搜档网
当前位置:搜档网 › 高考数学函数与导数相结合压轴题(含具体解答)

高考数学函数与导数相结合压轴题(含具体解答)

高考数学函数与导数相结合压轴题(含具体解答)
高考数学函数与导数相结合压轴题(含具体解答)

函数与导数相结合压轴题精选(二)

11、已知)0()(2

3

>+++=a d cx bx ax x f 为连续、可导函数,如果)(x f 既有极大值M ,又有极小值N ,求证:.N M >

证明:由题设有),)((323)(212

x x x x a c bx ax x f --=++='不仿设21x x <,

则由时当时当时当知),(,0)(),(,0)(),(:02211+∞∈<'∈>'-∞∈>x x x f x x x x f x x a

1)(,0)(x x f x f 在故>'处取极大值,在x 2处取极小值,

)()()()()(212

221323121x x c x x b x x a x f x f -+-+-=-Θ

])()()[(212122121c x x b x ax x x a x x +++-+-=

)]3(92)[(]3232)32()[(2

2121ac b a

x x c a

b

b a

c a a b a x x --

-=+-?+?--?-=

由方程0232

=++c bx ax 有两个相异根,有,0)3(412)2(2

2>-=-=?ac b ac b

又)()(,0)()(,0,0212121x f x f x f x f a x x >>-∴><-即,得证. 12、已知函数ax x x f +-=3

)(在(0,1)上是增函数. (1)求实数a 的取值集合A ;

(2)当a 取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+,且b b a )(1,0(1=为常

数),试比较n n a a 与1+的大小;

(3)在(2)的条件下,问是否存在正实数C ,使20<-+<

c

a c

a n n 对一切N n ∈恒成立?

(1)设))(()()(,102

2212

1122121a x x x x x x x f x f x x -++-=-<<<则

由题意知:0)()(21<-x f x f ,且012>-x x

)3,0(,2

22121222121∈++<++∴x x x x a x x x x 则

}3|{,3≥=≥∴a a A a 即 (4分)

(注:法2:)1,0(,03)(2

∈>+-='x a x x f 对恒成立,求出3≥a ).

(2)当a =3时,由题意:)1,0(,2

3

21131∈=+-

=+b a a a a n n n 且

以下用数学归纳法证明:*

∈∈N n a n 对),1,0(恒成立.

①当n=1时,)1,0(1∈=b a 成立;

②假设n =k 时,)1,0(∈k a 成立,那么当1+=k n 时,

k k k a a a 232131+-=+,由①知)3(2

1

)(3x x x g +-=

在(0,1)上单调递增,10)

1()()0(1<<<<∴+k k a g a g g 即,

由①②知对一切*

∈N n 都有)1,0(∈n a (7分)

而0)1(2

12121231>-=+-

=-+n n n n n n a a a a a a n n a a >∴+1 (9分) (3)若存在正实数c ,使20<-+<

c

a c

a n n 恒成立 (10分

令),(,21+∞-+=-+=

c c

x c

c x c x y 在上是减函数, n n n a c

a c

a 随着-+∴

增大,而小, 又}{n a 为递增数列,所以要使20<-+<

c

a c

a n n 恒成立,

只须3

0,302011

11b

c a c c a c

a c a <<<

<∴???

??<-+>-即 (14分) 13、已知)(2

2)(2R x x a

x x f ∈+-=

在区间[-1,1]上是增函数. (1)求实数a 的值所组成的集合A. (2)设关于x 的方程x

x f 1

)(=

的两根为1x 、2x ,试问:是否存在实数m ,使得不等式 ||1212x x tm m -≥++对任意]1,1[-∈∈t A a 及恒成立?若存在,求出m 的取值

范围;若不存在,请说明理由

(1)2

22)

2()

2(2)(+---='x ax x x f ]1,1[)(-在x f Θ是是增函数 ]1,1[,0)(-∈≥'∴x x f 对恒成立.

设110

)1(0

)1(,2)(2

≤≤-???

