搜档网
当前位置:搜档网 › SXB096高考数学必修_立体几何中的最值问题

SXB096高考数学必修_立体几何中的最值问题

SXB096高考数学必修_立体几何中的最值问题
SXB096高考数学必修_立体几何中的最值问题

立体几何中的最值问题

在立体几何中,计算几何体的最值往往有两种方法:一是利用二次函数、一次函数等及重要不等式,二是利用化归转化思想将立体最值转化为平面最值.另外,解决几何体的相切相接问题的关健,是注意两个几何体之间的等量关系.本文举两例说明在立体几何中的最值问题的求解策略.

1.利用均值定理求最值

例1.已知球的半径为R ,在球内作一个内接圆柱,这个圆柱底面半径与高为何值时,它的侧面积最大?侧面积的最大值是多少?

解:下图为轴截面,令圆柱的高为h ,底面半径为r ,侧面积为S ,

则(

2

h )2+r 2=R 2, 即h =22

2

r

R -

∵S =2πrh =4πr ·22r R -

=4π)(222r R r -?

≤4π2

)(2

222r R r -+=2πR 2, 取等号时,内接圆柱底面半径为

2

2

R ,高为2R 点评: 本题所考查知识点为截面性质、三棱柱侧面积以及用均值定理求最值的综合知识. 2.利用二次函数求最值

例2.如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)2

0(π

θθ<<。点M 在AC 上,

点N 在BF 上,若AM=FN ,(1)求证:MN//面BCE ; (2)求证:MN ⊥AB; (3)求MN 的最小值.

解析:(1)如图,作MG//AB 交BC 于G , NH//AB 交BE 于H, MP//BC 交AB 于P, 连PN, GH , 易证MG//NH,且MG=NH, 故MGNH 为平行四边形,所以MN//GH , 故MN//面BCE ; (2)易证AB ⊥面MNP, 故MN ⊥AB ; (3)

MPN ∠即为面ABCD 与ABEF 所成二面角的平面角,即θ=∠MPN ,设AP=x , 则BP=a -x , NP=a -x ,

所以:θcos )(2)(22x a x x a x MN ---+=

2

2)cos 1(2

1)2)(cos 1(2a a x θθ-+-+=,

故当2

a

x =

时,MN有最小值a )cos 1(21θ-. 3.利用三角函数的有界性求最值

例3. 如图1所示,边长AC =3,BC =4,AB =5的三角形简易遮阳棚,其A 、B 是地面上南北方向两个定

点,正西方向射出的太阳光线与地面成30°角,试问:遮阳棚ABC 与地面成多大角度时,才能保证所遮影面ABD 面积最大?

解析: 易知,ΔABC 为直角三角形,由C 点引AB 的垂线,垂足为Q ,则应有DQ 为CQ 在地面上的斜射影,且AB 垂直于平面CQD ,如图2所示.

因太阳光与地面成30°角,所以∠CDQ =30°,又知在ΔCQD 中,CQ =

5

12

,由正弦定理,有 ?30sin CQ =QCD

QD ∠sin ,

即 QD =

5

6

sin ∠QCD. 为使面ABD 的面积最大,需QD 最大,这只有当∠QCD =90°时才可达到,从而∠CQD =60°. 故当遮阳棚ABC 与地面成60°角时,才能保证所遮影面ABD 面积最大.

点评: 有关几何体求最值问题,可以先由几何性质判断出取得最值时的情形,然后再去求最值.本题利用了正弦函数的有界性求最值

4. 利用几何体的性质求最值

例4. 正三棱锥A-BCD ,底面边长为a ,侧棱为2a ,过点B 作与侧棱AC 、AD 相交的截面,在这样的截面三角形中,求(1)周长的最小值;(2)周长为最小时截面积的值,(3)用这周长最小时的截面截得的小三棱锥的体积与三棱锥体积之比.

解析:(1)沿侧棱AB 把正三棱锥的侧面剪开展成平面图.如图1,当周长最小时,EF 在直线BB ′上,∵ΔABE ≌ΔB ′AF ,∴AE =AF ,AC =AD ,∴B ′B ∥CD ,∴∠1=∠2=∠3,∴BE =BC =a ,同理B ′F =B ′D =a.∵

ΔFDB ′∽ΔADB ′,∴

B D DF '=B A B D '

',a DF

=a a 2=21,∴DF =21a,AF =23a.又∵ΔAEF ∽ΔACD ,∴BB ′=

a+43a+a =411a,∴截面三角形的周长的最小值为4

11a. (2)如图2,∵ΔBEF 等腰,取EF 中点G ,连BG ,则BG ⊥EF.∴BG =22EG BE -=2

2

)8

3

(a a -=

8

55

a ∴S ΔBEF =

21·EF ·BG =21·4

3

a ·855a =64553a 2.

