搜档网
当前位置:搜档网 › 过程控制系统总结报告

过程控制系统总结报告

过程控制系统总结报告
过程控制系统总结报告

过程控制系统综合设计总结报告

班级:

姓名:

学号:

学期:

一、实验过程记录

1.1 实验步骤

(1)老师讲解实验内容、注意事项及规章制度;

(2)学习智能仪表P909参数调节及操作;

(3)对控制系统进行工程建模;

(4)根据实接线图进行各实验的实验装置接线;

(5)进入组态软件进行相关参数的设定;

(6)参数设定完成后进行PID参数调节,观察示组态软件中的输出波形。

(7)根据输出波形的进行理论描述和分析;分析不同的PID参数对系统性能的影响。

(8)对实验过程中遇到的问题和错误进行分析。

1.2实验过程

1)实物系统的接线。

根据接线图进行实物系统的接线,具体接线图如下:

图1 纯滞后水箱实验接线图

DDC控制3000仪表控制

图2 流量比值控制实验接线图

DDC控制

图3 串级控制流量比值控制实验接线图

DDC控制

图4 前馈反馈控制流量比值控制实验接线图

DDC控制

图5 解耦控制流量比值控制实验接线图

2)打开仿真软件,进行实验的相关参数设计。(以前馈反馈控制为例) 1.单击实验菜单,进入前馈反馈控制实验界面,如下图所示:

图6 前馈反馈控制界面图

2.选择控制回路

图7 控制回路选择界面

3.PID控制器参数设置界面

图8 PID控制器参数设置界面

4.设置输入控制器的模型参数

图9 前馈控制器参数设置界面

二、实验结果处理与分析

2.1流量比值控制实验数据处理与分析

通过“实时趋势”和“历史趋势”窗体查看曲线趋势。并通过曲线趋势分析不同的PID参数下对流量比值系统的控制效果。通过分析系统的控制效果来确定合适的PID参数。

以下为比值控制实验趋势图:

图10 7.3,2.1,5.2===d i p T T K ;SV=10

图11 3.2,1.2,2.1===d i p T T K ;SV=5

通过以上趋势图可以看出,PID 参数为7.3,2.1,5.2===d i p T T K 时,系统的输出响应曲线的动态特性良好,超调量12.7%,调节时间72S ,衰减比大致为4:1,故选择PID 参数为7.3,2.1,5.2===d i p T T K 。

2.2双容水箱串级PID 控制实验数据处理与分析

通过“实时趋势”或“历史趋势”窗体可以查看趋势曲线,根据趋势曲线,从超调量、调节时间和衰减比等方面对控制效果进行评估。记录实验数据时同样应该尽可能地保持实验数据的真实性,减小实验误差。

实验效果图:

图12 SV=15.6

由以上图像可以看出,系统的输出曲线的动态性能良好,调节时间为6min ,超调量为12.5%,衰减比大致为4:1,符合水箱控制系统的控制要求。

2.3前馈反馈控制实验数据处理与分析

选择一个前馈回路,然后通过相应的操作组成回路,初始化控制系统并设置PID 参数,在引入干扰的过程中注意此时的前馈控制器不再起作用了,通过“实时趋势”或“历史趋势”窗体,测绘趋势曲线,并进行评估。记录实验数据时同样应该尽可能地保持实验数据的真实性,减小实验误差。

实时趋势图如下:

图13 2,1,1,521====ao FC T T T K

图14 2,3,1,521===-=ao FC T T T K

由图像可知前馈控制器参数为2,3,1,521===-=ao FC T T T K 时,系统出现了周期震荡,而当参数为2,1,1,521====ao FC T T T K 时,系统基本保持稳定,基本消除了扰动的影响。所以改参数基本符合控制要求。

2.4解耦控制实验数据处理与分析

构造一个耦合系统,选择工作点并设置PID 参数,然后设置解耦前馈控制器并将PID 控制器投入运行。最后注意要分析系统的耦合程度,记录无解耦控制器时候的控制效果曲线和有解耦控制器是时的控制效果曲线。 具体实验曲线如下图所示:

图15 无解耦控制器的PID 控制曲线

图16 有解耦控制器的PID控制曲线

由上图可知,未加入解耦控制器控制时,系统的输出特性曲线存在震荡,无法保持系统稳定,不能达到控制要求。当系统加入了解耦控制器以后(图16),系统能够保持稳定,且最终接近系统能够接近系统设定值。超调量为 4.7%,调节时间为12min。能够达到系统的控制要求,所以该控制器的设计符合系统要求。

2.5纯滞后温度控制实验数据处理与分析

构造一个纯滞后系统,以纯滞后水箱的水温为检测对象,选择测量点并设置PID参数,然后再构成水循环系统,组成控制回路并选择PID控制器的工作点,然后选择其参数。最后通过“实时趋势”或“历史趋势”窗体,观察其控制效果,测绘趋势曲线,并进行系统性能评估。

以下为实验结果图:

图17 纯滞后温度控制结果图

表1 系统阶跃响应参数

通过历史曲线图和阶跃响应数据统计表可知,系统最后区域稳定,基本符合控制要求。

2.6 调节过程中遇到的问题

Q1:调节过程中由于没有实际的工程经验,一开始进行PID 参数整定时不知道该如何下手,导致参数过大,使得仿真图形出现震荡,一时间无从下手。 解决办法:通过上网查阅资料,我重新调整PID 参数,一步一步整定PID 参数,才得到符合条件的响应曲线。