?≤-≤--=a ax x x ???则有

)(],1,1[x f x -∈对Θ是连续函数,且只有当0)1(,1=-'=f a 时,

以及当}11|{,0)1(,1≤≤-=∴='-=a a A f a 时 (2)由

02,1222

2

=--=+-ax x x

x a x 得 212,,08x x a ∴>+=?Θ是方程022=--ax x 的两实根.

???-==+∴2

2121

x x a

x x 从而84)(||22122121+=-+=-a x x x x x x 38||1

1221≤+=-∴≤≤-a x x a Θ

要使不等式||1212

x x tm m -≥++对任意]1,1[-∈∈t A a 及恒成立, 当且仅当]1,1[312

-∈≥++t tm m 对任意恒成立, 即022

≥-+tm m 对任意]1,1[-∈t 恒成立. 设22)(2

2

-+=-+=m mt tm m t g

则有2202)1(02)1(2

2

-≤≥∴??

???≥-+=≥--=-m m m m g m m g 或

∴存在m ,其范围为}22|{-≤≥m m m 或

14、已知二次函数y=g(x )的图象过原点和点(m ,0)与点(m+1, m+1),

(1)求y=g(x )的表达式;

(2)设)(x f =(x -n)g(x )(m>n>0)且)(x f 在x =a 和x =b(b

②若m+n=22,则过原点且与曲线y=)(x f 相切的两条直线能否互相垂直?若能,则给出证明;若不能,请说明理由?

(文科生做....

)设常数a >0, a ≠1,函数5

5

log )(+-=x x x f a , (1)讨论)(x f 在区间(-∞,-5)上的单调性,并予以证明; (2)设g(x )=1+log a (x -3),如果)(x f =g(x )有实数根,求a 的取值范围.

(理科生做....

)解:(1)设g(x )=ax 2+b x +c(a ≠0),由题意得

.)(.

0,,1,1)1(,0,02

2mx x x g c m b a b m a bm am c -=∴?????=-==??

???=++=+=解得…………………………3分 (2)∵f (x )=(x -n)g(x )=x (x -m)(x -n)=x 3-(m+n)x 2+mn x ,∴f ′(x )=3x 2-2(m+n)x +mn.…………… 5分

①由题意知,a ,b 为方程f ′(x )=0的两个实根,

又f ′(0)=m ·n>0, f ′(n)=n(n -m)<0, f ′(m)=m(m -n)>0,

∴两根x =b ,x =a 分布在(0,n ),(n ,m )内.又b

y -f (x 1)=[32

1x -2(m+n)x 1+mn](x -x 1). 又l 1过原点,∴-x 1(x 1-m)(x 1-n)= [32

1x -2(m+n)x 1+mn](-x 1) 解得x 1=0, 或x 1=

2n m +,同理x 2=0或x 2=2n m +.∴x 1=0, x 2=2

n m +.……………………12分 两切线的斜率分别为k 1=mn ,k 2=22.)(4

1

2=+++-

n m mn n m 又, 若两切线相互垂直,则k 1k 2=-1,即mn ])22(4

1[2n m ?+-=-1,得mn=1.

解方程组????

?-=+=???==+.

12,

12,122n m mn n m 得 故存在过原点且与曲线y=f (x )相切的两条直线互相垂直.………………14分 (文科生做....

)解:(1))5

10

1(log )(+-

=x x f a .利用定义可以证明当a <1时,f (x )是 (-∞,-5)上的增函数;

当0

5

5

+-x x =1+log a (x -3)有实根, 则实根大于5.又因为1+log a (x -3)=log a [a (x -3)],原方程有大于5的实根,即 方程

5

5

+-x x =a (x -3)有大于5的实数根.…………………………………………9分 由此解得a =

)3)(5(5-+-x x x (a >0).12

541

12201)05(201252522+≤++=>=-++=-+-=t

t t x t t t x x x 令 当且仅当.16

530.525,52-≤

<∴+==a x t 时取等号即………………14分

15、已知函数).,()(2

3R b a b ax x x f ∈++-= (1)若1=a ,函数)(x f 的图象能否总在直线b y =的下方?说明理由;

(2)若函数)(x f 在[0,2]上是增函数,2=x 是方程)(x f =0的一个根,

求证:2)1(-≤f ;

(3)若函数)(x f 图象上任意不同的两点连线斜率小于1,求实数a 的取值范围.