(3)∵V A-BCD =V B-ACD ,而三棱锥B —AEF ,三棱锥B —ACD 的两个高相同,所以它们体积之比于它们的两底面积之比,

CAD B AEF B V V --=ACD AEF S S △△=2

2CD EF =16

9 评析 把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是

求曲面上最短路线的一种常用方法.本题中的四面体,其中任何一个面都可以做为底面,因而它可有四个底面和与之对应的四条高,在解决有关三棱锥体积题时,需要灵活运用这个性质.

立体几何中的截面(解析版)

专题13 立体几何中的截面 【基本知识】 1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。 2、正六面体的基本斜截面: 3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。 【基本技能】

技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题; 技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等; 技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。 例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能 ... 是() 分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。 例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题: ①水的部分始终呈棱柱状; ②水面EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当容器倾斜到如图5(2)时,BE·BF是定值; 其中正确的命题序号是______________ A C B D

分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为 BC BF BE V ??= 2 1 水是定值,又BC 是定值,所以BE ·BF 是定值,即④正确。所以正确的序号为①③④. 例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( ) A . 21 B .87 C .12 11 D .4847 分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为 8 7 12121211=???- =V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211 112121311=????-=V , 故选C 。 例4 正四棱锥P ABCD -的底面正方形边长是3,O 是P 在底面上的射影,6, PO Q =是 AC 上的一点,过Q 且与, PA BD 都平行的截面为五边形EFGHL ,求该截面面积的最大值. C 1 A B C D A 1 D 1 B 1 E G F 图(1) C 1 A B C D A 1 D 1 B 1 E G F 图(2)

高考数学之概率大题总结

1(本小题满分12分)某赛季, 甲、乙两名篮球运动员都参加了7场比赛, 他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分, 求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=, 236112136472222222=++++++) 2在学校开展的综合实践活动中, 某班进行了小制作评比, 作品上交时间为5月1日至30日, 评委会把同学们上交作品的件数按5天一组分组统计, 绘制了频率分布直方图(如图), 已知从左到右各长方形的高的比为2:3:4:6:4:1, 第三组的频数为12, 请解答下列问 题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?共有多少件? (3)经过评比, 第四组和第六组分别有10件、2件作品获奖, 问这两组哪组获奖率高? 3已知向量()1,2a =-r , (),b x y =r . (1)若x , y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次时第一次、第二次出现的点数, 求满足1a b =-r r g 的概率; (2)若实数,x y ∈[]1,6, 求满足0a b >r r g 的概率.

4某公司在过去几年内使用某种型号的灯管1000支, 该公司对这些灯管的使用寿命(单位:小时)进行了统计, 统计结果如下表所示: (1)将各组的频率填入表中; (2)根据上述统计结果, 计算灯管使用寿命不足1500小时的频率; (3)该公司某办公室新安装了这种型号的灯管2支, 若将上述频率作为概率, 试求恰有1支灯管的使用寿命不足1500小时的概率. 5为研究气候的变化趋势, 某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度, 如下表: (1)若第六、七、八组的频数t 、m 、 n 为递减的等差数列, 且第一组与第八组 的频数相同, 求出x 、t 、m 、n 的值; (2)若从第一组和第八组的所有星期 中随机抽取两个星期, 分别记它们的平均 温度为x , y , 求事件“||5x y ->”的概率. 6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5 所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人? (2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率. 频率 分数 90100110120130 0.05 0.100.150.200.250.300.350.4080 70

