搜档网
当前位置:搜档网 › 矿井通风阻力计算原则

矿井通风阻力计算原则

矿井通风阻力计算原则

3.2.1 矿井通风阻力计算原则

(1)矿井通风的总阻力,不应超过2940Pa。

(2)矿井井巷的局部阻力,新建矿井宜按井巷摩擦阻力的10%计算,扩建矿井宜按井巷摩擦阻力的15%计算。

矿井通风阻力测定报告.doc

耒阳市马康煤业公司炭山煤矿 矿井通风阻力测定报告

2018年3月 会审表 编制审核编制时间2018年3月6日 姓名职务会审意见签名会审时间胡召祥矿长 候井德总工程师 胡秋元安全副矿长 刘爱明生产副矿长 钟金良机电副矿长 尹小平通风副总 刘仁仕测量技术员 刘腊宝采掘技术员

刘显智地质技术员 熊俊机电技术员 刘世云探水队长 为了确保矿井安全生产,保证矿井通风正常,根据《煤矿安全规程》规定,我矿于 2017 年 4 月 28 日矿井通风系统风阻进行一次测定。 一、组织领导小组 组长:胡召祥 副组长:王德华 成员:尹小平(通风技术员)、刘爱明(生产副矿长)、曹国金(安全副矿长)、刘仁仕(采煤技术员)、雷群松(地质技术员)、

欧学明(机电技术员)、候井德(掘进技术员) 1、概述 矿井通风系统现状生产布置及风量分配情况: 主(副)斜井→运输石门→运输巷→采煤工作面→回风巷→回风→ 回风斜井→引风道→地面。 2、通风阻力实际测定、计算及分析 、通风阻力测定的目的矿井通风阻力测定是矿井通风技术管理 的一项重要内容,其主要目的在于 (1)了解矿井通风系统的阻力分布情况; (2)为生产矿井通风系统优化和合理配风提供基础资料和参数; (3)为矿井井下灾害防治和风流调节提供必要的基础资料; (4)为保证矿井的正常生产和增产提效提供依据; (5)为矿井通风能力核定提供基础参 数。、通风阻力测定的技术依据及方法 、测定的技术依据《煤矿安全质量标准化标准及考核评级办法》《矿井通风阻力测定方法》 MT/T 440-1995MT/T440-1995 《煤矿安全规程》第119 条规定:“新井投产前必须进行次通风

通风阻力测试报告

四川大业矿业集团有限 公司陈家岭煤矿 矿井通风阻力测定报告 二〇一七年十一月

煤矿矿井通风阻力 测定报告 测定单位:中煤科工集团重庆设计研究院矿井名称:四川大业矿业集团有限公司测定类别:矿井通风阻力测定 测定日期:2017年11月23日

通风阻力测定报告

测定人员签字表 测定仪器设备环境一览表

1.矿井概况 1.1 测定目的 1.1.1四川大业矿业集团有限公司陈家岭煤矿现采矿许可证(证号C5100002010091120075941)根据根据《煤矿安全规程》(2016年版)第156条规定,新井投产前必须进行1次矿井通风阻力测定,以后每3年至少进行1次。矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定。 我院受委托和四川大业矿业集团有限公司陈家岭煤矿联合编制《四川大业矿业集团有限公司陈家岭煤矿矿井通风阻力测定报告》,其目的是为矿山企业合理开发利用其矿产资源,并为矿井通风设计提供依据。 1.1.2矿井通风阻力测定是矿井通风技术管理的一项重要内容,其主要目的在于: ①了解矿井通风系统的阻力分布情况; ②为生产矿井通风系统优化和合理配风提供基础资料和参考; ③为矿井井下灾害防治和风量调节提供必要的基础资料; ④为保证矿井的正常生产和增产提效提供依据; ⑤为矿井通风能力核定提供基础依据。 1.1.2生产开拓状况 矿井西部边界附近布置有陈家岭平硐(+566m主平硐),东部布置有尚武平硐(+552m平硐)、尚武进风斜井(+553m进风斜井)和+648m尚武风井。 矿井划分为三个水平,一水平标高+370m、二水平标高+190m,三水平标高+100m。

矿井通风阻力计算

第三章 井巷通风阻力 本章重点和难点: 摩擦阻力和局部阻力产生的原因和测算 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 第一节 井巷断面上风速分布 一、风流流态 1、管道流 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。 (1)雷诺数-Re 式中:平均流速v 、管道直径d 和流体的运动粘性系数γ。 在实际工程计算中,为简便起见,通常以R e =2300作为管道流动流态的判定准数,即: R e ≤2300 层流, R e >2300 紊流 (2)当量直径 对于非圆形断面的井巷,Re 数中的管道直径d 应以井巷断面的当量直径de 来表示: 因此,非圆形断面井巷的雷诺数可用下式表示: γ d v e R ? =

对于不同形状的井巷断面,其周长U 与断面积S 的关系,可用下式表示: 式中:C —断面形状系数:梯形C =4.16;三心拱C =3.85;半圆拱C =3.90。(举例见P38) 2、孔隙介质流 在采空区和煤层等多孔介质中风流的流态判别准数为: 式中:K —冒落带渗流系数,m 2; l —滤流带粗糙度系数,m 。 层流,R e ≤0.25; 紊流,R e >2.5; 过渡流 0.252300,紊流 巷道条件同上,Re=2300层流临界风速: V=Re×U×ν/4S =2300×4.16×3×15×10-6/(4×9)=0.012m/s<0.15 二、井巷断面上风速分布 (1)紊流脉动 风流中各点的流速、压力等物理参数随时间作不规则变化。 (2)时均速度 瞬时速度 v x 随时间τ的变化。其值虽然不断变化,但在一足够长的时间段 T 内,流速 v x 总是围绕着某一平均值上下波动。 (3)巷道风速分布

