰C的优点:罗兰C采用100 kHz单一的低频,该频率传播距离远、稳定性好,使罗兰C具有作用距离远的优点。但罗兰C无法覆盖全球。 在六十年代中期,美国海军提出了“Timation”计划,美国空军提出了621B计划,并付之实施。但在发射了数颗实验卫星和进行了大量实验后发现各自都还存在一些大的缺陷。所以在此背景下,1973年美国国防部决定发展各军种都能使用的全球定位系统(GPS Global Positioning System),并指定由空军牵头研制.在项目的实施中,参加的单位有美国空军、陆军、海军、海军陆战队、海岸警卫队、运输队、国防地图测绘局、国防预研计划局,以及一些北大西洋公约组织和澳大利亚。历时20多年,耗资数百亿美元,于1994年3月10日,24颗工作卫星全部进入预定轨道,GPS系统全面投入正常运行,技术性能达到了预期目的,其中粗码(C/A码)的定位精度到达20m,远远超过设计指标。GPS是现代科学的结晶,它的推广应用有力地促进了人类社会进步。 【美国、北欧Loran-C链的技术改造】

相关主题