搜档网
当前位置:搜档网 › 吸收光谱法基本原理

吸收光谱法基本原理

吸收光谱法基本原理

吸收光谱法基本原理

一、物质对光的选择性吸收

1.光的基本性质

紫外光:200-400nm 可见光:400-750nm 红外:0.75-50μm

单色光:单一波长的光。 复合光:由不同波长的光组成的光。

互补色光:按一定比例混合,能够组成白光的两种光称为~。

?溶液呈现的颜色是它吸收光的互补色。

?两互补色按一定比例混合后,可得到白色。

2.吸收光谱

由于不同的物质微粒具有不同的量子能级,其能量差也不同,因此物质对光的吸收具有选择性。分子能级图,

吸收光谱曲线:A ~C 曲线。它反映某溶液对不同单色光的吸收程度,在最大吸收波长处

测定吸光度,则灵敏度最高。

a.λmax 与c 无关

b. A ∝c

二、光吸收的基本定律

1. 朗伯-比尔定律

1760年,Lambert 用实验指出,当光通过透明介质时,光的减弱程度与光通过介质的光程成正比。1852年,Beer 研究证明了,光的吸收程度与透明介质中光所遇到的吸光质点的数目成正比,在溶液中即与吸光质点的浓度成正比。

吸光度: 透光率:

0lg I A Kbc I ==0I T I =01lg lg I A I T ==

火焰原子吸收光谱法

火焰原子吸收光谱法测定自来水中的钙.镁含量

实验目的 z1、了解原子吸收分光光度计的基本结构和原理。z2、掌握火焰原子吸收光谱分析的基本操作。 z3、熟悉用标准曲线法进行定量测定的方法。

实验原理 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律 A= -lg I/I = -lgT= KCL 式中I为透射光强度,I 0为发射光强度,T为透射比, L为光通过原子化器光程由于L是不变值所以A=KC。 原子吸收分光光度分析具有快速.灵敏.准确.选择性好.干扰少和操作简便等优点。

操作要点 z标准溶液的配制 (1)钙标准溶液系列;准确吸取2.00.4.00.6.00.8.00.10.0ml钙的标准使用液(100ug/ml)分别置于5只25ml容量瓶中,用去离子水稀释至刻度。 (2)镁标准溶液系列;准确吸1.00.2.00.3.00.4.00.5.00ml镁的标准使用液(50ug/ml)分别置于5只25ml 容量瓶中,用去离子水稀释至刻度。 (3)配制自来水样溶液;准确吸取5ml自来水置于25ml容量瓶中,用去离子水稀释至刻度。 根据实验条件将原子吸收分光光度计按仪器操作步骤进行调节,待仪器电路和气路系统达到稳定时,即可进样。 分别测定各标准溶液系列溶液的吸光度和自来水样的吸光度。

实验数据及处理 z从计算机上列表记录钙.镁标准溶液系列溶液的吸光度,然后,分别以吸光度为纵坐标,标准溶液系列浓度为横坐标,用坐标纸绘制标准曲线。 z测定自来水样的吸光度,然后,在上述标准曲线上查得水样中钙.镁浓度(ug/ml),经稀释需乘上倍数,求得原始自来水中钙.镁含量。

gnss测量原理及应用(1)

GNSS测量原理及应用 一、GNSS测量原理(以GPS为代表) (一)、GPS基本原理 GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。 GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A 码频率,重复周期一毫秒,码间距1微秒,相当于300m;P码频率,重复周期天,码间距微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。可见GPS导航系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。 GPS接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几

附红外吸收光谱(IR)的基本原理及应用

附红外吸收光谱(IR)的基本原理及应用 一、红外吸收光谱的历史 太阳光透过三棱镜时,能够分解成红、橙、黄、绿、蓝、紫的光谱带;1800年,发现在红光的外面,温度会升高。这样就发现了具有热效应的红外线。红外线和可见光一样,具有反射、色散、衍射、干涉、偏振等性质;它的传播速度和可见光一样,只是波长不同,是电磁波总谱中的一部分。(图一)、波长范围在0.7微米到大约1000微米左右。红外区又可以进一步划分为近红外区<0.7到2微米,基频红外区(也称指纹区,2至25微米)和远红外区(25微米至1000微米)三个部分。 1881年以后,人们发现了物质对不同波长的红外线具有不同程度的吸收,二十世纪初,测量了各种无机物和有机物对红外辐射的吸收情况,并提出了物质吸收的辐射波长与化学结构的关系,逐渐积累了大量的资料;与此同时,分子的振动――转动光谱的研究逐步深入,确立了物质分子对红外光吸收的基本理论,为红外光谱学奠定了基础。1940年以后,红外光谱成为化学和物理研究的重要工具。今年来,干涉仪、计算机和激光光源和红外光谱相结合,诞生了计算机-红外分光光度计、傅立叶红外光谱仪和激光红外光谱仪,开创了崭新的红外光谱领域,促进了红外理论的发展和红外光谱的应用。 二、红外吸收的本质 物质处于不停的运动状态之中,分子经光照射后,就吸收了光能,运动状态从基态跃迁到高能态的激发态。分子的运动能量是量子化的,它不能占有任意的能量,被分子吸收的光子,其能量等于分子动能的两种能量级之差,否则不能被吸收。 分子所吸收的能量可由下式表示: E=hυ=hc/λ 式中,E为光子的能量,h为普朗克常数,υ为光子的频率,c为光速,λ为波长。由此可见,光子的能量与频率成正比,与波长成反比。 分子吸收光子以后,依光子能量的大小,可以引起转动、振动和电子能阶的跃迁,红外光谱就是由于分子的振动和转动引起的,又称振-转光谱。