矿井通风设计及风量计算方法

矿井通风设计施工时的基本原则和要求

通风系统合理可靠的含义

通风网络图的绘制 矿井风量计算办法 按照《煤矿安全规程》第一百零三条:“煤矿企业应根据具体条件制定风量计算方法,至少每5年修订1次”,要求,根据《煤矿井工开采通风技术条件》(AQ1028-2006)、《煤矿通风能力核定标准》(AQ1056-2008),结合本矿开采的实际情况,制定本办法。 一、全矿井需要风量的计算 全矿井总进风量按以下两种方式分别计算,并且必须取其最大值: 1、按井下同时工作的最多人数计算矿井风量: Q 矿进=4×N×K 矿通 (m3/min) 式中:Q 矿进 ——矿井总进风量,m3/min; 4——每人每分钟供给风量,m3/min.人; N——井下同时工作的最多人数,人; K 矿通——矿井通风需风系数(抽出式取K 矿通 =~)。 2、按各个用风地点总和计算矿井风量: 按采煤、掘进、硐室及其他巷道等用风地点需风量的总和计算: Q 矿进=(∑Q 采 +∑Q 掘 +∑Q 硐 +∑Q 其他 )×K 矿通 (m3/min) 式中:∑Q 采 ——采煤工作面实际需要风量的总和,m3/min; ∑Q 掘 ——掘进工作面实际需要风量的总和,m3/min; ∑Q 硐 ——硐室实际需要风量的总和,m3/min; ∑Q 其他 ——矿井除了采、掘、硐室地点以外的其他巷道需风量的总和,m3/min。 K 矿通——矿井通风需风系数(抽出式K 矿通 取~)。 二、采煤工作面需要风量 按矿井各个采煤工作面实际需要风量的总和计算: ∑Q 采=∑Q 采i +∑Q 采备i (m3/min) 式中:∑Q 采 ——各个采煤工作面实际需要风量的总和,m3/min; Q 采i ——第i个采煤工作面实际需要的风量,m3/min; Q 采备i ——第i个备用采煤工作面实际需要的风量,m3/min。 每个采煤工作面实际需要风量,按工作面气象条件、瓦斯涌出量、二氧化碳涌出量、人员和爆破后的有害气体产生量等规定分别进行计算,然后取其中最大值。有符合规定的串联通风时,按其中一个采煤工作面实际需要的最大风量计算。 1、按气象条件计算: Q 采=Q 基本 ×K 采高 ×K 采面长 ×K 温 (m3/min)

MTT 6342019版煤矿矿井通风计算方法

MMT/T 634—2019 煤矿矿井风量计算方法 2018年-12-29发布 2019年-7-1实施 煤矿矿井风量计算方法 1 范围 本标准规定了煤矿矿井风量计算的术语与定义、总则、矿井需风量计算方法、矿井有效风量的计算方法与计算结果表述。 本标准适用于煤矿的新井设计、生产矿井的改扩建与采区的风量计算。 2 规范性引用文件 下列文件对于本文件的应用题必不可少的。凡就是注日期的引用文件,仅所注日期的版本适用于本文件,凡就是不注日期的引用文件,其最新版本《包括所有的修改单》适用于本文件。 《煤矿安全规程) 3 术语与定义 本标准采用下列术语与定义 3、1 需风量 required air quantity 矿井生产过程中,为供人员呼吸、稀释与排出有害气体、浮尘,

以创造良好气候条件所需要的风量。 3、2 矿井有效风量 effective air quantity 送到采掘工作面、硐室与其她用风地点的风量之总与。 3、3 矿井有效风量率ventilation efficiency;volumetric efficiency;effective rate of air quantity 矿井有效风量占矿井总进风量的百分数。 3、4 矿井外部漏风量 surface leakage air quantity 主要通风机装置及其风井附近地表漏风的风量总与。 3、5 矿井外部漏风率 surface leakage rate 矿井外部漏风量占通风机风量的百分数。 4 总则 4、1 风量计算依据 4、1、1供给煤矿井下任何用风地点的新鲜风量,应依照 4、1、2、4、1、3进行计算,并取其最大值,作为该用风地点的供风量。 4、1、2 按该用风地点同时工作的最多人数计算,每人每分钟供给风量不得少于4m3。 4、1、3 按该用风地点的风流中瓦斯、二氧化碳、氢气与其它有害气