高考数学阶段复习试卷:三角形中的最值问题

高考数学阶段复习试卷:三角形中的最值问题 1. 在ABC ?中,a ,b ,c 分别为角A ,B ,C 所对的边长,已知:3C π= ,a b c λ+=(其中1λ>) (1)当2λ=时,证明:a b c ==; (2)若3AC BC λ?=,求边长c 的最小值. 2. 已知函数()4cos sin()3f x x x π=- (1)求函数()f x 在区间[,]42 ππ上的值域; (2)在ABC ?中,角,,A B C 所对的边分别是,,a b c 若角C 为锐角,()f C =,且2c =,求ABC ?面积的最大值。 3. 已知函数2()22cos f x x x m =+- (Ⅰ)若方程()0f x =在[0,]2x π ∈上有解,求m 的取值范围;(Ⅱ)在ABC ?中,,,a b c 分别是,,A B C 所对 的边,当(Ⅰ)中的m 取最大值,且()1f A =-,2b c +=时,求a 的最小值 4. 在ABC ?中,sin A a =. (1)求角B 的值;(2)如果2b =,求ABC ?面积的最大值. 5. 如图,扇形AOB ,圆心角AOB 等于60o ,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设AOP θ∠=,求POC ?面积的最大值及此时θ的值.

6. 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从匀速步行到C .假设缆车匀速直线运动的速度为130m /min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5 C =. (1) 求索道AB 的长; (2) 问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3) 为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 7. 如图,在等腰直角三角形OPQ ?中,90POQ ? ∠=,22OP =点M 在线段P Q 上. (1)若5OM =求PM 的长; (2)若点N 在线段MQ 上,且30MON ?∠=,问:当POM ∠取何值时,OMN ?的面积最小?并求出面积的最小值.

高考数学玩转压轴题专题4.4立体几何中最值问题

专题4.4 立体几何中最值问题 一.方法综述 高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。 二.解题策略 类型一距离最值问题 AB=,若线段DE上存在点P 【例1】如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且2 ⊥,则边CG长度的最小值为() 使得GP BP A. 4 B. 43 C. D. 23 【答案】D

又22002B G a (,,),(,,),所以2,2,,,2,.2 2ax ax BP x GP x a ???? =--=-- ? ?????u u u r u u u r () 24022ax ax PB PG x x a ?? =-++-= ??? u u u n r u u u r .显然0x ≠且2x ≠.所以22 1642a x x =--. 因为()0,2x ∈,所以(]2 20,1x x -∈.所以当221x x -=, 2a 取得最小值12.所以a 的最小值为23. 故选D. 【指点迷津】利用图形的特点,建立空间直角坐标系,设CG 长度为a 及点P 的坐标,求BP GP u u u r u u u r 与的坐标, 根据两向量垂直,数量积为0,得到函数关系式22 16 42a x x = --,利用函数求其最值。 举一反三 1、如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,点E 、F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是_____。 【答案】 3254 2?? ??

立体几何中的最值与动态问题

2 5 立体几何中的最值问题 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在 试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO⊥平面ABCD 于O,SO=2,底面边长为,点P、Q 分别在线段BD、SC 上移动,则P、Q 两点的最短距离为() A. B. 5 5 C. 2 D. 1 解析:如图1,由于点P、Q 分别在线段BD、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当 OQ 最小时,PQ 最小。过O 作OQ⊥SC,在Rt△SOC 中,OQ = 中。又P 在BD 上运动,且当P 运动 5 到点O 时,PQ 最小,等于OQ 的长为,也就是异面直线BD 和SC 的公垂线段的长。故选B。 5 图 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB⊥CD,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为。 解析:如图2,过点B 作平面α的垂线,垂足为O,连结AO,则∠BAO=30°。过B 作BE//CD 交平面α 于E,则BE=CD。连结AE,因为AB⊥CD,故AB⊥BE。则在Rt△ABE 中,BE=AB·tan∠BAE≥AB·tan ∠BAO=3·tan30°= 。故CD ≥ 3 。 2 5 2 5 2 5 3

图 2 三、展成平面求最值 例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a,AC=BD=b,AD=BC=c。平面α分别截棱AB、BC、CD、DA 于点P、Q、R、S,则四边形PQRS 的周长的最小值是() A. 2a B. 2b C. 2c D. a+b+c 图3-1 解析:如图3-2,将四面体的侧面展开成平面图形。由于四面体各侧面均为锐角三角形,且AB=CD,AC=BD, AD=BC,所以,A 与A’、D 与D’在四面体中是同一点,且AD // BC // A' D' ,AB // CD' ,A、C、A’共 线,D、B、D’共线,AA'=DD' = 2BD 。又四边形PQRS 在展开图中变为折线S’PQRS,S’与S 在四面体中是同一点。因而当P、Q、R 在S’S 上时,S ' P +PQ +QR +RS 最小,也就是四边形PQRS 周长最小。又S ' A =SA',所以最小值L =SS '=DD' = 2BD = 2b 。故选B。 图3-2 四、利用向量求最值 例4. 在棱长为1 的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的最小值为。 解析:以A 为坐标原点,分别以AB、AD、AE 所在直线为x,y,z 轴,建立如图 4 所示的空间直角坐标 →→ 系,则B(1,0,0),G(1,1,1)。根据题意设P(x,0,x),则BP=(x-1,0,x),GP=(x-1,-1,x-1),那么