Q2、PID 参数整定的过程中,得到的响应曲线超调量过大,调节时间太长。 解决办法:根据PID 参数的整定方法,了解了d i p K K K ,,各个参数的作用,减少了比例系数的大小,同时调节了积分、微分系数,终于得到了符合条件的仿真曲线。

三、心得体会

3.1实验过程中的不足和问题分析

在本次课程设计过程中,遇到了很多问题,有想到的,也有没有想到的。我原本以为我只是对PID参数的整定不太熟悉,缺乏经验,但是实际操作过程中却发现我遗忘了PID控制的大部分知识,导致参数整定时不知从何下手,十分尴尬。而且很多东西只是知其然而不知其所以然,使我的仿真之路艰难异常。解决方法是找到之前的教材,认真复习,并且通过网上查询资料,了解各参数的作用,在复习完之后,继续进行仿真实验。

3.2实验的任务总结和经验收获

首先,是知识方面的收获,通过这次课程设计让我对所学课程又有了更多的了解,对这门学科在现实生活中的应用也有了更全面的的了解,同时也体会到了知识在现代社会中的重要作用。其次,是与人沟通方面的收获,这次实验室八个人为一小组,分工合作,遇到不懂的问题互相讨论,很快就完成了老师所要求的任务,现代社会生活节奏较快,知识更新速度加快,每个人都应该不断学习,不断充实自己,要学会与人合作,这样才能提高办事效率,如果不与人合作,往往事倍功半。

过程控制系统 复习总结!

过程控制系统知识点总结 ) 一、概论 1、过程控制概念:五大参数。 过程控制的定义:工业中的过程控制是指以温度、压力、流量、液位和成分等工艺参数作为被控变量的自动控制。 2、简单控制系统框图。 控制仪表的定义:接收检测仪表的测量信号,控制生产过程正常进行的仪表。主要包括:控制器、变送器、运算器、执行器等,以及新型控制仪表及装置。 控制仪表的作用:对检测仪表的信号进行运算、处理,发出控制信号,对生产过程进行控制。 3、能将控制流程图(工程图、工程设计图册)转化成控制系统框图。

4、DDZ-Ⅲ型仪表的电压信号制,电流信号制。QDZ-Ⅲ型仪表的信号制。它们之间联用要采用电气转换器。 5、电信号的传输方式,各自特点。 电压传输特点: 1). 某台仪表故障时基本不影响其它仪表; 2). 有公共接地点; 3). 传输过程有电压损耗,故电压信号不适宜远传。 电流信号的特点: 1).某台仪表出故障时,影响其他仪表; 2).无公共地点。若要实现仪表各自的接地点,则应在仪表输入、输出端采取直流隔离措施。 6、变送器有四线制和二线制之分。区别。 1、四线制:电源与信号分别传送,对电流信号的零点及元件的功耗无严格要求。 2、两线制:节省 第一个字母:参数类型 T —— 温 度 (Temperature ) P ——压力(Pressure ) L ——物位(Level ) F ——流量(Flow ) W ——重量(Weight ) 第二个字母:功能符号 T —— 变 送 器 (transmitter ) C —— 控 制 器 (Controller ) I ——指示器(Indicator ) R ——记录仪(Recorder ) A ——报警器(Alarm ) 加热 制燃料

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

过程控制实验报告

过程控制实验 实验报告 班级:自动化1202 姓名:杨益伟 学号:120900321 2015年10月 信息科学与技术学院 实验一过程控制系统建模 作业题目一: 常见得工业过程动态特性得类型有哪几种?通常得模型都有哪些?在Simulink中建立相应模型,并求单位阶跃响应曲线、 答:常见得工业过程动态特性得类型有:无自平衡能力得单容对象特性、有自平衡能力得单容对象特性、有相互影响得多容对象得动态特性、无相互影响得多容对象得动态特性等。通常得模型有一阶惯性模型,二阶模型等、 单容过程模型 1、无自衡单容过程得阶跃响应实例 已知两个无自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2、自衡单容过程得阶跃响应实例 已知两个自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响得多容过程得阶跃响应实例 已知有相互影响得多容过程得模型为,当参数, 时,试在Simulink中建立模型,并求单位阶跃响应曲线在Simulink中建立模型如图所示:得到得单位阶跃响应曲线如图所示:

4、无相互影响得多容过程得阶跃响应实例 已知两个无相互影响得多容过程得模型为(多容有自衡能力得对象)与(多容无自衡能力得对象),试在Simulink中建立模型,并求单位阶跃响应曲线。 在Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

过程控制系统 复习总结

过程控制系统知识点总结 ) 一、概论 1、过程控制概念:五大参数。 过程控制的定义:工业中的过程控制就是指以温度、压力、流量、液位与成分等工艺参数作为被控变量的自动控制。 2、简单控制系统框图。 控制仪表的定义:接收检测仪表的测量信号,控制生产过程正常进行的仪表。主要包括:控制器、变送器、运算器、执行器等,以及新型控制仪表及装置。 控制仪表的作用:对检测仪表的信号进行运算、处理,发出控制信号,对生产过程进行控制。 3、能将控制流程图(工程图、工程设计图册)转化成控制系统框图。 4、DDZ -Ⅲ型仪表的电压信号制,电流信号制。QDZ-Ⅲ型仪表的信号制。它们之间联用要采用电气转换器。 5、电信号的传输方式,各自特点。 电压传输特点: 1)、 某台仪表故障时基本不影响其它仪表; 2)、 有公共接地点; 3)、 传输过程有电压损耗,故电压信号不适宜远传。 电流信号的特点: 1)、某台仪表出故障时,影响其她仪表; 2)、无公共地点。若要实现仪表各自的接地点,则应在仪表输入、输出端采取直流隔离措施。 6、变送器有四线制与二线制之分。区别。 1、四线制:电源与信号分别传送,对电流信号的零点及元件的功耗无严格要求。 2、两线制:节省电缆及安装费用,有利于防爆。活零点,两条线既就是信号线又就是电源线。 7、本安防爆系统的2个条件。 第一个字母:参数类型 T ——温度(Temperature) P ——压力(Pressure) L ——物位(Level) F ——流量(Flow) W ——重量(Weight) 第二个字母:功能符号 T ——变送器(transmitter) C ——控制器(Controller) I ——指示器(Indicator) R ——记录仪(Recorder) A ——报警器 (Alarm) 加热炉