矿井通风阻力测定方法

矿井通风阻力测定方法 2007/12/14/12:53 来源:国际能源网 MT/T440—1995 中华人民共和国煤炭工业部1996—03—08批准1996—08—01 实施 1.主题内容与适用范围 本标准规定了矿井通风阻力测定用仪器、测定步骤、测定结果 计算和处理。 本标准适用于煤矿井巷通风阻力测定。 2.术语 2.1主要路线 测定矿井通风阻力时,所选定的从入风井口(或井底车场),经入风大巷、采区、回风大巷,回风井至 风峒的通风路线。 2.2次要路线 测定矿井通风阻力时,所选定的除主要路线外的通风路线。 3.仪器 以下计量器具均应检定,并在有效期内使用。 a.普通型空盒气压计: 测量范围80~107kPa(相当于600~800mmHg),最小分度值50Pa; b.倾斜压差计: 测量范围0~3000Pa,最小分度值10Pa; c.精密气压计: 测量范围83.6~114kPa,最小分度值25Pa; d.通风干湿温度计: 测量范围-25~+50℃,最小分度值0.2℃;

e.皮托管: 校正系数0.998~1.004; f.低速风速表: 测量范围0.2~5m/s,启动风速≤0.2m/s; g.中速风速表: 测量范围0.4~10m/s,启动风速≤0.4m/s; h.高速风速表: 叶轮:测量范围0.8~25m/s,启动风速≤0.5m/s; 杯式:测量范围1.0~30m/s,启动风速≤0.8m/s; i.秒表: 最小分度值1s; j.钢卷尺: 2m钢卷尺:测量范围0~2m,最小分度值1.0mm; 30m钢卷尺:测量范围0~30m,最小分度值1.0mm; k.橡胶管(或塑胶管): 内径4~5mm; l.橡胶管接头: 内径3~4mm,外径5~6mm,长度50~80mm。 4.测定步骤 4.1测定路线选择 在通风系统图上选择测定的主要路线和次要路线。同时,要考虑一个工作班内将该路线测完;当测定 路线较长时,可分段、分组测定。 4.2测点选择 首先在通风系统图上按选定测定路线布置测点,并按顺序编号。然后再按井下实际情况确定测点位置, 并作标记。

矿井通风阻力测定及对几个问题的分析

矿井通风阻力测定及对几个问题的分析 程绍仁1 ,程建军 2 (1 晋城市煤炭工业局,山西晋城048000; 2 晋城泽泰安全评价中心,山西晋城048000) [摘 要] 矿井通风阻力是衡量矿井通风状况的主要指标。影响矿井通风阻力大小的因素很多,而矿井通风阻力测定则是矿井通风技术管理的一项基础工作。介绍了矿井通风阻力的测定方法,对矿井通风阻力测定中的几个问题进行了分析,并提出了改进意见。 [关键词] 通风阻力;测定方法;问题分析[中图分类号]TD72 [文献标识码]B [文章编号]1006 6225(2006)01 0072 03 M ensuration ofM ine Ventilation Resistance and Analysis of Several Proble m s [收稿日期]2005-08-29 [作者简介]程绍仁(1945-),男,山西晋城人,高级工程师,现任晋城市煤炭工业局副总工程师。 矿井通风阻力是衡量矿井通风状况的主要指标,矿井通风阻力测定是矿井通风技术管理工作的主要内容。 煤矿安全规程 规定,!新矿井投产 前必须进行1次矿井通风阻力测定,以后每3年至少进行1次。矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定?。 晋城市500余个地方煤矿在近1年多的时间里,普遍进行了1次矿井通风阻力测定,由于测定单位的技术力量不等和技术水平不齐,测定中存在问题不少,测定结果误差很大。1 矿井通风阻力测定方法1 1 测定仪器 矿井通风阻力测定现已淘汰繁琐的、操作麻烦的、测量精度低的毕托管、倾斜压力(U 型压力计)加长距离软管的测量方法,而采用气压计法,使用精密气压计,配以通风干湿球温度计、风表、秒表、皮尺等测量计具。精密气压计具有体积小、重量轻,不需要拉软管,操作简便、快速、省人、省力、省时等特点,配以所测风速和空气的干湿球温度计算出的空气动压、位压值而求得通风阻力。但需要注意,在测定前要对同时使用2台或多台精密气压计、通风干湿球温度计、风表进行校正,修正其互相之间误差值。1 2 测定方法 (1)同步法 用2台同型号规格的气压计在测量风路的相邻两测点同时读数,由此测算出前后两测点风流的静压差,再用风表和通风干湿球温度计测算出两测点的动压、位压参数,从而计算出该 测段的通风阻力。逐段通风阻力相加,即为长距离的通风阻力;按风流路线从矿井的进风井口逐段测至矿井主要通风机的吸风口处的通风阻力之和,即为全矿井的通风阻力。 (2)基点法 用2台同型号规格的气压计,1台气压计放在基点(进风井口外10m 左右处),从计时钟表的整5m i n (或整10m in)的倍数开始,并以5m i n (或10m in)为间隔,记录气压计读数,用来测定地面大气压力的变化值,以便对井下的另1台气压计读数值进行校正。而另1台气压计沿预定的测定路线、测点进行测定、读数。井下气压计的读数一定要待指示数值稳定后再读数,如超过原设定整5m i n (或整10m i n )时限,可待下一整5m i n (或整10m i n )或其倍数时读数,以便和基点同时的气压值校正。 (3)基点 同步法 此法是上两种方法的结合法,用3台同型号规格的气压计,1台固定在进风井口外的基点上,作为大气压力变化的校正用,将另外2台气压计携至井下沿预定的测点,结合上两种方法按时钟的整5m i n (或整10m in)的倍数同时读数,以求得通风阻力。这种方法测定精度高,适用测定时间长、通风路线长的大型矿井。 在沿1条主风路测量通风阻力的同时,其他各条并联风路的风量也应测出,以便计算风阻和校核风量。 1 3 测定方法的选择 矿井通风阻力测定方法的选择,应根据矿井通风路线的长短、测点布置的多少而选用。当然第3种方法基点 同步法最好,测量精度高,适用各种 72 第11卷第1期(总第68期) 2006年2月煤 矿 开 采CoalM i n i ng T echno l ogy V o1 11N o 1(Ser i es N o 68) February 2006