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线围 紫外光和可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性围与被测元素的含量成正比: A=KC

式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础 由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。 原子吸收光谱法谱线轮廓 原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素: 1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的

原子吸收题解

习题 1 试述原子吸收光谱法分析的基本原理,并从原理、仪器基本结构和方法特点上比较原子发射光谱与原子吸收光谱的异同点。 2 试述原子吸收光谱法比原子发射光谱灵敏度高、准确度好的原因。 3 原子吸收光谱法中为什么要用锐线光源?试从空心阴极灯的结构及工作原理方面,简要说明使用空心阴极灯可以得到强度较大、谱线很窄的待测元素共振线的道理。 4 阐述下列术语的含义:灵敏度,检出线,特征浓度和特征质量。它们之间有什么关系,影响它们的因素是什么? 5 通常为何不用原子吸收光谱法进行定性分析?应用原子吸收光谱法进行定量分析的依据是什么? 6 简述光源调制的目的及其方法。 7 解释原子吸收光谱分析工作曲线弯曲的原因。并比较标准曲线法和标准加入法的特点。 8 解释下列名词: (1)原子吸收; (2)吸收线的半宽度; (3)自然宽度; (4)多普勒变宽; (5)压力变宽; (6)积分吸收; (7)峰值吸收; (8)光谱通带。 9 原子吸收光谱分析中存在哪些干扰?如何消除干扰? 10 比较火焰法与石墨炉原子化法的优缺点。 11 原子荧光产生的类型有哪些?各自的特点是什么? 12 比较原子荧光分析仪、原子发射光谱分析仪和原子吸收光谱分析仪三者之间的异同点。 13 已知钠的3p 和3s 间跃迁的两条发射线的平均波长为 nm, 计算在原子化温度为2500K 时,处于 3p 激发态的钠原子数与基态原子数之比。 提示:在3s 和3p 能级分别有2个和6个量子状态,故 32 60 == p p j 解:处于 3p 激发态的钠原子数与基态原子数之比,由玻耳兹曼方程计算: kT E j j e p p N N ?-= kT c h j e p p λ-= 2500 1038.11058921000.31063.623710 343 6??????- ---=e 41069.1-?= 14 原子吸收光谱法测定某元素的灵敏度为0.01?g?mL -1 /1%A ,为使测量误差最小,需要得到的吸收值,在此情况下待测溶液的浓度应为多少? 解:灵敏度表达式为: %1/0044.01-= gmL A c S μ 100.10044 .0436 .001.00044.0-=?=?= gmL A S c μ 15 原子吸收分光光度计三档狭缝调节,以光谱通带, 和 nm 为标度,其所对应的狭缝宽度分别为, 和1.0 mm ,求该仪器色散元件的线色散率倒数;若单色仪焦面上的波长差为mm ,

实验1基本测量

实验1 基本测量 1[实验目的] 1.1掌握游标和螺旋测微装置的原理,学会游标卡尺和螺旋测微计的正确使用; 1.2掌握用比重瓶法测定物体密度的原理,学会使用物理天平和比重瓶; 1.3学习仪器的读数方法,并能根据有效数字的概念正确记录实验数据; 1.4掌握不确定度估算和实验结果的正确表示方法。 2[实验仪器] 米尺,游标卡尺,螺旋测微计,物理天平,比重瓶(100ml),金属长方体,金属圆筒,小钢球,蒸馏水(简称水),温度计,细金属条,吸水纸,电吹风(公用)。 3[实验内容] 3.1用米尺测量金属长方体的体积; 3.2用游标卡尺测量金属圆筒的体积; 3.3用螺旋测微计测量钢球的体积; 3.4测金属薄板的密度; 3.5用比重瓶法测小钢球的密度。 4[实验指导] 4.1用米尺测量长方体的体积 测定金属长方体长度(宽度、厚度)时,应选择不同部位测量5次,数据填入表4-1-1。 4.2用游标卡尺测量金属圆筒的体积 (1)检查零点,使游标卡尺两钳密合,观察游标“0”线是否与主尺“0”线对齐,若不对齐则记下零点读数。 (2)用卡尺测圆筒的外径(D1)、内径(D2)和筒长(H),对每一个物理量要求在测量时应选择不同部位测量5次,数据填入表4-1-2。 4.3用螺旋测微计测量钢球的体积 测定螺旋测微计的零点误差,记录量程、最小分度及单位,再将钢球直径测量6次,数据填入表4-1-3。 4.4测金属薄板的密度 (1)用物理天平测出金属薄板在空气中的相应质量m,m=()±0.05 (10-3kg)(2)记录天平感量()kg,天平最大称量()kg,环境温度()℃。 4.5用比重瓶法测待测小钢球的密度 (1)用物理天平称50粒小钢球的质量m,m=()±0.05 (10-3kg); (2)将比重瓶装满水,用吸水纸擦去瓶外及瓶口溢出的水,测出加满水的比重瓶质量Ma; (3)将小钢球放入比重瓶中,盖上瓶盖,擦去多余的水,测出小钢球和加满水的比重瓶的质量Mb; (4)按式(4-1-10)计算小钢球的密度ρ及ρσ,正确表示其结果。 4.6注意事项 (1)米尺的刻度可能不够均匀,在测量要求高时可以选取不同的起点,进行多次测量。 (2)游标卡尺的主尺用cm刻度,游标用mm刻度,注意单位统一。