自动控制系统课程设计报告说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:自动控制理论课程设计 设计题目:直线一级倒立摆控制器设计 院系:电气学院电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.6.6-2016.6.19 手机: 工业大学教务处

*注:此任务书由课程设计指导教师填写。

直线一级倒立摆控制器设计 摘要:采用牛顿—欧拉方法建立了直线一级倒立摆系统的数学模型。采用MATLAB 分析了系统开环时倒立摆的不稳定性,运用根轨迹法设计了控制器,增加了系统的零极点以保证系统稳定。采用固高科技所提供的控制器程序在MATLAB中进行仿真分析,将电脑与倒立摆连接进行实时控制。在MATLAB中分析了系统的动态响应与稳态指标,检验了自动控制理论的正确性和实用性。 0.引言 摆是进行控制理论研究的典型实验平台,可以分为倒立摆和顺摆。许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统实验直观的表现出来,通过倒立摆系统实验来验证我们所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。 本次课程设计中以一阶倒立摆为被控对象,了解了用古典控制理论设计控制器(如PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,掌握MATLAB仿真软件的使用方法及控制系统的调试方法。 1.系统建模 一级倒立摆系统结构示意图和系统框图如下。其基本的工作过程是光电码盘1采集伺服小车的速度、位移信号并反馈给伺服和运动控制卡,光电码盘2采集摆杆的角度、角速度信号并反馈给运动控制卡,计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动从而保持摆杆平衡。 图1 一级倒立摆结构示意图

DCS集散控制系统课程总结

集散控制系统课程总结 本文将从课程学习框架(附件)、各章节内容、学习心得体会三个方面阐述自己对集散控制系统这门学科的了解,并作出以下总结:(其中学习框架参考书中目录及其自己所看章节而定位;各章节内容由看书过程中认为的重要及疑难问题内容设置而成) 一、DCS概述与PLC的关系 1.1 DCS的概述 1、计算机如何进行处理信息? 控制计算机处理的信息只能是数字量,在实际生产过程中,被控量(如温度、压力、流量等)都是模拟量,执行机构接受的大多数是模拟量。所以,系统需有将模拟信号转换为数字信号的模/数(A/D)转换器和将数字信号转换为模拟信号的数/模(A/D)转换器。 2、计算机控制系统的组成? 主机、输入/输出设备、通信设备、现场设备、操作台、系统软件、应用软件 3、计算机控制系统的分类有哪些? 数据采集系统(DAS)、直接数字控制系统(DDC)、计算机监督控制系统(SCC)、分散控制系统(DCS)、现场总线控制系统(FCS)、综合自动化系统(CIPS) 4、DCS的概念? 集散型控制系统(Total Distributed Control Systems以下称作DCS) 也称为分散控制系统(Distributed Computer Control Systems),它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,分析了计算机、通讯(Communication)、显示(CRT)和控制(Control)等4C技术,其基本思想是分散控制、集中操作、分级管理、配置灵活、组态方便。它是以微处理器为核心,采用数据通讯技术和图形显示技术的新型计算机控制系统。该系统能够完成直接数字控制、顺序控制、批量控制、数据采集与处理、多变量解耦控制以及最优控制等功能,在先进的集散型控制系统中,还包含有生产的指挥、调度和管理功能。 5、DCS集散控制系统的特点? 1).采用分散技术、集中操作、分级管理、分而自治和综合协调发展的设计原则,大大提 高系统的可靠性。 2).采用4C技术,即Control控制技术;Computer计算机技术;Communication 通信技术; Cathode Ray Tube CRT显示技术。

风力摆控制系统设计报告

大学生电子设计竞赛 风力摆控制系统 学院: 计算机学院 项目:风力摆控制系统 负责人:王贤朝 指导老师:张保定 时间: 2017年5月20日

摘要 本系统采用K60开发板作为控制中心,与万向节、摆杆、直流风机(无刷 电机+扇叶)、激光头、反馈装置一起构成摆杆运动状态与风机速度分配的双闭 环调速系统。单片机输出可变的PWM波给电机调速器,控制4个方向上风机的风速,从而产生大小不同的力。利用加速度计模块MPU6050,准确测出摆杆移动的位置与中心点位置之间的关系,采样后反馈给单片机,使风机及时矫正,防止脱离运动轨迹。使用指南针模块判别方向,控制系统向指定方向偏移。控制方式采用PID算法,比例环节进行快速响应,积分环节实现无静差,微分环节减小超调,加快动态响应。从而使该系统具有良好的性能,能很好地实现自由摆运动、快速制动静止、画圆、指定方向偏移,具有很好地稳定性。 关键词:K60、空心杯电机、MPU6050、PID、无线蓝牙 目录 一、系统方案.............................................. 1.1 系统基本方案...................................... 1.1.1 控制方案设计................................ 1.1.2 机械结构方案设计............................ 1.2 各部分方案选择与论证 (1) 1.2.1电机选择 (1) 1.2.2 电机驱动的选择.............................. 1.2.3 摆杆与横杆的连接选择........................