高中数学复习提升专题05 立体几何中最值问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题05 立体几何中最值问题 类型 对应典例 利用侧面展开图求最值 典例1 利用目标函数求最值 典例2 利用基本不等式求最值 典例3 【典例1】【河南省非凡吉创联盟2020届调研】 如图,AB 是圆柱的直径,PA 是圆柱的母线,3AB =,33PA =,点C 是圆柱底面圆周上的点. (1)求三棱锥P ABC -体积的最大值; (2)若1AC =,D 是线段PB 上靠近点P 的三等分点,点E 是线段PA 上的动点,求CE ED +的最小值. 【典例2】【江西省新余市第四中学2020届月考】 已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2 π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE =x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF . (1)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值; (2)当 ()f x 取得最大值时,求二面角D -BF -C 的余弦值. 【典例3】【北京市昌平区2020届模拟】

如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G . (I )证明:AD ∥平面EFGH ; (II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE -D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值. 【针对训练】 1. 【广东省佛山市第一中学2020届月考】 如图,正方体1111ABCD A B C D -的棱长为a ,E F 、分别为AB BC 、上的点,且AE BF x ==. (1)当x 为何值时,三棱锥1B BEF -的体积最大? (2)求异面直线1A E 与1B F 所成的角的取值范围. 2.【安徽省安庆市2020届模拟】 如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,3AB EB == (1)求证:DE ⊥平面ADC ; (2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值.

(完整word版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图

第一节 概率及其计算 考纲解读 1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。 2.了解两个互斥事件的概率的加法公式。 3.掌握古典概型及其概率计算公式。 4.了解随机数的意义,能运用模拟方法估计概率。 5.了解几何概型的意义。 命题趋势探究 1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。 2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。 知识点精讲 一、必然事件、不可能事件、随机事件 在一定条件下: ①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件; ③可能发生也可能不发生的事件叫随机事件。 二、概率 在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。对于必然事件A ,;对于不可能事件A ,=0. 三、基本事件和基本事件空间 在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。 四、两个基本概型的概率公式 1、古典概型 条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同 ()(A) = ()A card P A card = Ω包含基本事件数基本事件总数 2、几何概型 条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为 A μ.

()P A = A μμΩ 。 五、互斥事件的概率 1、互斥事件 在一次实验中不能同时发生的事件称为互斥事件。事件A 与事件B 互斥,则 ()()() P A B P A P B =+U 。 2、对立事件 事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。 ()() 1P A p A =- 。 3、互斥事件与对立事件的联系 对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。 题型归纳及思路提示 题型176 古典概型 思路提示 首先确定事件类型为古典概型,古典概型特征有二:有限个不同的基本事件及各基本事件发生的可能性是均等的;其次计算出基本事件的总数及事件A 所包含的基本事件数;最后计算 ()A P A = 包含基本事件数 基本事件总数。 例13.1 设平面向量(),1m a m =,()2,n b n = ,其中{}, 1.2,3,4m n ∈ (1)请列出有序数组(),m n 的所有可能结果; (2) 若“使得()m m n a a b ⊥-成立的(),m n 为事件A ,求事件A 发生的概率。 分析:两向量垂直的充要条件是两向量的数量积为0,从而可得m 与n 的关系,再从以上 (),m n 的16个有序数组中筛选出符合条件的,即得事件A 包含的基本事件个数。 解析:(1)由{}, 1.2,3,4m n ∈,有序数组(),m n 的所有可能结果为()1,1 , ()()() 1,2,1,3,1,4, ()()()() 2,1,2,2,2,3,2,4, ()()()() 3,1,3,2,3,3,3,4, ()()()()4,1,4,2,4,3,4,4 共16个。 (2)因为(),1m a m =,()2,n b n =,所以()2,1m n a b m n -=-- .又()m m n a a b ⊥-,得 ()(),12,10m m n ?--= ,即22m 10m n -+-= ,所以()21n m =- 。故事件A 包含的