吸收光谱测量基本原理

吸收光谱简介 纯白光为一连续的从红色到紫色的光谱,但当白光穿过一个有色宝石,一定颜色或波长可被宝石所吸收,这导致该白光光谱中有一处或几处间断,这些间断以暗线或暗带形式出现。许多宝石显示出在可见光谱中吸收带或线的特征样式,其完整的样式被称为"吸收光谱"。吸收光谱 处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列的暗线或暗带组成的光谱。 吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸汽或气体后产生的,如让高温光源发出的白光,通过温度较低的钠的蒸汽就能生成钠的吸收光谱。这个光谱背景是明亮的连续光谱。而在钠的标识谱线的位置上出现了暗线。通过大量实验观察总结出一条规律,即每一种元素的吸收光谱里暗线的位置跟他们明线光谱的位置是互相重合的。也就是每种元素所发射的光的频率跟它所吸收的光频率是相同的。 太阳光谱是一种吸收光谱,是因为太阳发出的光穿过温度比太阳本身低得多的太阳大气层,而在这大气层里存在着从太阳里蒸发出来的许多元素的气体,太阳光穿过它们的时候跟这些元素的标识谱线相同的光都被这些气体吸收掉了。因此我们看到的太阳光谱是在连续光谱的背景上分布着许多条暗线。这些暗线是德国物理学家夫琅和费首先发现的称为夫琅和费线。 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线(见彩图8.分光镜的分辨本领不够高时,只能看见一条暗线).这就是钠原子的吸收光谱.值得注意的是,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应.这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光.因此,吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱线比明线光谱中的少 光谱分析 光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10-10克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.光谱分析在科学技术中有广泛的应用.例如,在检查半导体材料硅和锗是不是达到了高纯度的要求时,就要用到光谱分析.在历史上,光谱分析还帮助人们发现了许多新元素.例如,铷和铯就是从光谱中看到了以前所不知道的特征谱线而被发现的.光谱分

紫外吸收光谱的基本原理

紫外吸收光谱的基本原理,应用与其特点 紫外吸收光谱的基本原理 吸收光谱的产生 许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱. 紫外光谱的表示方法 通常以波长λ为横轴、吸光度A(百分透光率T%)为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0入射光强度,I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0透光率T与吸光度A的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A=εbc ε为摩尔吸光系数,它是浓度为1mol/L的溶液在1cm的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;c为物质的浓度,单位为mol/L;b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长λmax和该波长下的摩尔吸收系数εmax来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱. 通常以波长λ为横轴、吸光度A(百分透光率T%)为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0入射光强度,I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0透光率T与吸光度A的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A=εbc ε为摩尔吸光系数,它是浓度为1mol/L的溶液在1cm的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;c为物质的浓度,单位为mol/L;b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长λmax和该波长下的摩尔吸收系数εmax来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的形状、λmax和εmax与吸光分子的结构有密切的关系。各种有机化合形状、λmax 和εmax与吸光分子的结构有密切的关系。各种有机化合物的λmax和εmax都有定值,同类化合物的εmax比较接近,处于一个范围。 紫外吸收光谱是由分子中价电子能级跃迁所产生的。由于电子能级跃迁往往要引起分子中核的运动状态的变化,因此在电子跃迁的同时,总是伴随着分子的振动能级和转动能级的跃迁。考虑跃迁前的基态分子并不是全是处于最低振动和转动能级,而是分布在若干不同的