武汉科技大学过程控制课程设计报告

二○一二~二○一三学年第一学期信息科学与工程学院课程设计报告书课程名称:过程控制与集散系统课程设计班级:自动化班 学号: 姓名: 指导教师:刘晓玉 二○一二年十月

一、题目、任务及要求 1. 设计题目 锅炉过热汽温串级控制系统设计 2. 设计任务 图1所示锅炉过热汽的温度采用以减温器喷水的方法加以控制,要求过热汽温θ1稳定在给定值。鉴于减温器距离过热器出口较远、过热器热容较大,且减温水易出现自扰(如减温水水压不稳),试设计合理的控制方案,维持过热汽温θ1的恒定。 过热器高温段 图1 锅炉过热汽温控制系统 二、设计任务分析 1、系统建模 1)单回路控制

2)串级控制 2、控制方案 1)单回路控制 单回路控制系统是由被控对象、控制器、执行器、和测量变送装置四大基本部分组成。在广义对象(被控对象、执行器、和测量变送装置)特性已确定,不能改变的情况下,只能通过控制规律的选择来提高系统的稳定性与控制质量。 常用的控制规律主要有:位式控制、P控制、PI控制、PD控制、PID控制。2)串级控制 当对象容量滞后或纯滞后较大,负荷和干扰变化比较剧烈而频繁,或是工艺对产品质量的要求很高时,而采用单回路控制方法不太有效,这时就可以采用串级控制。 串级控制系统,采用两个控制器串联工作,主控制器的输出作为副控制器的设定值,由副控制器的输出去操纵调节阀。及时调节校正二次干扰,减少对主对象的影响。 3)前馈—反馈复合控制 当反馈控制系统出现较大的动态偏差时,采用前馈控制方式,在扰动尚未影响被控对象前,提前调节已补偿扰动对被控对象的影响。 3、控制方案比较 锅炉过热汽温控制系统,以减温器的喷水作为控制手段,目的是控制过热汽温稳定在给定值。因为减温器距离过热器出口较远,且过热器管壁热容较大,

过程控制系统论文关于过程控制的论文

过程控制系统论文关于过程控制的论文 高炉TRT过程控制系统的研究与应用 摘要:TRT为高炉煤气余压能量回收透平发电装置的简称,它是把高炉出口煤气中所蕴含的压力能和热能,通过透平膨胀机作功,驱动发电机发电的一种能量回收装置。从而达到节能、降噪、环保的目的,具有很好的经济效益和社会效益,是目前现代国际、国内钢铁企业公的节能环保装置。TRT机组运行的关键是:在任何时刻,都不能影响高炉的炉顶压力。 关键词:PLC;可靠性;PID;自动控制 1 概述 TRT为高炉煤气余压能量回收透平发电装置的简称,它是把高炉出口煤气中所蕴含的压力能和热能,通过透平膨胀机作功,驱动发电机发电的一种能量回收装置。从而达到节能、降噪、环保的目的,具有很好的经济效益和社会效益,是目前现代国际、国内钢铁企业公认的节能环保装置。 2 高炉TRT过程控制系统工艺简介 目前,作为我国高炉节能、降噪、环保的能量回收装置TRT,不可避免在运行过程中出现紧急停机现象。特别是目前高炉普遍的塌料现象,如果对于系统的过程控制方案采取不当,将会导致高炉炉顶压力迅间增大,以至“憋压”。当压力超上限,就迫使TRT紧急跳车,使机组及时的退出静叶对高炉顶压的自动调节。当快切阀门关闭以后,调节高炉顶压的控制权就交给两个液压伺服控制的旁通阀(快开阀)。在国内TRT的发展历史上,由于所选择的控制系统方案不当而导致了多次事故的发生,一般情况下很容易将透平止推瓦损坏,更为严重的是由于炉顶压力的迅间增大,给高炉造成了极大的危险和危害,以至被迫停炉,影响了生产。 3 关键技术 通过参照TRT工艺的要求,对机组紧急停机时的高炉顶压调节采取了前馈-反馈(FFC-FBC)控制方案。该控制方案综合了前馈控制与反馈控制的优点,将反馈控制不易克服的干扰(高炉煤气流量)进行前馈控制,快速打开旁通阀,使高炉煤气形成畅通。但是由于前馈控制属于开环控制,尽管可以消除这一不安全因素,但不能完全保证顶压稳定,如果顶压波动较大,势必影响高炉生产,因此就对该过程采取了前馈-反馈控制(也称为复合控制)。机组发电运行阶段,高炉顶压的控制权交给了透平静叶,具有一定的干扰。如果不选择合适的控制方案,则也将影响高炉炉顶压力。为了提高系统的抗干扰能力,我们对这一过程采取了串级控制通过静叶来调节高炉顶压,目前,在国内很多公司TRT控制设备通常在TRT自动投入的时候,通常采取顶压功率复合控制,他们把功率PID调节器输出与顶压PID调节器输出的最小值作为顶压功率复合调节的输出。这种控制方案的实施在抗干扰能力方面稍逊于串级控制思想方案的调节。因为一般在设备运行过程中,高炉煤气发生量随时变化,除此之外,煤气的温度及透平入口的压力也时刻在发生变化,这将会造成静叶的开度时刻的改变,这就是调节过程中产生的干扰因素。为此要克服对高炉顶压调节的干扰,采取串级控制回路调节是山东莱钢银前1000m3高炉TRT系统控制的一大亮点。这种调节方案的实施稳定的调节高炉的炉顶压力,设备运行稳定,也给操作人员带来了便利。从高炉TRT串级调节系统方框途中可以看出,该系统有两个环路,一个内环(副环)和一个外环(主环)。PID调节器是主调节器,伺服控制器是副调节器。主被控变量为高炉炉顶压力,透平静叶的开度为副变量。主控制器的输出是副控制器的给定,而副控制器的输出直接送到电液伺服阀。在该串级控制系统中,主环是一个定值控制系统,而副回路是一个随动系统。对于本系统采取串级控制思路有如下好处:首先,从TRT系统的串级调节方框图上可以看出,由于副回路的存在,改善了对象(高炉炉