解:(1)不能,取,11)1(,1b b f x >++=--=则

即存在点(-1,2+b )在函数图象上,且在直线

b y =的上方; (3分)

(2)由2=x 是方程0)(=x f 的一个根,得,048)2(=++-=b a f 即a b 48-= (4分)

又.3

2,0.023,0)(,23)(2

122a x x ax x x f ax x x f ===+-='+-='得即令

又函数

)(x f 在[0,2]上是增函数,3,23

22≥≥=∴a a x 即, (7分)

2374811)1(-≤-=-++-=++-=a a a b a f (9分)

(3)设任意不同的两点21222111),,(),,(x x y x P y x P ≠且,则

.12

12

1<--x x y y )

14(3

33

4

,

043

)3(3)12(0

4230

)1(4)(0

1)(1

)(,12

22

22222

222

222122

21221212221212122322131分故分即即<<-∴<-++--∴<-++-<-+-+-=?∈<-+--+-∴<++---<--++∴a a a a a x a ax x ax x x a R x ax x x x a x x x a x x x x x x ax x ax x ΘΘ

16、(理)设e e

x ax x f x

()1()(2

-?-+=为自然对数的底,a 为常数且R x a ∈<,0),)(x f 取极小值

时,求x 的值. (文)函数a x x a ax x f (3)1(2

3

)(23

--+

=为常数且R x a ∈≥,0)取极小值时,求x 的值. 理)解:)1()1()12()(2-??-++?+='--x x

e x ax e ax x f

)2)(1(-+?-=-x ax e z ………………2分

令21

0)(或a

x x f -=?='………………4分 (1)0

1

21<<->-a 即当,由表

)(

,1

x f a

x 时-=∴取极小值.………………7分

(2)0)2(2

1

)(,21212≤-??-='-==-

-x e x f a a x 时即当无极值. ………………9分 (3)1

21-<<-a 即当时,由表

取极小值

时时当综上取极小值时)(,1

,021,.

)(,2x f a

x a x f x -=<<--=∴ 取极小值时时当)(,2,21

x f x a -=-<

)(,2

1

x f a 时当-=无极小值.

………………12分

)(x f ∴无极小值.………………6分

(二)由表或令时当11

0)()1)(1

(3)(,0-=?='+-='>

x x f x x a x f a )(,x f a

x 时当=∴取极小值

综上,当)(,1

,0x f a

x a 时时=>取极小值

当)(,0x f a 时=无极小值.………………12分

17、已知0,1>->c b ,函数b x x f +=)(的图象与函数c bx x x g ++=2

)(的图象相切. (1)求b 与c 的关系式。(用c 表示b )

(2)设函数F )()()(x g x f x ?=在(-∞,+∞)内有极值点,求c 的取值范围. 解(1)由题知:2

1,12),()(b

x b x x g x f -==+'='得

由C b c b c b b

g b f 21,0,14)1()2

1()21(

2+-=∴>->=+-=-Θ得…4分

则即令6)3(4)(12160

430)(43)()(2)()()()()2(2222

2

22223ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛc b c b b c b bx x x F c b bx x x F bc

x c b bx x x g x g x f x F -=+-=?=+++='+++='∴++++=?=

①若△=0,则0)(='x F 有一个实根0x ,且)(x F '变化如下: x ),(0x -∞0x ),(0+∞x

)(,1,0)(,1)

1(3)(,0)()1)(1(33)1(33)(:)(2<'->>'-<+-='=+-=--+='x f x x f x x x f a x ax x a ax x f 时时时当一解文………………3分

)(x F ' + 0 +

于是0x x =不是函数的极值点………………………………………………………8分 ②若0)(,0='>?x F 则有两个不相等的实根)(,2121x x x x <,且)(x F '变化如下:

x ),(1x -∞1x (21,x x ) 2x ),(2+∞x

)(x F ' + 0 - 0 + )(1x F x x 是=∴的极大值点,)(2x F x x 是=的极小值点………………………10分

综上,当且仅当△>0时,F (x )在),(+∞-∞上有极值点.