矿井通风风量计算细则

南桐矿业公司矿井通风风量计算与配备细则根据《煤矿安全规程》、《矿井通风质量标准及检查评定办法》及重庆煤炭集团公司《矿井通风质量标准及检查评定办法实施细则》的有关规定,结合我公司实际情况,特制定本细则。 一、矿井风量计算的原则 1、矿井各地点需要风量,应根据采掘生产部署和实际情况,每月计算一次。 2、生产矿井总风量,应根据采掘工作面、硐室和其它用风地点实际需要风量的总和进行计算。 3、新建(改扩建)矿井或延深新水平的总风量,应按采掘工作面、硐室和其它用风地点实际需要风量的总和,以及矿井相对瓦斯涌出量分别进行计算,并取其中最大值,同时应有上级批准的专项通风设计。 4、各地点实际需要风量,应满足下列要求: (1)《煤矿安全规程》、《矿井通风质量标准及检查评定办法》中对瓦斯和其它气体浓度、风速、空气温度的规定; (2)每人每分钟供给风量不少于4m3; (3)防止采煤工作面隅角瓦斯超限或积聚; (4)自然发火严重的采煤工作面,备用风量系数应取最小值; (5)突出危险性严重的采掘工作面,备用风量系数应取最大值; (6)安全、经济、合理,备用风量不宜过大或过小。 5、计算被串联通风工作面(地点)的风量时,应将串入风流同中瓦斯、二氧化碳计入被串联通风工作面(地点)涌出量之中;计算矿井总风量时,应减去串联通风中的被串入风量;被串联通风工作面(地点)的进风流中的瓦斯、二氧化碳均不得超过0.5%。 6、实施抽放瓦斯的工作面(地点)的风量,应按抽放后实际的瓦斯涌出量进行计算。 二、矿井风量计算的前提 1、矿井通风系统必须独立、稳定、可靠。通风系统中没有不符合规定的串联通风、扩散通风和采煤工作面采用局部通风机通风。 2、通风巷道失修率不超过7%,严重失修率不超过3%。

矿井通风阻力测定(范本)

矿井通风阻力测定报告 范本

1.概述 1.1矿井通风系统现状 矿井运转主扇1台,主备扇能力相同。通风方式为中央分列式,通风方法为抽出式。主要参数见下表: 风机,矿井总进风量9600m3/min,总回风量10059m3/min。 生产布置及风量分配情况:平岗煤矿原设计能力72万吨/年,于1973年8月投产, 近年来,因销售形势好转,产量有所增加。为了满足市场需求,矿井将进一步扩大生 产规模,现已开工延深-250m生产水平。矿井生产能力经改造后将达到120万吨/年。 目前生产区域主要布置在二水平。东一采区布置一个综采面、5个掘进队,下延布置 一个采煤、6个掘进队生产。东三采区布置了一个综采队、2个掘进队生产。下延采 区总配风为2420m3/min,东一采区总配风量3583m3/min,东三采区总配风量为2212 m 3/min,中部层采区总配风为500 m3/min,首采区总配风为885 m3/min,矿井总风量 为9600m3/min,。 1.2项目实施背景 随着下延采区、东一采区的延伸和中部层采区的继续开采,使全矿井所需风量增 加,到时目前主扇将不能满足生产需要,需要在下延新建个立风井,这时全矿的通风 系统将发生变化。且随着矿井的主采水平的逐步加深,按照瓦斯梯度的原理进行推测, 瓦斯涌出量将加大;由于矿井机械化程度的进一步提高及煤炭市场的需要,矿井生产 系统经过进一步改造,矿井的产量将上一个新台阶,矿井原煤产量将提高到120万吨 /年。对矿井通风系统的改造势在必行。因此在现在必须做好前期准备工作,进行矿 井通风阻力测定。 2、平岗煤矿通风阻力实际测定、计算及分析 2.1、通风阻力测定的目的 矿井通风阻力测定是矿井通风技术管理的一项重要内容,其主要目的在于: (1)了解矿井通风系统的阻力分布情况; (2)为生产矿井通风系统优化和合理配风提供基础资料和参数;

煤矿常用计算公式汇总

煤矿巷道及通风计算公式 一、常见断面面积计算: 1、半圆拱形面积=巷宽×(巷高+0.39×巷宽) 2、三心拱形面积=巷宽×(巷高+0.26×巷宽) 3、梯形面积=(上底+下底)×巷高÷2 4、矩形面积=巷宽×巷高 二、风速测定计算: V 表=n/t (m/s) (一般为侧身法测风速) 式中:V 表:计算出的表速; n :见表读数; t :测风时间(s ) V 真=a+ b ×V 表 式中:V 真:真风速(扣除风表误差后的风速); a 、 b :为校正见表常数。 V 平=K V 真=(S-0.4)×V 真÷S 式中:K 为校正系数(侧身法测风时K=(S-0.4)/S ,迎面测风时取1.14); S 为测风地点的井巷断面积 三、风量的测定: Q=SV 式中Q :井巷中的风量(m 3/s );S :测风地点的井巷断面积(m 2); V :井巷中的平均风速(m/s ) 例1:某半圆拱巷道宽2m,巷道壁高1m,风速1m/s ,问此巷道风量是多少。 例2:某煤巷掘进断面积3m 2,风量36 m 3/min ,风速超限吗? 四、矿井瓦斯涌出量的计算: 1、矿井绝对瓦斯涌出量计算(Q 瓦) Q 瓦=QC (m 3/min ) 式中Q :为工作面的风量;C :为工作面的瓦斯浓度(回风流瓦斯浓度-进风流中瓦斯浓度) 例:某矿井瓦斯涌出量3 m 3/min ,按总回风巷瓦斯浓度不超限计算矿井供风量不得小于多少。 2、相对瓦斯涌出量(q 瓦) q 瓦=1440Q 瓦*N T (m 3/t )