原子吸收光谱

实验原子吸收光谱法测定自来水中钙、镁的含量 ——标准曲线法 一、实验目的 1. 学习原子吸收光谱分析法的基本原理; 2. 了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法; 3. 掌握以标准曲线法测定自来水中钙、镁含量的方法。 二、实验原理 1. 原子吸收光谱分析基本原理 原子吸收光谱法(AAS)是基于:由待测元素空心阴极灯发射出一定强度和波长的特征谱线的光,当它通过含有待测元素的基态原子蒸汽时,原子蒸汽对这一波长的光产生吸收,未被吸收的特征谱线的光经单色器分光后,照射到光电检测器上被检测,根据该特征谱线光强度被吸收的程度,即可测得试样中待测元素的含量。 火焰原子吸收光谱法是利用火焰的热能,使试样中待测元素转化为基态原子的方法。常用的火焰为空气—乙炔火焰,其绝对分析灵敏度可达10-9g,可用于常见的30多种元素的分析,应用最为广泛。 2. 标准曲线法基本原理 在一定浓度范围内,被测元素的浓度(c)、入射光强(I0)和透射光强(I)符合Lambert-Beer 定律:A=εcl(式中ε为被测组分对某一波长光的吸收系数,l为光经过的火焰的长度)。根据上述关系,配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测定其吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。 三、仪器与试剂 1. 仪器、设备: TAS-990型原子吸收分光光度计;钙、镁空心阴极灯;无油空气压缩机;乙炔钢瓶;容量瓶、移液管等。 2. 试剂

1测量技术讲解

1H412010测量技术 前言 本节的重点是:机电工程项目工程测量技术、起重技术、焊接技术,也是机电工程一级建造师必备的基本专业技术知识。 工程测量是指遵照施工图纸的要求,使用精密的测量仪器和工具,将工程项目的建(构)筑物、机电工程工艺生产线上的设备、系统管线等的坐标位置、几何形状、相关数据等准确地测量、放样到实地,并在施工全过程中进行测量控制。 本目重点是: 机电工程测量的方法; 测量的要求; 测量仪器的应用。 1H412011测量的方法 工程测量是按照设计和施工的要求将设计的建筑物、构筑物的平面位置和高程在地面上标定出来,作为施工的依据,并在施工过程中进行一系列的测量工作,以衔接和指导各工序之间的施工。 本条主要知识点是: 工程测量的目的和内容;工程测量的特点、工程测量的原则和要求;工程测量的基本原理及方法;工程测量的程序;竣工图的绘制;常见的机电工程中的测量。 一、工程测量的目的和内容 1.工程测量的目的 (1)工程测量的首要工作也是要做好控制点布测。工程测量包括对建(构)筑物施工放样、建(构)筑物变形监测、工程竣工测量等,以保证将设计的建(构)筑物位置正确地测设到地面上,作为施工的依据。 (2)工程测量贯穿于整个施工过程中。从场地平整、建筑物定位、基础施工、建筑物构件安装等,都需要进行工程测量,以使建筑物、构筑物各部分的尺寸、位置符合设计要求。 2.主要内容 (1)建立施工控制网。 (2)建筑物、构筑物的详细测设。 (3)检查、验收。每道施工工序完工之后,都要通过测量检查工程各部位的实际位置及高程是否与设计要求相符合。 (4)变形观测。随着施工的进展,测定建筑物在平面和高程方面产生的位移和沉降,收集整理各种变形资料,作为鉴定工程质量和验证工程设计、施工是否合理的依据。 二、工程测量的特点 与测图工作相比,具有如下特点: 1.目的不同。测图工作是将地面上的地物、地貌测绘到图纸上,而工程测量是将图纸上设计的建筑物或构筑物测设到实地。 2.精度要求不同。工程测量的精度要求取决于工程的性质、规模、材料、施工方法等因素。 一般高层建筑物的工程测量精度要求高于低层建筑物的工程测量精度,钢结构工程测量精度要求高于钢筋混凝土结构的工程测量精度,装配式建筑物的工程测量精度要求高于非装配式建筑物的工程测量精度。 此外,由于建筑物、构筑物的各部位相对位置关系的精度要求较高,因而工程

实验1基本测量仪器的使用

实验一基本测量仪器的使用 【实验目的】 1.熟悉米尺、游标卡尺、螺旋测微计、测量显微镜的构造、测量原理及使用方法,练习使用分析天平进行精密称衡; 2.学习有效数字和不确定度的计算,掌握误差理论与数据处理方法,熟悉精密称衡中的系统误差补正. 【实验仪器】 米尺、游标卡尺,螺旋测微计,测厚仪,分析天平,球体,圆柱等,金属块、玻璃块、有机被璃块等. 【实验原理】 一、米尺 “米”是国际公认的标准长度单位,历史上由保存在巴黎国际标准度量衡局的米原器二刻线间的长度决定。1983年第十七届国际计量大会通过的“米”的新定义为:1m是光在真空中于1/299792458s的时间内所传播的距离。 常用米尺(包括各种常用直尺)的分度值是1mm毫米,因此用米尺测量长度时可以读准到毫米级,估计到0.1毫米级(1/10毫米位)。 用米尺测量物体长度的要领是紧贴、对准、正视。米尺自身有一定的厚度,若不贴紧待测物,观测者从不同角度看去,将产生读数的差异,测量时应尽量减少视差。为避免端边磨损带来的误差,也可以不用零刻度线,而以某一刻度线(如1.00cm)作为测量起点,考虑到刻度的不均匀,可以不同刻度线为起点作多次测量而取其中平均值。 二、游标卡尺 (1)游标卡尺构造 游标卡尺的构造如图1-4所示,卡钳E和E'同刻有毫米的主尺A相连,游标框W上附有游标B以及卡钳F和F',推动游标框W可使游标B连同卡钳F、F'沿主尺滑动.当两对钳口E与F,E'与F'紧靠时,游标的零点(即零刻度线)与主尺的零点相重合.用游标卡尺测定物体长度时,用卡钳E F或E'F'卡着被测物体,显然此时游标零点与主尺零点间距离恰好等于卡钳E、F间或卡钳E'、F'的距离,所以从游标零点在主尺上的位置,根据游标原理就可测出物体的长度(卡钳E'F'部分是用来测量物体的内部尺寸,如管的内径等).图中螺钉C是用来固定油标框的,防止游标框在主尺上滑动以便于读数.