由c b b c c b 21,3,0)3(42

2+-=<>-=?又得

c c c c c c 312312)21(32

>--<-∴+-<∴或

解得),347()347,0(.

3473470+∞+-∴+>-<

18、已知函数3)2(,2)1(),()(),,,(1

)(2<=-=-∈++=

g g x g x g N c b a c

bx ax x g (1)求)(x g 的解析式; (2)设数列}{n a 的通项公式为

)

1)(1()

(2++n n n g 其前n 项的和为S n ,试求n n S +∞→lim ;

(3)设).()]([)(),()(x f x f f x x xg x f λ?-==问:是否存在实数λ,使)1,()(--∞在x ? 上为减函数且(-1,0)上是增函数?若存在求出实数λ的值和)(x ?的单调区间,

以及)(x ?的极值;若不存在,请说明理由.

①x x x g b a c 1

)(102+=∴===

②1lim )

1(1

=∴+=

+∞

→n n n S n n a Θ

③22)(2

4

--=x x x ?,列表分析知,存在实数4=λ, 使),1()0,1()(+∞-和在x ?递增 在)1,0()1,(和--∞递减 当)(1x x ?时

±=极小值-3

当)(0x x ?时=极大值-2.

19、已知),(),,1(2

x x x b x a -+==ρρ,m 为常数且m ≤-2,求使

)12(2+?>+?b a m b a ρ??

?成立的x 的范围。

20、设函数∈-=-m x e x f m

x 其中,)(R .

(I )求函数)(x f 的最值;

(Ⅱ)给出定理:如果函数)(x f y =在区间[b a ,]上连续,并且有0)()(

)(x f y =在区间),(b a 内有零点,即存在0)(),,(00=∈x f b a x 使得.

运用上述定理判断,当1>m 时,函数)(x f 在区间)2,(m m 内是否存在零点.

解:(I ),1)(,),()(-='+∞-∞-m

x e x f x f 上连续在Θ

令.,0)(m x x f =='得……………………2分

;

1)()(.)(,,.0)(,1,),(;0)(,1,),(min m m f x f x f m x x f e m x x f e m x m x m x -==∴=>'>+∞∈<'<-∞∈--取极小值也是最小值时当所以时当时当

由①知f (x )无最大值.……………………6分

(Ⅱ)函数f (x )在[m ,2m]上连续.

,

02)(,1,2)(,

2)(,2)2(>->'∴>-='-=-=e m g m e m g m e m g m e m f m m m Θ则令而

),1()(+∞∴在m g 上递增.……………………8分

由,0)2(,0)1()(02)1(>>>>-=m f g m g e g 即得……………………10分

或时,原不等式的解集为-)当(分

原不等式的解集为时,原不等式=-)当(分

故分12}02|{229}0|{00)2(2170))(2(0))(2(402

)2()12(2)

12

(22),(),,1(2222ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛρρρρΛΛΛρ

ρρρ

Θ>-<<<>>?>+?>-+?>-+?>+-+?+>+?+?>+?=-+=?∴-+==x x m x m x x x x x m m x x x x

m x x x

x m x x m x b a m b a x x x x b a x x x b x a ①

又,0)2()(,01)(

根据定理,可判断函数f (x )在区间(m ,2m )上存在零点.………………12分

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

导数压轴题处理专题讲解

导数压轴题处理专题讲解(上) 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知(1)讨论的单调性 (2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有 。 例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212 ,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥L . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

函数与导数例题高考压轴题含答案

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(), ,,;()2t t f x ??-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(),,,;()2t t f x ??-∞-+∞ ??? 的单调递减区间是,.2t t ? ?- ??? (Ⅲ)证明:由(Ⅱ)可知,当0t >时,()f x 在0,2t ? ? ??? 内的单调递减,在,2t ?? +∞ ??? 内单调递增,以下分两种情况讨论: (1)当1,22 t t ≥≥即时,()f x 在(0,1)内单调递减, 所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零点。