式中Q 瓦 :矿井绝对瓦斯涌出量;1440:为每天1440分钟; N:工作的天数(当月);T:当月的产量 五、全矿井风量计算: 1、按井下同时工作最多人为数计算 Q矿=4NK (m3/min) 式中4:为《规程》第103条规定每人在井下每分钟供给风量不得少于4立方米;N:井下最多人数;K:系数(1.2~1.5) 2、按独立通风的采煤、掘进、硐室及其他地点实际需要风量的总和计算 Q矿=(∑Q采+∑Q掘+∑Q硐…+∑Q其他)×K 式中K:校正系数(取1.2~1.8) 六、采煤工作面需风量 1、按瓦斯涌出量计算 Q 采=100×q 采 ×K CH4 (m3/min) 式中100:为系数;q 采 :采煤工作面瓦斯涌出量(相对); K CH4:瓦斯涌出不均衡系数(取1.4 ~ 2.0) 2、按采面气温计算: Q 采 =60×V×S (m3/min) 式中60:为系数; V:采面的风速(温度为18~20℃时取0.8~1.0m/s,温度为20~23℃时取1.0~1.5 m/s); S:采面平均断面积。 3、按采面人数计算: Q采=4N (m3/min) 4、按炸药量计算: Q采=25A (m3/min) 式中25:为系数;A:为一次性爆破的最多炸药量 5、按风速进行校验: 15≤Q采≤240 (m/min)或0.25≤Q采≤4 (m/s) 式中15与0.25:为工作面最低风速(m/min)(m/s) 240与4:为工作面最高风速(m/min)(m/s) 例:某采面工作人数15人,一次性爆破炸药5kg,温度20度,瓦斯涌出量为1 m3/min,请问采面需风量是多少。 七:掘进工作面需风量的计算

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生的原因 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 一、风流流态(以管道流为例) 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。(降低风速的原因) (二)、巷道风速分布 由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。 在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力的计算 一、摩擦阻力 风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算: H f =λ×L/d×ρν2/2pa λ——摩擦阻力系数。 L——风道长度,m

d——圆形风管直径,非圆形管用当量直径; ρ——空气密度,kg/m3 ν2——断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为: H f =α×LU/S3×Q2 =R f×Q2pa R f=α×LU/S3 α——摩擦阻力系数,单位kgf·s2/m4或N·s2/m4,kgf·s2/m4=9.8N·s2/m4 L、U——巷道长度、周长,单位m; S——巷道断面积,m2 Q——风量,单位m/s R f——摩擦风阻,对于已给定的井巷,L,U,S都为已知数,故可把上式中的α,L,U,S 归结为一个参数R f,其单位为:kg/m7 或N·s2/m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→h f→R f 生产矿井:已测定的h f→R f→α,再由α→h f→R f 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。 1、几种常见的局部阻力产生的类型: (1)、突变 紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。

矿井通风与安全计算题

1、压入式通风风筒中某点i 的hi=1000Pa ,hvi=150Pa ,风筒外与i 点同标高的P0i=101332Pa ,求: (1) i 点的绝对静压Pi ; (2) i 点的相对全压hti ; (3) i 点的绝对全压Pti 。 解:(1) Pi=P0i+hi=101332+1000=102332Pa (3分) (2) hti=hi+hvi=1000+150=1150Pa (3分) (3) Pti=P0i+hti =101332+1150=102482Pa 或Pti =Pi+hvi=102332+150=102482Pa (4分) 2、在某一通风井巷中,测得1、2两断面的绝对静压分别为101324Pa 和101858Pa ,若S 1=S 2,两断面间的高差Z 1-Z 2=100m ,巷道中空气密度为1.2kg/m 3,求1、2两断面间的通风阻力,并判断风流方向。 解:假设风流方向为1断面-2断面,根据能量方程知两断面间的通风阻力为 )()(2222111121gZ h P gZ h P h v v r ρρ++-++=-(2分) 因为S 1=S 2且巷道中空气密度无变化,所以动能差值为零,则 =101324-101858+1.2×9.8×100=642Pa (3分) 因为得值为正值,所以,假设成立,即风流方向为1断面-2断面(5分)。 3、下图为压入式通风的某段管道,试绘制出管道风流中i 点各种压力间的相互关系图。 图中如画出绝对压力图,得5分;画出相对压力图,得5分。 1、如右图,若R 1=R 2=0.04 kg/m 7,请比较下图中两种形式的总风阻情况。 若R 1=R 2=0.04 kg/m 7,请比较下图中两种形式的总风阻情况。 串联:Rs 1= R 1+ R 2= 0.08 kg/m 7(3分) 并联:(6分) ∴ Rs 1 :Rs 2=8:1 即在相同风量情况下,串联的能耗为并联的 8 倍。 (1分) 2、在某一通风井巷中,测得1、2两断面的绝对静压分别为101324Pa 和101858Pa ,若S 1=S 2,两断面间的高差Z 1-Z 2=100m ,巷道中空气密度为1.2kg/m 3,求1、2两断面间的通风阻力,并判断风流方向。 解:假设风流方向为1断面-2断面,根据能量方程知两断面间的通风阻力为 )()(2222111121gZ h P gZ h P h v v r ρρ++-++=-(3分) 因为S 1=S 2且巷道中空气密度无变化,所以动能差值为零,则 704.0104.0111/01.0)(1) (1 21m kg R R R S =+=+=