水准测量的方法及其实施

水准测量的方法及其实施 水准测量原理 水准测量的基本测法是:在图2-1中,已知A点的高程为H A,只要能测出A点至B点的高程之差,简称高差h AB。,则B点的高程 H B就可用下式计算求得: H B=H A+h AB (2-1) 差h AB。的原理如图2-1所示, 在A、B两点上竖立水准尺, 并在A、B两点之间安置— 图2-1 水准测量原理示意图架可以得到水平视线的仪器 即水准仪,设水准仪的水平视线截在尺上的位置分别为M、N,过A 点作一水平线与过B点的竖线相交于C。因为BC的高度就是A、B 两点之间的高差h AB。,所以由矩形MACH就可以得到计算h AB的式: h AB = a - b (2-2) 测量时,a、b的值是用水准仪瞄准水准尺时直接读取的读数值。 因为A点为已知高程的点,通常称为后视点,其读数a为后视读数,

而B点称为前视点,其读数b为前视读数。即 h AB = 后视读数-前视读数 视线高H i=H A+a (2-3)B点高程H B=H i-b (2-4)综上所述要测算地面上两点间的高差或点的高程,所依据的就是一条水平视线,如果视线不水平,上述公式不成立,测算将发生错误。因此,视线必须水平,是水准测量中要牢牢记住的操作要领。 水准仪和水准尺 一、微倾式水准仪的构造 如图2-2所示,微倾式水准仪主要由望远镜、水准器和基座组成。水准仪的望远镜能绕仪器竖轴在水平方向转动,为了能精确地提供水平视线,在仪器构造上安置了一个能使望远镜上下作微小运动的微倾螺旋,所以称微倾式水准仪。 1.望远镜 望远镜由物镜、目镜和十字丝三个主要部分组成,它的主要作用是能使我们看清远处的目标,并提供一条照准读数值用的视线。 十字丝是在玻璃片上刻线后,装在十字丝环上,用三个或四个可

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,就是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性与谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线范围 紫外光与可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)就是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都就是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比: A=KC 式中K为常数;C为试样浓度;K包含了所有的常数。此式就就是原子吸收光谱法进行定量分析的理论基础 由于原子能级就是量子化的,因此,在所有的情况下,原子对辐射的吸收都就是有选择性的。由于各元素的原子结构与外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。

水准测量基本原理教案

水准测量基本原理(教案)

水准测量基本原理 课型:讲授 教学目的与要求: 了解高程测量常用的方法。 理解水准测量基本原理。 掌握高差法、仪高法及连续水准测量计算未知点高程的方法。教学重点、难点: 重点:水准测量基本原理。 高差法、仪高法及连续水准测量计算未知点高程的方法。 难点:水准测量基本原理。 采用教具: 多媒体课件 复习、提问 1、高程的定义、高差的定义。

第一讲 水准测量基本原理 一、高程测量(测定地面点高程)的方法 高程是确定地面点位置的要素之一,在工程建设的设计、施工与管理等阶段都具有十分重要的作用。测定地面点高程的工作称为高程测量。按所使用的仪器和施测方法分:水准测量、三角高程测量、气压高程测量和GPS 高程测量。 二、水准测量基本原理 水准测量不是直接测定地面点的高程,而是测出两点间的高差。即在两个点上分别竖立水准尺,利用水准测量的仪器提供一条水平视线,瞄准并在水准尺上读数,求得两点间的高差,从而由已知点高程推求未知点高程。 如图1-1所示,设已知A 点高程为A H ,用水准测量方法求未知点B 的高程B H 。在A 、B 两点中间安置水准仪,并在A 、B 两点上分别竖立水准尺,根据水准仪提供的水平视线在A 点水准尺上读数为a ,在B 点的水准尺上读数为b ,则A 、B 两点间的高差为:b a h AB -= 图1-1 水准测量原理