导数文科高考数学真题

2012-2017导数专题 1.(2014大纲理)曲线1x y xe- =在点(1,1)处切线的斜率等于( C ) A.2e B.e C.2 D.1 2.(2014新标2理) 设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( D ) A. 0 B. 1 C. 2 D. 3 3.(2013浙江文) 已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示, 则该函数的图象是(B) 4.(2012陕西文)设函数f(x)= 2 x +lnx 则( D ) A.x= 1 2 为f(x)的极大值点B.x= 1 2 为f(x)的极小值点 C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点 5.(2014新标2文) 函数() f x在 x x =处导数存在,若 :()0 p f x=: :q x x =是() f x的极值点,则A.p是q的充分必要条件 B. p是q的充分条件,但不是q的必要条件 C. p是q的必要条件,但不是q的充分条件 D. p既不是q的充分条件,也不是q的必要条件 【答案】C 6.(2012广东理)曲线在点处的切线方程为___________________. 【答案】2x-y+1=0 7.(2013广东理)若曲线在点处的切线平行于轴,则 【答案】-1 8.(2013广东文)若曲线在点处的切线平行于轴,则. 【答案】 1 2 9.(2014广东文)曲线53 x y e =-+在点(0,2) -处的切线方程为. 【答案】5x+y+2=0 10.(2013江西文)若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α=。 33 y x x =-+() 1,3 ln y kx x =+(1,)k x k= 2ln y ax x =-(1,)a x a=

函数与导数经典例题--高考压轴题(含答案)

函数与导数经典例题--高考压轴题(含答案)

所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零 点。 (2)当01,022t t <<<<即时,()f x 在0,2t ?? ??? 内单调递减,在,12t ?? ???内单调递增,若3 3177(0,1],10.244t f t t t ??∈=-+-≤-< ??? 2(1)643643230.f t t t t t =-++≥-++=-+> 所以(),12t f x ?? ??? 在内存在零点。 若()3377(1,2),110.244t t f t t t ??∈=-+-<-+< ??? (0)10f t =-> 所以()0,2 t f x ?? ???在内存在零点。 所以,对任意(0,2),()t f x ∈在区间(0,1)内均存在 零点。 综上,对任意(0,),()t f x ∈+∞在区间(0,1)内均存在 零点。 2. 已知函数21 ()32 f x x =+,()h x =. (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x ) 的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6f n h n h h h n -+++≥. 本小题主要考查函数导数的应用、不等式的证

明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力. 解:(Ⅰ)223()18()[()]129(0)F x f x x h x x x x =-=-++≥, 2()312F x x '∴=-+. 令()0F x '∴=,得2x =(2x =-舍去). 当(0,2)x ∈时.()0F x '>;当(2,)x ∈+∞时,()0F x '<, 故当[0,2)x ∈时,()F x 为增函数;当[2,)x ∈+∞时,()F x 为 减函数. 2x =为()F x 的极大值点,且(2)824925F =-++=. (Ⅱ)方法一:原方程可化为 422 33log [(1)]log ()log (4)24f x h a x h x --=---, 即为4222log (1)log log log x -==,且,14,x a x , 此时3x ==±∵1x a <<, 此时方程仅有一解3x = ②当4a >时,14x <<,由14a x x x --=-,得2640x x a -++=,364(4)204a a ?=-+=-, 若45a <<,则0?> ,方程有两解3x =± 若5a =时,则0?=,方程有一解3x =; 若1a ≤或5a >,原方程无解. 方法二:原方程可化为422log (1)log (4)log ()x h x h a x -+-=-, 即222 1log (1)log log 2x -+,

高考导数压轴题题型

高考导数压轴题题型 远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+ ; (1)求()f x 的解析式及单调区间; 【解析】 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1e x x m -+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1e 1x x - +. 函数f ′(x )=1e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.