过程控制系统综合设计报告

过程控制系统综合设计报告 班级: 姓名: 学号: 学期:

一、实验目的与要求 1.掌握DDC控制特点; 2.熟悉CS4100实验装置,掌握液位控制系统和温度控制系统构成; 3.熟悉智能仪表参数调整方法及各参数含义; 4.掌握由CS4100实验装置设计流量比值控制、液位串接控制、液位前馈反馈控制及四水箱解耦控制等设计方法; 5.掌握实验测定法建模,并以纯滞后水箱温度控制系统作为工程案例,掌握纯滞后水箱温度控制系统的建模,并用DDC控制方案完成控制算法的设计及系统调试。 以水箱流量比值控制、水箱液位串接控制、水箱液位前馈反馈控制及四水箱解耦控制为被被控对象,完成系统管路设计、电气线路设计、控制方案确定、系统调试、调试结果分析等过程的训练。以纯滞后水箱作为被控对象,以第二个水箱长滞后温度作为被控量,完成从实验测定法模型建立、管路设计、线路设计、控制方案确定、系统调试、结果分析等过程的训练。 具体要求为: 1)检索资料,熟悉传感器、执行器机械结构及工作原理。 2)熟悉CS4100过控实验装置的机械结构,进行管路设计及硬件接线; 3)掌握纯滞后水箱温度控制系统数学模型的建立方法,并建立数学模型; 4)掌握智能仪表参数调节方法; 5)进行控制方案设计,结合具体数学模型,计算系统所能达到性能指标,并通过仿真掌握控制参数的整定方法; 6)掌握系统联调的步骤方法,调试参数的记录方法,动态曲线的测定记录方法。记录实验数据,采用数值处理方法和相关软件对实验数据进行处理并加以分析,记录实验曲线,与理论分析结果对比,得出有意义的结论。 7)撰写实验设计报告、实验报告,具体要求见:(五)实践报告的内容与要求。 二、实验仪器设备与器件 1.CS4100过程控制实验装置 2.PC机(组态软件) 3.P909智能仪表若干

过程控制课设报告

过程控制课设报告

课程设计报告 (2015—2016年度第二学期) 名称:过程控制课程设计 题目:电厂锅炉过热蒸汽温度控制系统 院系:控制与计算机工程学院 班级:

姓名: 学号: 指导老师:张建华老师 设计周数: 1 周 日期:2016年6月24日 设计正文: 1.控制系统的基本任务和要求 过热蒸汽温度控制的任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以致烧坏过热器的高温段,严重影响安全。一般规定过热蒸汽的温度上限不能高于其额定值+5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,汽温每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽湿度升高,甚至使之带水,严重影响汽轮机的安全运行。所以,过热蒸汽温度过高或过低都是生产过程所不允许的。 以600MW机组国产直流锅炉为例,其过热蒸汽温度额定值为541℃(主汽压力为17.3MPa),在负荷为额定值的60%~100%范围内变化时,过热蒸汽温度不超过额定值的-10~+5,长期偏差不允许超过±5℃。为了防止过快的蒸汽温度变化速率造成某些高温工作不部件产生较大的热应力,还对温度变化速率进行限制,一般限制在3℃/min内。 本次课程设计以600MW超临界直流锅炉主汽温控制系统为例: 某电厂600MW 汽包锅炉过热蒸汽温度是通过喷水减温来实现对温度的自动调节。已知该系统减温水流量W和过热蒸汽流量D可通过加装流量计进行检测,电动调节阀的开度可根据控制器输出值自动调整。其动态特性如下:

过程控制系统方案设计

过程控制仪表与系统 题目:工业含硫废气控制系统方案设计 学院:信息科学与工程学院 专业班级:测控技术与仪器1503班 学号: 7 学生姓名:王哲 教师:李飞

工业含硫废气控制系统方案设计 摘要:许多化工厂在厂区内燃料燃烧和生产工艺过程中都会产生各种含有污染的有害气体,其中含硫的气体对环境造成的污染尤为严重。因此对含硫废气正确合理的处理至关重要。在我国工业含硫废气一般多采用焚烧工艺,经焚烧炉焚烧,使污染性气体转换成安全物质。经方案论证后,本设计采用双闭环串级控制系统,控制目标温度在600-800℃设定尾气焚烧炉炉温波动范围不超过±30℃。该控制系统中运用PID算法,传感器将检测到的模拟信号送到变送器,变送器输出4~20mA的电流信号。将变送器输出的标准信号送入控制器中,控制器通过分析比较所测参数与预设参数之后输出控制信号,执行器根据传送过来的信号进行变化,最终达到对系统温度的控制。 关键词:双闭环串级控制系统;炉温控制;流量控制;变送器 1 引言 含硫废气与加氢反应器出口过程器被加热至270-320℃左右与外补富氢气混合后进入加氢反应器在加氢催化剂的作用下转化为H2S。加氢反应为放热反应,离开反应器的尾气-换热器换冷却后进入冷凝塔。 废气在冷凝塔中利用循环机冷水来降温。70℃冷凝水自冷凝塔底部流出,经济冷泵加压后经急冷水冷却器用循环水冷却至40℃,循环至冷却塔顶。部分急冷水经急冷水过滤器过滤后返回急冷水泵入口。尾气中的水蒸气被冷凝,产生的酸性水由急冷水泵送至酸性水处理处。为防止酸性水对设备的腐蚀,需向急冷水中注入氨根据ph值大小决定注入氨的量。 冷凝后的尾气离开冷凝塔进入回收塔,用30%的甲基二乙醇胺溶液吸收废气中的硫化氢,同时吸收部分二氧化碳。吸收塔底富液用富液泵送至溶剂再生部分统一处理。从塔顶出来的净化气经尾气分液罐分液后进入焚烧炉燃烧,有燃料气流量控制炉膛温度;废气中残留的硫化氢几乎全转化成二氧化硫,最后再对二氧化硫进行处理。 焚烧炉要控制温度在600-800℃,保证尾气可以充分燃烧,对环境和人的健康都没有危害。 温度控制系统可采用的方法有双闭环串级控制系统、前馈控制系统、比值控制系统、前馈-反馈控制系统、分程控制系统等。

过程控制系统考试知识点复习和总结终极版

过程控制系统考试知识点复习和总结 终极版 第五章复杂控制系统(串级、比值、均匀、分程、选择、前馈、双重控制)

串级控制系统 定义:采用不止一个控制器,而且控制器间相串接,一个控制器的输出作为另一个控制器的设定值的系统。 调节过程: 当燃料气压力或流量波动时,加热炉出口温度还没有变化,因此,主控制器输出不变,燃料气流量控制器因扰动的影响,使燃料气流量测量值变化,按定值控制系统的调节过程,副控制器改变控制阀开度,使燃料气流量稳定。与此同时,燃料气流量的变化也影响加热炉出口温度,使主控制器输出,即副控制器的设定变化,副控制器的设定和测量的同时变化,进一步加速了控制系统克服扰动的调节过程,使主被控变量回复到设定值。 当加热炉出口温度和燃料气流量同时变化时,主控制器经过主环及时调节副控制器的设定,使燃料气流量变化保持炉温恒定,而副控制器一方面接受主控制器的输出信号,同时,根据燃料气流量测量值的变化进行调节,使燃料气流量跟踪设定值变

化,使燃料气流量能根据加热炉出口温度及时调整,最终使加热炉出口温度迅速回复到设定值。 特点: 能迅速克服进入副回路扰动的影响 串级控制系统由于副回路的存在,改进了对象特性,提高了工作频率 串级控制系统的自适应能力 设计: ⑴主、副回路 副回路应尽量包含生产过程中主要的、变化剧烈、频繁和幅度大的扰动,并力求包含尽可能多的扰动。设计副回路应注意工艺上的合理性;应考虑经济性;注意主、副对象时间常数的匹配 ⑵串级控制系统中主、副控制器控制规律 主控制器起定值控制作用,副控制器对主控制器输出起随动控制作用,而对扰动作用起定值控制作用。主被控变量要求无余差,副被控变量却允许在一定范围内变动。主控制器可采用比例、积分两作用或比例、积分、微分三作用控制规律,副控制器单比例作用或比例积分作用控制规律。 ⑶主、副控制器正、反作用的选择

过程控制实验报告

东南大学自动化学院 实验报告 课程名称:过程控制实验 实验名称:水箱液位控制系统 院(系):自动化专业:自动化姓名:学号: 实验室:实验组别: 同组人员: 实验时间: 评定成绩:审阅教师:

目录 一、系统概论 (3) 二、对象的认识 (4) 三、执行机构 (14) 四、单回路调节系统 (15) 五、串级调节系统Ⅰ (18) 六、串级调节系统Ⅱ (19) 七、前馈控制 (21) 八、软件平台的开发 (21)

一、系统概论 1.1实验设备 图1.1 实验设备正面图图1.2 实验设备背面图 本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、流量计、压力传感器、温度传感器、操作面板等。 1.1.2 铭牌 ·加热控制器: 功率1500w,电源220V(单相输入) ·泵: Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V, IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B ·全自动微型家用增压器: 型号15WZ-10,单相电容运转马达 最高扬程10m,最大流量20L/min,级数2,转速2800rmp,电压220V, 电流0.36A,频率50Hz,电容3.5μF,功率80w,绝缘等级 E ·LWY-C型涡轮流量计: 口径4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V, 标准信号输出4-20mA,负载0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65 ·压力传感器 YMC303P-1-A-3 RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V- ·SBWZ温度传感器 PT100 量程0-100℃,精度0.5%Fs,输出4-20mADC,电源24VDC

风力摆控制系统设计报告

2015 全国大学生电子设计竞赛 风力摆控制系统(B题) 【本科组】 2015年8月15日

摘要:本设计是基于STM32F103VE单片机为核心的简易风力摆控制系统,该系统由电源供电模块,直流风机及驱动模块、角度检测模块、信息处理模块、继电器及驱动模块、蜂鸣指示模块和液晶显示模块构成。STM32F103VE通过改变PWM占空比来实现对直流风机速度及方向的控制,该风力摆控制系统能够实现题目要求,简单做直线运动、复杂做圆周运动。 关键字:风力摆角度传感器单片机自动控制系统 一.方案论证: 1.系统结构 1)机械结构如图1所示。 一长约67cm的吸管上端用万向节固定在支架上,下方悬挂4只直流风机,中间安装陀螺仪,构成一风力摆。风力摆下安装一向下的激光笔,静止时,激光笔下端距离地面18cm。 图 1 2)测控电路结构 测控电路结构如图2所示。 编码器按键