设水准测量是由A 点向B 点进行,如图1-1中箭头所示,则规定 A 点为后视点,其水准尺读数a 为后视读数; B 点为前视点,其水准 尺读数b 为前视读数。由此可见,两点之间的高差一定是“后视读数”减“前视读数”。如果a >b ,则高差AB h 为正,表示B 点比A 点高;如果 a < b ,则高差AB h 为负,表示B 点比A 点低。 在计算高差AB h 时,一定要注意AB h 的下标A B 的写法: AB h 表示A 点至B 点的高差,BA h 则表示B 点至A 点的高差,两个高差应该是绝对值相同而符号相反,即:BA AB h h =- 测得A 、B 两点间高差AB h 后,则未知点B的高程B H 为: )(b a H h H H A AB A B -+=+= (1-1) 水准测量:水平视线(水准仪)+水准尺→待定点与已知点高差+已知点高程→未知点高程。 三、推导以下几种计算未知点高程的公式: 1、高差法(由一点求另一点):直接利用高差计算未知点高程。 b a h AB -=(后视读数-前视读数);AB A B h H H += 2、视线高法(仪高法,由一点求多点):由仪器视线高程H i 计算未知点B 点高程。H A 为A 点的高程,a 为水准尺读数,b 为待求高程点水准尺读数。 ?? ? -=+=b H H a H H i B A i 注意事项: ①区别仅在与计算方法不同;

PE原子吸收光谱仪原理

原子吸收光譜儀原理 一、 背景 現代科技包括自然科學、醫學、生物科技、環境及工業技術等發展,對物質成份分析的需求較之過去有明顯的改變。對於低濃度金屬的分析,除了所使用的分析儀器是否具有足夠的偵測靈敏度外,若無法有效的控制樣品基質所產生的干擾效應,將造成嚴重的分析誤差。本文將針對原子吸收光譜儀基本原理及PerkinElmer AAnalyst 800型單機多功能的設計(含火焰式及石墨爐式),是具高精準性及方便性的分析儀器。 二、 原理 原子吸收的過程是當基態原子吸收某些特定波長的能量由基態到激發態。根據Beer 定律,吸收值與濃度成正比關係,從標準溶液作出校正曲線後,再讀出未知溶液的濃度。而原子吸收光譜儀即是利用原子化器將樣品(A)原子化器後,吸收某一特定波長光,此光來自(B)燈管,再經過(C)光學系統分光經由單光器過濾僅有要測的波長光進入(D)偵測器,原子收光譜儀的基本構造如圖一所示。 A. 原子化器:原子化器有三種設計,有火焰式、石墨爐式及汞蒸氣氫化裝置。 (1) 火焰式燃燒系統之剖示圖,如圖二所示,在預混系 統內,樣品溶液被吸經霧化器霧化成小水滴進入混 合腔與燃料及氧化用氣體混合後,帶入燃燒頭,而樣品原子化即產生。在燃燒系統內有些重要因素須在霧化器部份考慮,為了提供最有效之霧化,以各種不同之樣品溶液,霧化器須為可調式的,而不鏽鋼為最常用的一種材質,但其缺點是樣品若含有高濃度之酸或其它腐蝕性氣體則會被腐蝕,若須為抗腐蝕之材質可用惰性塑料材質或Pt/Ir 之合金為宜。燃燒頭用鈦金屬組成可提供極高之熱阻抗及防腐蝕性。不之火焰或樣品條件須使用不同之燃燒頭,10公分長是用來做空氣乙炔之燃燒,而5公分長的用手作較高溫的笑氣乙炔燃燒。 (2) 石墨爐原子化器其基本構造如圖三所示,基本構造包含有金屬室、石墨爐及石墨管三部份。金屬室的功能在於提供高電流加熱裝置,石墨爐的功能為固定石墨管,而石墨管則為樣品的原子化裝置。石墨材質具有高電阻的特性,當瞬間通入大量電流時,藉由電熱的原理使得石墨管溫度迅速提昇,達到使樣品中待測元素原子化的高溫。為避免原子化器在加熱升溫的過程中,石墨材質與空氣中氧氣起氧化 Monochromator Detector Reference Beam Sample Beam Hollow Cathode Lamp Burner Rotating Chopper 圖一 原子吸收光譜儀的基本構造 預混式混合腔 霧化器 燃燒頭 Flow Spoiler Impack Bead 圖二 火焰式燃燒系統

第1章教育测量与评价的基本理论

教师教育专业必修课程 《教育测量与评价》课程简介 教学目标 理解教育测量与评价的基本理论,学会教育测量与评价的方案设计、方案实施与结果处理的方法技术,并能应用于学生评价、教师评价、学校管理工作评价。内容大纲 第一章教育测量与评价理论 1.1教育测量与评价的基本概念 1.2教育评价系统结构与功能 1.3教育评价的类型 1.4教育评价的模式 第二章教育评价方案设计 2.1教育评价方案概述 2.2教育评价内容的设计 2.3教育评价的权集及其构造 2.4教育评价的标准与量表 第三章教育评价的实施 3.1教育评价的实施程序 3.2收集教育评价信息的主要方法 3.3教育测量与评价的分值转换与汇总 第四章教育评价结果的处理 4.1教育评价结果的质量检验 4.2教育评价结果的解释 4.3教育评价信息的反馈与利用 第五章学生评价 5.1学生学习成绩评价 5.2学生综合评价 5.3真实性评定方法 第六章教师评价 6.1教师评价概述 6.2教师评价的主要内容 6.3教师课堂教学质量评价