高中数学最值问题

最值问题 一、点击高考 最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面。以最值为载体,可以考查中学数学的所有知识点,考查分类讨论、数形结合、转化与化归等诸多数学思想和方法,还可以考查学生的思维能力、实践和创新能力。因此,它在高考中占有比较重要的地位。 回顾近几年高考,从题型分布来看,大多数一道填空或选择题,一道解答题;从分值来看,约占总分的10%左右。特别是2003年北京卷,选择、填空题各一道,解答题有两道,总分值有36分之多;2003年上海卷,填空题各一道,解答题有两道,总分值有36分之多;2003年上海卷,填空题一道,解答题也是两道,总分值有近30分,两份试卷中均有一道实际应用问题。 由此看来,最值问题虽然是老问题,但一直十分活跃,尤其导数的引入,更是为最值问题的研究注入了新的活力。 可以预见:2005年的高考命题中,有关最值问题,题型、题量、分值将保持稳定,题目的背景会更贴近学生的实际生活,更关注社会热点问题,难度不会太难。 二、考点回顾: 分析已有考法,最值问题的呈现方式一般有以下几种: 1、函数的最值; 2、学科内的其它最值,如三角形的面积最值问题、几何体的体积最值问题、数列的最大项等等; 3、字母的取值范围; 4、不等式恒成立问题,常常转化为求函数的最值,例如: f(x)≥0对x∈R恒成立?f(x)的最小值≥0成立, f(x)≤0对x∈R恒成立?f(x)的最大值≤0成立; 5、实际应用问题: 实际应用问题中,最优化问题占的比例较大,通过建模可化为最值问题。这类题已成为这几年高考的热点。可以肯定,这个热度会继续保持。

三、知识概要 1、求函数最值的方法: “数”和“形”,数形结合: 配方法 直接法 均值不等式法 单调性 代数方法 导数法 判别式法 间接法 有界性 函数的图像 平面几何知识 几何方法 线性规划 解析几何 斜率 两点间距离 2、求几类重要函数的最值方法; (1)二次函数:配方法和函数图像相结合; (2)),0()(R a a x a x x f ∈≠+=:均值不等式法和单调性加以选择; (3)多元函数:数形结合成或转化为一元函数。 3、实际应用问题中的最值问题一般有下列三种模型: 能直接判断 线性规划 建立目标函数 曲函数的最值 四、典型例题分析 例1(2002·全国卷·理·21) 设a 为实数,)(1)(2R x a x x x f ∈+-+=, (1)讨论)(x f 的奇偶性;

立体几何中的最值问题答案

立体几何中的最值问题 一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22AN AM +=22)12(1++=10 (2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2. 则MN =??-+120cos 222AN AM AN AM =2 1 312)3(122???++= 34+ ∵34+<10 ∴min MN =34+. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1, ∴2==BF AC , 21,21a BQ a CP = =, 即2 a BQ CP ==, ∴= +-==22)1(BQ CP PQ MN )20(2 1 )22()2 ( )2 1(222<<+- =+- a a a a (2)由(1)知: 2 2 22= = MN a 时,当,的中点时,分别移动到即BF AC N M ,, 2 2的长最小,最小值为 MN (3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN , ∴∠AGB 即为二面角α的平面角。又 4 6 ==BG AG ,所以由余弦定理有 314 6 4621 )46 ()46( cos 22-=? ?-+= α。故所求二面角)3 1 arccos(-=α。 例3. 如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)2 0(π θθ<<。点M 在AC 上,点N 在BF 上,若AM=FN ,(1)求 证:MN//面BCE ; (2)求证:MN ⊥AB; A

2020高考数学最可能考的50道题

高考数学历年考点框架 理科数学每年必考知识点: 复数、程序框图、三视图、函数与导数、三角函数、圆锥曲线、球的组合体、(计数原理、概率与统计模块)等。 理科数学每年常考的知识点: 常用逻辑用语、集合、线性规划、数列、平面向量、解三角形、定积分、直线与圆等。 最后冲刺指导(14个专题) 1、集合与常用逻辑用语小题 (1)集合小题 历年考情: 针对该考点,近9年高考都以交并补子运算为主,多与解不等式等交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题小组对集合题进行大幅变动的决心不大。 常见集合元素限定条件;对数不等式、指数不等式、分式不等式、一元二次不等式、绝对值不等式、对数函数的定义域、二次根式、、点集(直线、圆、方程组的解);补集、交集和并集;不等式问题画数轴很重要;指数形式永远大于0不要忽记;特别注意代表元素的字母是还是。 2020高考预测:

(2)常用逻辑用语小题 历年考情: 9年高考中2017年在复数题中涉及真命题这个概念.这个考点包含的小考点较多,并且容易与函数,不等式、数列、三角函数、立体几何交汇,热点就是“充要条件”;难点:否定与否命题;冷点:全称与特称(2015考的冷点),思想:逆否.要注意,这类题可以分为两大类,一类只涉及形式的变换,比较简单,另一类涉及命题真假判断,比较复杂。 简单叙述:小范围是大范围的充分不必要;大范围是小范围的必要不充分。 2020高考预测:

2、复数小题 历年考情: 9年高考,每年1题,考查四则运算为主,偶尔与其他知识交汇,难度较小.考查代数运算的同时,主要涉及考查概念有:实部、虚部、共轭复数、复数的模、对应复平面的点坐标、复数运算等。 无法直接计算时可以先设z=a+b i 2020高考预测: 3、平面向量小题 历年考情:

高考数学最值问题复习

第9课时最值问题 要点·疑点·考点 课前热身 能力·思维·方法 延伸·拓展 误解分析

要点·疑点·考点 1.能够根据条件恰当地选择自变量建立目标函数,然后利用求函数最值的方法(如配方法、基本不等式法、三角函数的值域、函数的单调性、判别式法等)求出最大、最小值 2.能够结合曲线的定义和几何性质,运用“数形结合”或者用“几何法”求出某些最大、最小值. 返回

1322=-y x 1.定长为12的线段AB 的端点在双曲线的右支上,则AB 中点M 的横坐标的最小值为_____.2.已知点,F 是椭圆的左焦点,一动点M 在椭圆上移动,则|AM|+2|MF|的最小值为_____.3.若动点P 在直线2x+y+10=0上运动,直线PA 、PB 与圆x 2+y 2=4分别切于点A 、B ,则四边形PAOB 面积的最小值为_______.112 1622=+y x () 32,A 课前热身 2 7 108

返回 4.椭圆且满足,若离心率为e ,则的最小值为()(A)2(B)(C)(D)()0122 22>>=+b a b y a x b a 3≤221e e +6133132 35.设点P 是椭圆上的动点,F 1、F 2是椭圆的两个焦点,则sin ∠F 1PF 2的最大值为_________________12222=+b y a x 783B

能力·思维·方法 1.过椭圆2x2+y2=2的一个焦点作直线交椭圆于P,Q两点,求△POQ面积S的最大值. 【解题回顾】本题若选择PQ为底表示△POQ的面积则运算量较大

【解题回顾】本题是通过建立二次函数求最值,基本手法是配方,要注意顶点横坐标是否在此区间内的讨论.2.已知定点A (a ,0),其中0<a <3,它到椭圆上的点的距离的最小值为1,求a 的值.149 2 2=+y x

立体几何中的最值

立体几何最值问题 姓名 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A. 5 5 B. 5 5 2 C. 2 D. 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。 三、展成平面求最值 例 3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图3-1 四、利用向量求最值 例4. 在棱长为1的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的 最小值为_______。

一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

2019届理科数学高考中的概率与统计问题

2019届理科数学 高考中的概率与统计问题 一、选择题(每小题5分,共15分) 1.某市园林绿化局在名贵树木培埴基地种了一批红豆杉树苗,为了解这批红豆杉树苗的生长状况,随机抽取了15株进行检测,这15株红豆杉树苗的高度(单位:cm)的茎叶图如图6-1所示,利用样本估计总体的思想,求培埴基地种植的这批红豆杉树苗的高度在(140,145)内的概率为 () 图6-1 A.0.3 B.0.4 C.0.2 D.0.1 2.如图6-2,正方形BCDE和正方形ABFG的边长分别为2a和a,连接CE和CG,现将一把芝麻随机地撒在该图形中,则芝麻落在阴影部分的概率是() 图6-2 A. B. C. D. 3.日常生活中,常听到一些谚语、俗语,比如“三个臭皮匠,顶个诸葛亮”,这句话有没有道理呢?我们假设三个臭皮匠中的老大、老二、老三能独立解出同一道问题的概率依次是0.6,0.5,0.4,而诸葛亮能独立解出同一道问题的概率是0.9,则三个臭皮匠与诸葛亮解出同一道问题的概率较大的是() A.三个臭皮匠 B.诸葛亮 C.一样大 D.无法确定 二、填空题(每小题5分,共10分) 4.已知函数f(x)=log2x+2log4x,其中x∈(0,4],若在[,4]上随机取一个数x0,则f(x0)≤0的概率 为. 5.第十三届全运会于2017年8月27日在天津举行,在自由体操比赛中,5位评委给甲、乙两位体操运动员打分(满分为30分)的茎叶图如图6-3所示,则甲、乙两位体操运动员中,得分的方差较大的是.(填甲或乙) 图6-3