矿井通风阻力测定报告.docx

耒阳市马康煤业公司炭山煤矿矿井通风阻力测定报告 2018年3月 会审表

为了确保矿井安全生产,保证矿井通风正常,根据《煤矿安全规程》规定,我矿于2017年4月28日矿井通风系统风阻进行一次测定。 一、组织领导小组 组长:胡召祥 副组长:王德华 成员:尹小平(通风技术员)、刘爱明(生产副矿长)、曹国金(安全副矿长)、刘仁仕(采煤技术员)、雷群松(地质技术员)、欧学明(机电技术员)、候井德(掘进技术员) 1、概述 矿井通风系统现状生产布置及风量分配情况: 主(副)斜井→运输石门→运输巷→采煤工作面→回风巷→回风→回风斜井→引风道→地面。 2、通风阻力实际测定、计算及分析 2.1、通风阻力测定的目的矿井通风阻力测定是矿井通风技术管理的一项重要内容,其主要目的在于 (1)了解矿井通风系统的阻力分布情况; (2)为生产矿井通风系统优化和合理配风提供基础资料和参数;

(3)为矿井井下灾害防治和风流调节提供必要的基础资料; (4)为保证矿井的正常生产和增产提效提供依据; (5)为矿井通风能力核定提供基础参数。 2.2、通风阻力测定的技术依据及方法 《矿井通风阻力测定方法》MT/T 440-1995MT/T440-1995 《煤矿安全规程》第119条规定:“新井投产前必须进行次通风阻力测定,以后每年至少次,矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定。 采用基点法测定时两测点间的通风阻力计算 公式为:)+ Z1-Z2 g,(1) 式中:1、2――分段阻力, Pa;P1,P2――, Pa;――分段巷道起点和末点基点绝对静压, Pa;ρ1,ρ2――的空气密度,Kg/m3; V1,V2――的风速m/s; g――重力加速度m/s2; Z1,Z2――的标高,m。

矿井通风阻力参数及其计算复习思考题

第四章矿井通风阻力参数及其计算复习思考题 1、矿井风流以层流为主还是以紊流为主?为什么? 2、阻力和风阻是不是一回事? 3、尼古拉茨实验研究提示了井巷粗糙度、雷诺数与λ系数之间的什么关系? 4、由测定得知,某梯形巷道断面5m2,长500m,当通过的风量为25m2/s时,压差为3.75mmH2O,分别按工程单位制和法定单位制,求算譔巷道的摩擦阻力系数。 5、影响摩擦的因素有哪些? 6、假若井筒直径D=4m,摩擦阻力系数α=0.04N?s2/m4,深度L=325m,通过的风量为3000m3/min,问井筒的风阻有多大?压差有多大? 7、风流以240m/min的速度从断面为10m2的巷道突然进入断面为4m2巷道,问引起的能量损失为多少? 8、某通风巷道的断面由2m2,突然扩大到10m2,若巷道中渡过的风量为20m3/s,巷道的摩擦阻力系数为0.016N?s2/m4,示巷道突然扩大处的通风阻力。 9、为什么要降低矿井风阻?用什么方法? 10、何谓矿井等积孔? 11、矿井风阻特性曲线表示什么?作风阻为1.962N?S2/m8的风阻特性曲线。 12、对某巷道经过实测获得如下资料:

(1)如图3-1,两支皮托管间距为200m,倾斜压差计的倾斜系数为0.4,在压差计上的读数为第一次16.5mm、第二次16.2mm、第三次16.3mm。 (2)巷道断面如图3-2,a=3m、b=3.5m、c=2.4m、d=2.3。 图3-1用倾斜压差计测压差图3-2巷道断面 表3-1测风记录 顺序风表顺序读数(格)风表测风时间 零点读数6039 - 1 6545 1min55s 2 7130 2min10s 3 7590 1min40s (3)用翼式风表测风(侧身法)记录如表3-1。 (4)风表按图3-3校正。 (5)该巷道的气温为150C,气 压750mmHg,相对湿度80%。根据 以上数据,求标准状况下该巷道的 摩擦阻力系数、摩擦风阻、等积孔, 并作出风阻特性曲线。图3-5