绪论 一、学习这门课程有什么意义?——教育评价的目的、功能、作用“教育评价实例”分析 (1)一次教师暑期培训课上的经历:一位教了多年教师略带神秘地告诉我:“从片面追求升学率”到“唯一追求升学率”。 (2)一位语文优秀教师的课例:从高考题目引入“唐诗欣赏”教学。(3)“应试教育的实质”是什么?如何走出“应试教育的泥泞”?(4)新课程改革的评价逻辑:、“评价跟着改革走”、“发展性评价”、“教学-评价”的一体化 1、教育评价的目的: ◆改进、提高学生的学习与质量水平 ◆改进、提高教师的教学与质量水平 ◆改进、提高学校管理决策与质量水平 ◆为学校、地区、国家的教育改革与发展提供决策依据 2、教育评价的功能: ◆教育评价具有对教育活动状况做出事实判断的功能; ◆教育评价具有对教育活动质量做出价值判断的功能。 3、教育评价的作用 ◆诊断作用——诊断教育活动过程与方法的优劣得失 ◆导向作用——引导教育活动的方向、方式、重点 ◆鉴定作用——鉴定、甄别教育结果的水平、级别、资格 ◆监控作用——监督、控制教育活动实施规范与质量水准

1光电检测系统的基本工作原理

1光电检测系统的基本工作原理。 光电检测系统是指对待测光学量或由非光学待测物理量转换成的光学量,通过光电变换和电路处理的方法 进行检测的系统。 光电检测系统的基本组成及各部份的主要作用。光电检测系统的组成:三要素:检测对象、光、光电变换。 能否使光束准确地携带所要检测量的信息,是决定所设计系统成败的关键 光电检测技术的现代发展1)非接触化发展2)尽可能多的信息量3)集成化,智能化发展 光电检测方法 (1).光信息携带的物理量可分为: 光强型、频率型、相位型、脉冲型、偏振型、位置型等 (2).所用的光学现象分为: 衍射法、干涉法、全息法、散射法、光谱法、莫尔条纹法、光扫描法等 (3)从检测系统角度分为: 直接作用法、差动法(差分法)、补偿法 光辐射所带的信息如光强分布、时间、光谱能量分布、温度分布等由光电探测器转变成电信号测量出来 2系统误差 在检测过程中产生恒定不变的误差叫恒差或按一定规律变化的误差叫变差,统称为系统误差。 系统误差产生的原因有工具误差、装置误差、方法误差、外界误差和人身误差等 随机误差 在尽力消除并改正了一切明显的系统误差之后,对同一待测量进行反复多次的等精度测量,每 次测量的结果都不会完全相同,而呈现出无规则的随机变化,这种误差称为随机误差。 灵敏度 系统在稳态下输出量变化引起此变化的输入量变化的比值 算术平均值 : 均方差或标准误差 算术平均值的标准偏差 均方差的标准误差σσ 最大误差 测量精度 大误差测值出现的处理 主要方法是:(1) 认真检查有无瞬时系统误差产生,及时发现并处理。 (2) 增加检测的次数,以减小大误差测值对检测结果的影响。 (3) 利用令人信服的判据,对检测数据进行判定后,将不合理数据给予剔除 辐射度量(Radiometry ):能量的分布的强弱、时间、空间等特性 辐射能本身的客观度量,是纯粹的物理量。 光度量 (Photometry) :考虑到人眼的主观感受,包括生理学、心理学在内。 1)辐射能(Q):简称辐能,描述以辐射的形式发射、传输或接收的能量,单位焦耳(J ) 例:地球表面垂直阳光方向上,每平方米面积上每分钟太阳辐射能48000J 。 (2)辐射密度(w) :定义为单位体积元内的辐射能,即 (3)辐射通量或者辐射功率(Φ,P):定义为以辐射的形式发射、传输或接收的功率,用以描述辐能的时间特性。 8416.011==∑=N n n x N x σ?0025.0)(11?12=--=∑=N n n x x N σ00095.0===N s x σσ00067.02==N σσσx k x σ=?% 100??=x x J D