三、解答题(共36分) 6.(12分)已知鸡的产蛋量与鸡舍的温度有关.为了确定某一个时段鸡舍的控制温度,某企业需要了解鸡舍的时段控制温度x(单位:℃)对某种鸡的时段产蛋量y(单位:t)和时段投入成本z(单位:万元)的影响.为此,该企业选取了7个鸡舍的时段控制温度x i和产蛋量y i(i=1,2,…,7)的数据,对数据初步处理后得到了如图6-4所示的散点图及一些统计量的值.其中k i=ln y i,=k i. 图6-4 (1)根据散点图判断,y=bx+a与y=c1(e为自然对数的底数)哪一个适宜作为该种鸡的时段产蛋量y关于鸡舍的时段控制温度x的回归方程类型?(给出判断即可,不必说明理由) (2)根据(1)的判断及表中的数据,建立y关于x的回归方程; (3)已知时段投入成本z与x,y的关系为z=e-2.5y-0.1x+10,当鸡舍的时段控制温度为28 ℃时,鸡的时段产蛋量及时段投入成本的预报值是多少? 附:对于一组具有线性相关关系的数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=βu+α的斜率和截 距的最小二乘估计分别为=(-)(-) (-) , ^ =-. 参考数据:

高考数学不等式中最值问题全梳理

高考数学不等式中最值问题全梳理 模块一、题型梳理 题型一 基本不等式与函数相结合的最值问题 例题1 若方程ln x m =有两个不等的实根1x 和2x ,则22 12x x +的取值范围是( ) A .()1,+∞ B . ) +∞ C . ()2,+∞ D .()0,1 【分析】由方程可得两个实数根的关系,再利用不等式求解范围. 【解析】因为 ln x m =两个不等的实根是1x 和2x ,不妨令()()120,1,1,x x ∈∈+∞, 12,Inx m Inx m =-= 故可得()120In x x =,解得211x x = ,则22 12x x + =212112x x +>=,故选:C. 【小结】本题考查对数函数的性质,涉及均值不等式的使用,属基础题. 例题2 22 91 sin cos αα +的最小值为( ) A .2 B .16 C .8 D .12 【分析】利用22sin cos 1αα+=将22 91sin cos αα +变为积为定值的形式后,根据基本不等式可求得最小值. 【解析】∵22sin cos 1αα+=,∵ ()22 2222 9191sin cos sin cos sin cos αααααα?? +=++ ??? 2222 sin 9cos 1010616cos sin αααα=+++=,当且仅当23sin 4α=,2 1cos 4α=时“=”成立,故2291 sin cos αα +的最小值为16. 【小结】本题考查了利用基本不等式求和的最小值,解题关键是变形为积为定值,才能用基本不等式求最值,属于基础题.

例题3 已知函数y =log a x +1(a >0且a ≠1)图象恒过定点A ,若点A 在直线x m +y n -4=0(m >0,n >0)上,则 m +n 的最小值为________. 【解析】由题意可知函数y =log a x +1的图象恒过定点A (1,1),∵点A 在直线x m +y n -4=0上,∵1m +1 n =4,∵m >0,n >0,∵m +n =14(m +n )????1m +1n =14????2+n m +m n ≥14? ?? ?? 2+2 n m ·m n =1,当且仅当m =n =12时等号成立,∵m +n 的最小值为1. 题型二 基本不等式与线性规划相结合的最值问题 例题4 已知,x y 满足约束条件230 23400x y x y y -+≥?? -+≤??≥? ,若目标函数2z mx ny =+-的最大值为1(其中 0,0m n >>),则 11 2m n +的最小值为( ) A .3 B .1 C .2 D . 32 【分析】画出可行域,根据目标函数z 最大值求,m n 关系式23m n +=,再利用不等式求得112m n +最小值. 【解析】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=. ()11111151519322323232322n m m n m n m n m n ?????+=?+?+=?++≥?+=?= ? ? ?????,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32 .故选:D