矿井通风总阻力计算

华蓥市老岩湾煤业有限公司 矿井通风总阻力计算 沿着矿井通风容易时期和矿井通风困难时期的通风路线计算矿井通风总阻力。 通风摩擦阻力计算公式如下: h= 2 3 Q S P L a ??? 式中:h —— 通风摩擦阻力,Pa ; α—— 井巷摩擦阻力系数,N.S 2/m 4; L —— 井巷长度,m ; P —— 井巷净断面周长,m ; Q —— 通风井巷的风量,m 3/s ; S —— 井巷净断面面积,m 2; 通风局部阻力取同时期摩擦阻力的15%。 经计算,矿井通风容易时期采用中央分列式通风系统,其总阻力h 为573.99Pa ;矿井通风困难时期采用两翼对角式通风系统,其北风井和南平硐风井阻力分别为489.42Pa 、401.51Pa 。(详见矿井通风阻力计算表5-2-2、表5-2-3、表5-2-4)。 五、对矿井通风状况的评价 计算矿井的风阻和通风等积孔 a 、矿井通风容易时期采用中央分列式通风系统,矿井的总风阻R 易和矿井通风等积孔A 易 为: R 易 =h 易/ Q 易2 =573.99÷30.42 =0.62N 2S 2/m 8 A 易 =易易h Q /19.1 =1.19330.4÷99.573 =1.51m 2

b 、矿井通风困难时期采用两翼对角式通风系统,其北风井的风阻R 1、通风等级孔A 1和南平硐风井的风阻R 2、通风等级孔A 2以及矿井的通风等积孔A 难为: R 1 =h 1/ Q 12 =489.42÷15.952 =1.92N 2S 2/m 8 A 1 =11/19.1h Q =1.19315.95÷42.489 =0.86m 2 R 2 =h 2/ Q 22 =401.51÷12.552 =2.55N 2S 2/m 8 A 2 =22/19.1h Q =1.19312.55÷51.401 =0.75 m 2 A 难= () 111 11121)(19.1Q Q h Q h Q Q Q +++? = () 55.1295.1551 .40155.1242.48995.15)55.1295.15(19.1+?+?+? =1.6(m 2) 式中: R 易-为矿井通风容易时期的矿井风阻,N 2S 2/m 8; A 易-为矿井通风容易时期的矿井通风等积孔,m 2; h 易―为通风容易时期的矿井通风阻力,Pa ; R 1-为北风井通风困难时期的矿井风阻,N 2S 2/m 8; A 1-为北风井通风困难时期的通风等积孔,m 2;

一、矿井通风设计的内容和要求

一、矿井通风设计的内容与要求 1、矿井通风设计的内容 ? 确定矿井通风系统; ? 矿井风量计算和风量分配; ? 矿井通风阻力计算; ? 选择通风设备; ? 概算矿井通风费用。 2、矿井通风设计的要求 ? 将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; ? 通风系统简单,风流稳定,易于管理,具有抗灾能力; ? 发生事故时,风流易于控制,人员便于撤出; ? 有符合规定的井下环境及安全监测系统或检测措施; ? 通风系统的基建投资省,营运费用低、综合经济效益好。 二、优选矿井通风系统 1、矿井通风系统的要求 1) 每一矿井必须有完整的独立通风系统。 2)进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。 3)箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。 4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。5)每一个生产水平和每一采区,必须布置回风巷,实行分区通风。

6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。 7)井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。 2、确定矿井通风系统 根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。 三、矿井风量计算 (一)、矿井风量计算原则 矿井需风量,按下列要求分别计算,并必须采取其中最大值。 (1)按井下同时工作最多人数计算,每人每分钟供给风量不得少于4m3; (2)按采煤、掘进、硐室及其他实际需要风量的总和进行计算。 (二)矿井需风量的计算 1、采煤工作面需风量的计算 采煤工作面的风量应该按下列因素分别计算,取其最大值。 (1)按瓦斯涌出量计算: 式中:Qwi——第i个采煤工作面需要风量,m3/min Qgwi——第i个采煤工作面瓦斯绝对涌出量,m3/min kgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,通常机采工作面取kgwi=1.2~1.6 炮采工作面取kgwi=1.4~2.0,水采工作面取kgwi=2.0~3.0 (2)按工作面进风流温度计算:

矿井需要风量计算方法

矿井通风风量计算方法 一全矿井需要风量计算: 1)按井下同时工作最多人数计算,每人每分钟供风量不少于4m2/min. 。 3 0需=4X NX K矿通=4X 50 x = 250 m/min.。 式中N ——(取50 人)井下同时工作最多人数 K矿通一一矿井通风系统,包括矿井内部漏风和配风不均等因素,一般 可取?。 2)按采煤、掘进、硐室及其它地点实际需要风量的总和计算: Q需=(刀Q采+刀Q掘+刀Q硐+刀Q其它)X K矿通 式中刀Q采独立通风的采煤工作面实际需要风量的总和nVmin.。 刀Q掘独立通风的掘进工作面实际需要风量的总和nVmin.。 刀Q硐独立通风的硐室工作面实际需要风量的总和nVmin.。 刀Q其它独立通风的其它井巷及需要进行通风的风量总和n^min.。 K矿通一一矿井通风系统,包括矿井内部漏风和配风不均等因素一般可取 ?。 (1)采煤实际需要风量,按同时回采的各个工作面实际需要风量的总和计算:刀0采=(Q采1+ Q采2 + Q采3+ ..... )K采备 式中Q采1, Q采2, Q采3 各采煤工作面实际需要的风量m/min.。 K 采备——备用工作面系数,一般取K 采备=,当备用工作面已单独计算风量列入上式时,K 采备=。 每个采煤工作面实际需要风量,应按瓦斯、二氧化碳涌出量和炸药消耗 量及工作面的气温、风速与人数等分别进行计算,并取其中最大值。采 煤工作面有串联通风时,按其中一个采煤工作面实际需要风量的最大风量计 算。