高考数学——导数大题精选

高考数学——导数大题精选 6.已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。 例2 求下列函数的导数: (1)y=(2x 2-1)(3x+1) (2)x x y sin 2= (3))1ln(2x x y ++= (4)1 1-+=x x e e y (5)x x x x y sin cos ++= (6)x x x y cos sin 2cos -= 1.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求a 、b 的值; (Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围 2.设a ≥0,f (x )=x -1-ln 2 x +2a ln x (x >0). (Ⅰ)令F (x )=xf '(x ),讨论F (x )在(0.+∞)内的单调性并求极值; (Ⅱ)求证:当x >1时,恒有x >ln 2x -2a ln x +1. 3.设函数22()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ; (Ⅱ)若()2h t t m <-+对(02)t ∈, 恒成立,求实数m 的取值范围 4.设函数2()ln(23)f x x x =++ (Ⅰ)讨论()f x 的单调性; (Ⅱ)求()f x 在区间3144??-???? ,的最大值和最小值 6.已知函数2221()()1 ax a f x x x -+=∈+R ,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.

(完整)2019-2020年高考数学压轴题集锦——导数及其应用(一).doc

2019-2020 年高考数学压轴题集锦——导数及其应用(一) 1.已知函数f (x) x2 ax ln x(a R) . (1)函数f (x)在 [1,2] 上的性; (2)令函数g( x) e x 1 x2 a f (x) ,e=2.71828?是自然数的底数, 若函数 g (x) 有且只有一个零点m,判断 m 与 e 的大小,并明理由 . 2.已知函数 f (x) x3ax2bx c 在x 2 与x 1都取得极. 3 (1)求 a, b 的与函数f( x)的区; (2)若x [ c,1] ,不等式 f (x) c 恒成立,求 c 的取范 . 2 3.已知函数 f (x) ln(1 x) ln(1x) . (1)明 f '(x) 2 ; (2)如果 f (x) ax x [0,1) 恒成立,求 a 的范 .

x 1 4.已知函数f (x) ( e 自然数的底数) . e x (1)求函数f (x)的区; (2)函数(x) xf (x) tf '(x) 1 x1, x2 [0 ,1] ,使得 2 ( x1 )(x2 ) x ,存在数 e 成立,求数t 的取范 . 5.已知函数 f ( x) kx a x,其中k R,a 0且a 1 . (1)当 a e ( e=2.71 ?自然数的底),f(x)的性;(2)当k 1,若函数f(x)存在最大g(a),求g(a)的最小. 6.已知函数 f x x2ax ln x a R (1)当a 3 ,求函数f(x)在 1 , 2 上的最大和最小; 2 (2)函数 f(x)既有极大又有极小,求数 a 的取范 .

7.已知 f( x)是定义在 R 上的奇函数,当 x 0 时, f x 1 x 3 ax a R ,且曲线 f(x)在 3 x 1 处的切线与直线 y 3 x 1平行 2 4 (1)求 a 的值及函数 f(x)的解析式; (2)若函数 y f x m 在区间 3, 3 上有三个零点,求实数 m 的取值范围 . 8.已知函数 f x x 0 ax, a ln x (1)若函数 y f x 在 1, 上减函数,求实数 a 的最小值; (2)若存在 x 1 , x 2 e,e 2 ,使 f x 1 f x 2 a 成立,求实数 a 的取值范围 . 9.已知函数 f (x) x 3 ax 2 bx 1, a , b R . ( 1)若 a 2 b 0 , ①当 a 0 时,求函数 f(x)的极值(用 a 表示); ②若 f(x)有三个相异零点,问是否存在实数 a 使得这三个零点成等差数列?若存在,试 求出 a 的值;若不存在,请说明理由; ( 2)函数 f( x)图象上点 A 处的切线 l 1 与 f(x)的图象相交于另一点 B ,在点 B 处的切线为 l 2 ,直线 l 1, l 2 的斜率分别为 k 1, k 2 ,且 k 2 =4k 1 ,求 a ,b 满足的关系式.

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. ()221()ln ,R x f x a x x a x -=-+∈()f x 1a =()3()'2 f x f x +>[]1,2x ∈

1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点.

(I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 例3.(本小题满分12分)

已知函数f (x )=31,()ln 4 x ax g x x ++=- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{()min (),() (0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数 ,函数 (Ⅰ)讨论 在区间上的单调性; (Ⅱ)若存在两个极值点且求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 22 1)(,求b a )1(+的最大值。

相关主题