图2 2.方案比较与选择 其实整体电路架构上图已经给定,主要是几个关键部分————直流风机选型及架构、直流风机驱动电路、传感器、主控芯片选择,我们分析如下: 1)直流风机的选型 方案一:采样大电流成品直流风机,虽然风力够大,但驱动多个风机所需电流过大,单个电源难以满足要求,而且比较重,多个电机使得惯性过大难以控制。鉴于以上两点,弃用。 方案二:采用小型高速电机加螺旋桨自制直流风机,风力大,体积小,质量轻,而且性价比高。 风力摆控制系统风机质量轻,减小惯性,容易起摆;风力大,风速控制范围大,摆动角度大;体积小,减少外部的干扰;鉴于以上几点,本设计采用方案二。 STM32微处理器 角度传感器 直流风机 电机驱动电路 风机供电 OLED 液晶显示 蜂鸣器

过程控制课程设计报告书

过程控制课程设计 设计题目:贮槽液位控制系统设计 学院:电气工程学院 专业班级:自动化2012级3班 小组成员:叶荣荣1202100509 戴忻蓓1202100504 刘悦1202100535 陈婷婷1202100511 指导老师:徐辰华老师 日期:2015 年7月4日

摘要 日新月异的自动化技术为传统产业的改造、生产水平的提高和产品更新换代注入了强大活力。微电子技术和计算机、通信、网络技术的崛起,给自动化技术假期了腾飞的双翼,成为当代发展最快、影响最大、最引人注目的高技术之一,在百花争艳的信息化舞台上都灵风少。现在,自动化技术不仅渗透于国民经济各行各业,对社会、经济、文化、军事、科技等各个领域都有着深刻的影响,而且正悄然地改变着人们的生产、工作、生活乃至思维方式。在现代工业生产过程中,随着生产规模的不断扩大、生产过程的强化、对产品质量的严格要求以及各公司之间的激烈竞争,人工操作与控制已远远不能满足现代化生产的要求。过程控制系统以及成为工业生产过程必不可少的装备,为保证现代企业安全、优质、低消耗和高效益生产提供了有效的技术手段。 在本次课程设计中,给出液体贮槽的结构图,要求液位贮槽内的液位需维持在某给定值上下,或在某一小范围内变化,并保证物料不产生溢出。根据过程控制设计原则——用最简单的系统实现过程控制。基于此,我们选用了单回路反馈控制系统。 关键字:自动化技术过程控制系统液位控制单回路

Rapid automation technology for traditional industry reformation, the improvement of production and product upgrading injected strong vitality.Microelectronics technology and the rise of computer, communication and network technology to the automation technology vacation fly wings, become the fastest growing, most affected, one of the most striking high technology in Turin, flowers bloom information stage of the wind.Now, automation technology not only penetrates into the national economy in all walks of life to society, economy, culture, military, science and technology and other fields have a profound effect, and is quietly changing people's production, work, life and even the way of thinking.In modern industrial production process, with the expansion of the scale of production, the production process, to strengthen the strict requirements of product quality and the fierce competition between companies, manual operation and the control has far cannot satisfy the requirement of modern production.Process control system, and become the indispensable equipment in industrial production process, to ensure the safety of the modern enterprise, high quality, low consumption and high benefit production provides effective technical means. In the curriculum design of liquid storage tank structure, demand level in the storage tank to maintain in a given value of liquid level fluctuation, or change in a small scope, and to ensure that the material does not produce overflow.According to the process control design principle with the simplest system implementation, process control.Based on this, we choose the single loop feedback control system.

过程控制系统课程设计

步进式加热炉控制系统设计 一、步进式加热炉工艺流程 1. 步进式加热炉简介 ⑴步进式加热炉步进式加热炉是一种靠炉底或水冷金属梁的上升、前进、下降、后退的动作 把料坯一步一步地移送前进的连续加热炉。 炉子有固定炉底和步进炉底,或者有固定梁和步进梁。前者叫做步进底式炉,后者叫做步进梁式炉。轧钢用加热炉的步进梁通常由水冷管组成。步进梁式炉可对料坯实现上下双面加热。 (2)步进式炉的几种类型 步进式炉从炉子构造上分目前有:单面供热步进式炉、两面供热步进式炉、钢料可以翻转的步进式炉、交替步进式炉、炉底分段的步进式炉等等。 单面供热步进式炉也称步进底式炉,钢料放置在耐火材料炉底或铺设在炉底上的钢枕上。钢坯吸热主要来自上部炉膛,由于一面受热,这种炉子的炉底强度较低。它适用于加热薄板坯、小断面方坯或有特殊要求的场合。 两面供热步进式炉也称步进梁式炉,活动梁和固定梁上都安设有能将钢坏架空的炉底水管。在钢坯的上部炉膛和下部炉膛都设置烧嘴,因此炉底强度较高,适用于产量很高的板坯或带钢轧前加热。 钢坯可以翻转的步进式炉是每走一步炉内钢料可以翻转某一角度,步进梁和固定梁都带有锯齿形耐热钢钢枕,这是加热钢管的步进式炉,每走一步钢管可以在锯齿形钢枕上滚动一小段距离,使受热条件较差的底面逐步翻转到上面,以求加热均匀。 交替步进式炉则有两套步进机构交替动作。运送过程中,钢坯不必上升和下降,振动较小,底面不会被划伤,表面质量较好 炉底分段的步进式炉的加热段和预热段可以分开动作。例如预热段每走一步,加热段可以