㈠按瓦斯涌出量计算Q采=100Q CH4 K采通m 3/min.。 C 式中Q H---- 采煤工作面瓦斯绝对涌出量m/min.; C ―― 采煤工作面回风流中允许的最大瓦斯含量,% C=1% K采通一一采煤工作面的通风系数,主要包括瓦斯涌出不均衡和备用风量等因素,应该通过实际考察确定。一般可取K采通二?。 ㈡按二氧化碳涌出量计算Q采=100Q CO2K采通_m /min.。 C 3 式中Q C02 ---------------- 采煤工作面二氧化碳绝对涌出量m/min.; C――采煤工作面回风流中二氧化碳最大允许含量为C=% ㈢按工作面温度计算 长壁工作面实际需要的风量按下式计算:Q采=60 u采S采 式中Q采------------ 采煤工作面实际需要的风量,m/min.。 u采------- 采煤工作面的风速m/s. S采一一采煤工作面的平均断面m.可按最大和最小控顶断面积的平均值计算。㈣按炸药消耗量计算:Q 采=25A 式中A ——工作面一次爆破的最大炸药量kg. 25――每kg炸药爆破后,需要供给的风量m/. ㈤按人数计算:Q采=4N m/mi n 式中N ――采煤工作面同时工作的最多人数,人。 (六)按风速进行验算 按最低风速验算:Q采》15S采 按最高风速验算:Q采w 240S采

矿业有限公司矿井通风阻力测定报告

矿业有限公司矿井通风阻 力测定报告 报 告 书 二○一九年十二月

目录 目录 (1) 一.矿井概况 (1) 1.矿井概况及生产状况 (1) 2.矿井通风系统状况 (3) 二.阻力测定的目的和要求 (3) 1.目的 (3) 2.要求 (4) 三.测定准备工作 (5) 1.测线的选择 (6) 2.测点的布置 (6) 3.人员组织 (7) 四.测定方法与数据处理 (8) 1.测定方法 (8) 2.数据处理 (9) 五.测定数据与计算结果分析 (10) 1.矿井通风阻力及等积孔 (10) 2.通风阻力分布情况 (10) 3.通风系统分析及建议 (11) 六.计算结果汇总表 (13)

一.矿井概况 1.矿井概况及生产状况 ⑴.位置与交通 兴隆县平安矿业有限公司位于兴隆煤田的西部边缘,地处承德市兴隆县县城东北方距兴隆县县城20km,鹰手营子矿区西南7.5km,矿区中心地理坐标东经117°35′22″,北纬40°29′34″。 京承铁路从该矿矿区中部通过,东北1.5km为北马圈子车站,有铁路专用线直达本矿贮煤场,且有112线公路与之相连,交通十分便利(见1-1矿区交通位置图)。 图1-1 矿区交通位置图

⑵.地形 该矿井位于燕山山脉中段偏北地带,四面环山,均为太古界、元古界和古生界地层构成的高山。山峰在该矿以东为近东西走向,西部为北东—南西走向,平均海拔+700m,最高山峰海拔+859m。山峰陡峻,地形坡度大,山谷阶地发育,地形条件复杂,为壮年期山地。 ⑶.河流 柳河呈蛇曲型从矿区东部穿过,向北转东方向流去汇入滦河。其流量随季节变化,估水期流量很少,洪水期流量剧增。柳河水系对兴隆县平安矿业有限公司及原南马圈子井田煤炭资源的开发影响较大,特别是河床第四纪冲积物直接覆盖在煤系地层之上,是矿井涌水的主要来源。 ⑷.气候 本区属大陆性温带气候,冬季寒冷、夏季酷热,四季分明,每年的1月最冷,7月最热,最高气温36.6℃,最低气温-28.1℃。年平均相对湿度60%。全年多西南风,最大风速20m/s。冬季少雨雪,汛期在7、8、9三个月,年均降雨量700~450mm,日最大降水量为258mm/d,冬季冰冻期达134天,土层最大冻结深度达1.19m。 矿区历史最高洪水水位+507m。 平安矿业有限公司(原平安堡煤矿)始建于1958年,设计能力15万吨,采用斜井多水平分区式开拓,由于地质复杂,运输环节多,工作面大部分布置在270以上水平。现作业两个水平,+345水平,+420水平,进行布置四层复采开采。但经过50多年的回采,矿井现

通风计算题

五、计算题 1、 在某一通风井巷中,测得1、2两断面的绝对静压分别为101324.7 Pa 和101858 Pa ,若S 1=S 2,两断面间的高差Z 1-Z 2=100米,巷道中ρm12=1.2kg/m 3,求:1、2两断面间的通风阻力,并判断风流方向。 解:假设风流方向从1到2,列能量方程: H r12=(P 1-P 2)+(v 12ρ1/2- v 22ρ2/2)+(Z 1-Z 2) ρg =(101324.7-101858)+0+100×1.2×9.81 =643.9J/m 3 由于其阻力值为正,所以原假设风流方向正确。从1到2。 2、 某矿井为中央式通风系统,测得矿井通风总阻力h Rm =2800Pa ,矿井总风量Q =70m 3/s ,求矿井总风阻R m 和等积孔A ,评价其通风难易程度。 解:Rm=h Rm /Q 2=2800/702=0.571Ns 2/m 8 A= m R 19.1= 571 .019.1=1.57m 2 由于1

相关主题