1测量技术讲解

1H412010 测量技术 前言 本节的重点是:机电工程项目工程测量技术、起重技术、焊接技术,也是机电工程一级建造师必备的基本专业技术知识。 工程测量是指遵照施工图纸的要求,使用精密的测量仪器和工具,将工程项目的建(构)筑物、机电工程工艺生产线上的设备、系统管线等的坐标位置、几何形状、相关数据等准确地测量、放样到实地,并在施工全过程中进行测量控制。 本目重点是: 机电工程测量的方法; 测量的要求; 测量仪器的应用。 1H412011测量的方法 工程测量是按照设计和施工的要求将设计的建筑物、构筑物的平面位置和高程在地面上标定出来,作为施工的依据,并在施工过程中进行一系列的测量工作,以衔接和指导各工序之间的施工。 本条主要知识点是: 工程测量的目的和内容;工程测量的特点、工程测量的原则和要求;工程测量的基本原理及方法;工程测量的程序;竣工图的绘制;常见的机电工程中的测量。 一、工程测量的目的和内容 1. 工程测量的目的 (1) 工程测量的首要工作也是要做好控制点布测。工程测量包括对建(构)筑 物施工放样、建(构)筑物变形监测、工程竣工测量等,以保证将设计的建(构)筑物位置正确地测设到地面上,作为施工的依据。 (2) 工程测量贯穿于整个施工过程中。从场地平整、建筑物定位、基础施工、建筑物构件安装等,都需要进行工程测量,以使建筑物、构筑物各部分的尺寸、位置符合设计要求。 2.主要内容 (1) 建立施工控制网。 (2) 建筑物、构筑物的详细测设。 (3) 检查、验收。每道施工工序完工之后,都要通过测量检查工程各部位的实际位置及高程是否与设计要求相符合。 (4) 变形观测。随着施工的进展,测定建筑物在平面和高程方面产生的位移和沉降,收集整理各种变形资料,作为鉴定工程质量和验证工程设计、施工是否合理的依据。 二、工程测量的特点 与测图工作相比,具有如下特点:1.目的不同。测图工作是将地面上的地物、地貌测绘到图纸上,而工程测量是将图纸上设计的建筑物或构筑物测设到实地。 2.精度要求不同。工程测量的精度要求取决于工程的性质、规模、材料、施工方法等因素。 一般高层建筑物的工程测量精度要求高于低层建筑物的工程测量精度,钢结构工程测量精度要求高于钢筋混凝土结构的工程测量精度,装配式建筑物的工程测量精度要求高于非装配式建筑物的工程测量精度。 此外,由于建筑物、构筑物的各部位相对位置关系的精度要求较高,因而工程的细 部放样精度要求往往高于整体放样精度。 3 .工程测量工序与工程施工工序密切相关。 三、工程测量的原则和要求

水准测量基本原理教案

水准测量基本原理教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

水准测量基本原理(教案)

水准测量基本原理 课型:讲授 教学目的与要求: 了解高程测量常用的方法。 理解水准测量基本原理。 掌握高差法、仪高法及连续水准测量计算未知点高程的方法。教学重点、难点: 重点:水准测量基本原理。 高差法、仪高法及连续水准测量计算未知点高程的方法。 难点:水准测量基本原理。 采用教具: 多媒体课件 复习、提问 1、高程的定义、高差的定义。

第一讲 水准测量基本原理 一、高程测量(测定地面点高程)的方法 高程是确定地面点位置的要素之一,在工程建设的设计、施工与管理等阶段都具有十分重要的作用。测定地面点高程的工作称为高程测量。按所使用的仪器和施测方法分:水准测量、三角高程测量、气压高程测量和GPS 高程测量。 二、水准测量基本原理 水准测量不是直接测定地面点的高程,而是测出两点间的高差。即在两个点上分别竖立水准尺,利用水准测量的仪器提供一条水平视线,瞄准并在水准尺上读数,求得两点间的高差,从而由已知点高程推求未知点高程。 如图1-1所示,设已知A 点高程为A H ,用水准测量方法求未知点B 的高程B H 。在A 、B 两点中间安置水准仪,并在A 、B 两点上分别竖立水准尺,根据水准仪提供的水平视线在A 点水准尺上读数为 a ,在B 点的水准尺上读数为 b ,则A 、B 两点间的高差为: b a h AB -=

图1-1 水准测量原理 设水准测量是由A 点向B 点进行,如图1-1中箭头所示,则规定 A 点为后视点,其水准尺读数a 为后视读数; B 点为前视点,其水准 尺读数b 为前视读数。由此可见,两点之间的高差一定是“后视读数”减“前视读数”。如果a >b ,则高差AB h 为正,表示B 点比A 点高;如果 a < b ,则高差AB h 为负,表示B 点比A 点低。 在计算高差AB h 时,一定要注意AB h 的下标A B 的写法:AB h 表示A 点至B 点的高差,BA h 则表示B 点至A 点的高差,两个高差应该是绝对值相同而符号相反,即:BA AB h h =- 测得A 、B 两点间高差AB h 后,则未知点B的高程B H 为: )(b a H h H H A AB A B -+=+= (1-1) 水准测量:水平视线(水准仪)+水准尺→待定点与已知点高差+已知点高程→未知点高程。 三、推导以下几种计算未知点高程的公式: 1、高差法(由一点求另一点):直接利用高差计算未知点高程。 b a h AB -=(后视读数-前视读数);AB A B h H H += 2、视线高法(仪高法,由一点求多点):由仪器视线高程H i 计算未知点B 点高程。H A 为A 点的高程,a 为水准尺读数,b 为待求高程点水准尺读数。

相关主题