走两步或两步以上。这种构造是专门为易脱碳钢的加热而设计的。钢坯在预热段放置较密,可以得到正常的预热作用,在加热段钢坯前进较快,达到快速加热,以减少脱碳。 (3)步进式炉的优缺点 步进式炉是借机械将炉内钢坯托着一步一步前进,因此钢坯与钢坯还不必紧挨着,其间距可根据需要加以改变。 原始的步进式炉只用于加热推钢机无法推进的落板坯或异形坯,随着轧机的大型化和连续化,推钢式炉已不能满足轧机产量和质量的要求。在这种情况下,近十年来造价较高的步进式炉得到了快速发展,其结构也日趋完善。 步进式炉具有以下特点:(1)炉子长度不受钢坯厚度的限制,不会拱钢,炉子可以建得很长,目前有些炉子已接近60 米长,一个步进式炉可以代替1.5—2 个推钢式炉。(2)操作上灵活性较大,可以通过改变装料间隙调节钢坯加热时间,且更换品种方便。(3)炉内钢料易于清空,减少停炉时清除炉内钢料的时间。(4)钢坯在炉内不与水管摩擦,不会造成通过轧制还不能消除的伤痕。(5)水管黑印小,即能得到尺寸准确的轧材。(6)两面加热步进式炉可以不要实底均热段,因此加热能力比推钢式炉稍大。(7)没有出料滑坡,减少了由于滑坡高差作用而吸入炉内的冷空气。(8)钢坯有侧面加热,这样可实现三面或四面加热,因此加热时间短,钢坯氧化少。( 9)生产能耗大幅度降低,从炼钢连铸后开始全连续的直接生产。( 10)产量大幅度提高,在100* 104t/a 以上。( 11)生产自动化水平非常高,原加热炉的控制系统大都是单回路仪表和继电器逻辑控制系统,传动系统也大多是模拟量控制式供电装置,现在的加热炉的控制系统大多数都具有二级过程控制系统和三级生产管理系统,传动系统都是全数字化的直流或交流供电装置。 步进式炉的缺点是炉底机械设备庞大,维护和检修都较复杂,炉子造价太高。两面供热的步进式炉炉底水管较多,热损失大。单面供热的步进式炉虽然无水冷热损失,但产量较低。因此,尽管步进式炉有很多优点,仅由于它造价太高,目前在中小型厂全面推广还不适宜。

过程控制系统考试知识点总结

过程控制系统知识点总结 考试题型 一、判断题(共10分) 二、单选(20分) 三、填空(10分) 四、简答题(5小题,共20分) 五、分析计算题(4小题,共40分,每题10分) 一、概论 1、过程控制概念:五大参数。 过程控制的定义:工业中的过程控制是指以温度、压力、流量、液位和成分等工艺参数作为被控变量的自动控制。 2、简单控制系统框图。 控制仪表的定义:接收检测仪表的测量信号,控制生产过程正常进行的仪表。主要包括:控制器、变送器、运算器、执行器等,以及新型控制仪表及装置。 控制仪表的作用:对检测仪表的信号进行运算、处理,发出控制信号,对生产过程进行控制。 3、能将控制流程图(工程图、工程设计图册)转化成控制系统框图。 4、DDZ -Ⅲ型仪表的电压信号制,电流信号制。QDZ-Ⅲ型仪表的信号制。它们之间联用要采用电气转换器。 5、电信号的传输方式,各自特点。 电压传输特点: 1). 某台仪表故障时基本不影响其它仪表; 2). 有公共接地点; 3). 传输过程有电压损耗,故电压信号不适宜远传。 电流信号的特点: 1).某台仪表出故障时,影响其他仪表; 2).无公共地点。若要实现仪表各自的接地点,则应在仪表输入、输出端采取直流隔离措施。 6、变送器有四线制和二线制之分。区别。 1、四线制:电源与信号分别传送,对电流信号的零点及元件的功耗无严格要求。 2、两线制:节省电缆及安装费用,有利于防爆。活零点,两条线既是信号线又是电源线。 第一个字母:参数类型 T ——温度(Temperature ) P ——压力(Pressure ) L ——物位(Level ) F ——流量(Flow ) W ——重量(Weight ) 第二个字母:功能符号 T ——变送器(transmitter ) C ——控制器(Controller ) I ——指示器(Indicator ) R ——记录仪(Recorder ) A ——报警器(Alarm ) 加热炉

过程控制系统课程设计报告

过程控制系统课程设计报告 题目:温度控制系统设计 姓名: 学号: 班级: 指导教师:

温度控制系统设计 一、设计任务 设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。 二、预期实现目标 通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。 三、设计方案 (一)系统数学模型的建立 要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。 在本系统中,被控量是温度。被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。在整个实验过程中,水量是不变的。 经过试验,得到下表所示的时间-温度表: 表1 采样时间和对应的温度值

以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线: 图1 时间-温度曲线 采用实验法——阶跃响应曲线法对温箱系统进行建模。将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。 从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。因此我们选用 ()1s ke G s Ts τ-= + (式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内胆温度系统的数学模型结构。 (1)k 的求法:k 可以用下式求得: ()(0) y y k x ∞-= (x :输入的阶跃信号幅值)

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

相关主题