高中数学立体几何中的最值问题、内接外切、球面距离

立体几何中的最值问题、内接外切、球面距离 1. 一条长为2,a b 的三条线段,则ab 的最大值为 A B C . 52 D .3 【答案】C 【解析】构造一个长方体,让长为2的线段为体对角线,由题意知2222221,1,3a y b x x y =+=++=,即22222325a b x y +=++=+= ,又2252a b ab =+≥,所以5 2 ab ≤ ,当且仅当a b =时取等号,所以选C. 2. 四棱锥P ABCD -的三视图如右图所示,四棱锥P ABCD -的五个顶点都在一 个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为该球表面积为 A.12p B.24p C.36p D.48p 【答案】A 3. 若三棱锥S ABC -的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =1AB =,2AC =, 60BAC ∠=?,则球O 的表面积为 ( ) A .64π B .16π C .12π D .4π 【答案】B 【解析】因为1AB =,2AC =,60BAC ∠=?,所以2212212cos603BC =+-??= ,所以BC =。所 以90ABC ∠= ,即ABC ?为直角三角形。因为三棱锥S ABC -的所有顶点都在球O 的球面上,所以斜边AC 的中点是截面小圆的圆心'O ,即小圆的半径为122 r AC = =.,因为,OA OS 是半径,所以三角形AOS 为等 腰三角形,过O 作OM SA ⊥,则M 为中点,所以1'22 OO AM SA == ==所以半径

2OA ====,所以球的表面积为2416R ππ=,选B. 4. 已知正四棱柱ABCD-A 1B 1C 1D 1的高为323 p ,则A 、B 两点的球面距离为____________. 【答案】 23 π 【解析】因为正四棱柱外接球的体积为 323p ,所以343233 R p p =,即外接球的半径为2R =,所以正四棱柱的体对角线为24R =,设底面边长为x ,则 22 2 )2) 4+=,解得底面边长2x =。所以三角形AOB 为正三角形,所以 3 AOB π ∠= ,所以A 、B 两点的球面距离为 23 3 R π π = . 5. 设A 、B 、C 、D 为球O 上四点,若AB 、AC 、AD 两两互相垂直,且AB AC =2AD =,则A 、D 两点间的球面距离 。 【答案】 23 π 【解析】因为AB 、AC 、AD 两两互相垂直,所以分别以AB 、AC 、AD 为棱构造一个长方体,在长方体的体对角线为 球的直径,所以球的直径24R = ==,所以球半径为2R =,在正三角形AOD 中, 3 AOD π ∠= ,所以A 、D 两点间的球面距离为 23 3 R π π= . 6. 如图,某三棱锥的三视图都是直角边为2的等腰直角三角形,则该三棱锥的外接球的体积是

高三数学立体几何中的最值问题复习

突破立体几何之《立体几何中的最值问题》 考点动向 高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练. 例1如图6-1,在直三棱柱111ABC A B C -中,底面为直角三角形, 1906ACB AC BC CC ∠==== ,,. P 是1BC 上一动点,则1CP PA +的最小值 为 . 解析 考虑将立体几何问题通过图形变换,转化为平面几何问题解答. 解 连结1A B ,沿1BC 将1CBC △展开与 11A BC △在同一个平面内,如图6-2所示,连1AC ,则1AC 的长度就是所求的最小值.通过计 算可得1190AC C ∠=?,又145BC C ∠=?故11135AC C ∠=?, 由余弦定理可求得1AC =. 例2 如图6-3,在四棱锥P ABCD -中, PA ⊥底面A B C D ,DAB ∠为直角, 2A B C D A D C D A B ==,∥,E F ,分别为 PC CD ,的中点. (I )试证:CD ⊥平面BEF ; (II )设PA k AB = ,且二面角E BD C --的平面角大于30?,求k 的取值范围. 解析 对(I ),可以借助线面垂直的判定定理,或者借助平面的法向量及直线的方向 A 1 A 1 1 图6-1 A C P B 1 A 1 C 1 B 图6-2 C C 图6-3

2020年高考数学(理)热点题型:概率与统计(含答案)

概率与统计 热点一 常见概率模型的概率 几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式. 【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率; (2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列. 解 依题意,这4个人中,每个人去参加甲游戏的概率为1 3,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则 P (A i )=C i 4? ??? ? 13i ? ?? ??234-i . (1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24? ??? ? 132? ?? ??232=8 27. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥, ∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34? ??? ?133 ×23+C 44? ?? ??134=19. (3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥.

相关主题