搜档网
当前位置:搜档网 › 心肌细胞的电活动

心肌细胞的电活动

心肌细胞的电活动
心肌细胞的电活动

细胞极化:细胞是不良导体,膜内的细胞内液和膜外的细胞间液都是导电和电解质。由于跨膜电位的存在,细胞处于静息状态时的电学模型,可视为膜内负膜外正、电荷均匀分布的闭合曲面电偶层,此时膜外空间各点的电势为零。处于静息状态的细胞,维持正常的新陈代谢,静息电位总是稳定在一定的水平上。对整个细胞而言,对外不显电性,此时细胞所处的状态称为极化。

心室肌细胞的动作电位由除极化过程和复极化过程所组成,共分为五个时期:1、除极过程(0期):膜内电位由静息状态时的-90mV上升到-20mV~+30mV,膜两侧由原来的极化状态转变为反极化状态,构成了动作电位的上升支,此期又称为0期。历时仅1~2ms。其正电位部分成为超射。形成机制:当心室肌细胞受到刺激产生兴奋时,首先引起钠离子通道的部分开放和少量钠离子内流,造成膜部分计划,当去极化到阈电位水平(-70mV)时,膜上钠离子通道被激活而开放,出现再生性钠离子内流。于是钠离子顺电-化学梯度由膜外快速进入膜内,进一步使膜去极化、反极化,膜内电位由静息时的-90mV急剧上升到+30mV。决定0期除极化的钠离子通道是一种快通道,激活迅速、开放速度快,失活也迅速。当膜去极化到0mV左右时,钠离子通道就开始失活而关闭,最后终止钠离子的继续内流。

2、复极过程:当心室肌细胞去极化达到顶峰后,立即开始复极,但复极过程比较缓慢,可分为4期:

1)快速复极初期(1期):心肌细胞膜电位在除极达到顶峰后,有+30mV迅速下降至0mV,形成复极1期,历时约10ms,并与0期除极构成了锋电位。

形成机制:钠离子的通透性迅速下降,钠离子内流停止。同时膜外钾离子快速外流,形成瞬时性钾离子外向电流,膜内电位迅速降低,与0期构成锋电位。

2)平台期(2期):表现为膜电位复极缓慢,电位接近于0mV水平,故成为平台期。此期历时100~150ms。此期为心室肌细胞区别于神经或骨骼细胞动作电位的主要特征。形成机制:目前认为主要是由于钙离子缓慢持久地内流和少量钾离子缓慢外流造成的。电压钳研究表明,心室肌细胞平台期,外向电流是由钾离子携带的。静息状态下,钾离子通道的通透性很高,在0期除极化过程中,钾离子的通透性明显下降,钾离子外流大大减少,除极结束时,钾离子的通透性极其缓慢地、部分地恢复。平台期内向电流主要是由钙离子负载的。现已证明,心肌细胞膜上有一种电压门控式慢钙通道,当膜去极化到-40mV时被激活,要到0期后才表现为持续开放。钙离子顺其浓度梯度向膜内缓慢内流使膜倾向于去极化,在平台期早期,钙离子的内流和钾离子的外流所负载的跨膜正电荷量等,膜电位稳定于1期复极心室肌细胞的动作电位由除极化过程和复极化过程所组成,共分为五个时期: 1、除极过程(0期):膜内电位由静息状态时的-90mV上升到-20mV~+30mV,膜两侧由原来的极化状态转变为反极化状态,构成了动作电位的上升支,此期又称为0期。历时仅1~2ms。其正电位部分成为超射。形成机制:当心室肌细胞受到刺激产生兴奋时,首先引起钠离子通道的部分开放和少量钠离子内流,造成膜部分计划,当去极化到阈电位水平(-70mV)时,膜上钠离子通道被激活而开放,出现再生性钠离子内流。于是钠离子顺电-化学梯度由膜外快速进入膜内,进一步使膜去极化、反极化,膜内电位由静息时的-90mV急剧上升到+30mV。决定0期除极化的钠离子通道是一种快通道,激活迅速、开放速度快,失活也迅速。当膜去极化到0mV左右时,钠离子通道就开始失活而关闭,最后终止钠离子的继续内流。

随后,钙离子通道逐渐失活,钾离子外流逐渐增加,出膜的正电荷量逐渐增加,膜内电位于是逐渐下降,形成平台晚期。

3)快速复极末期(3期):继平台期之后,膜内电位由0mV逐渐下降到-90mV,完成复极化过程。历时约100~150ms。

形成机制:在2期之后,钙离子通道完全失活,内向电流(钙离子内流)终止,而膜对

钾离子的通透性又恢复并增高,钾离子外向电流迅速增强,膜电位迅速回到静息电位水平,完成复极化过程。3期复极化的钾离子外流,使膜内电位向负的方向转化过程也有类似于0期钠离子通道再生性除极过程。即随着钾离子外流膜内电位向负的方向转化,钾离子的外流也愈快,知道复极化完成。另外,在此过程中,由于心室各细胞复极化过程不一样,造成复极化区和未复极化区之间的电位差,也促进了未复极化区的复极化过程,所以3期复极化发展十分迅速。

4)静息期(4期):此期是膜复极化完毕后和膜电位恢复并稳定在-90mV的时期。

形成机制:由于此期膜内、外各种正离子浓度的相对比例尚未恢复,细胞膜的离子转运机制加强,通过钠-钾泵的活动和钙离子--钠离子交换作用,将内流的钠离子和钙离子排出膜外,将外流的钾离子转运入膜内,使细胞内外离子分布恢复到静息状态水平,从而保持心肌细胞正常的兴奋性

P波——左右两心房的去极化。

QRS——左右两心室的去极化。

T波——两心室复极化。

P-R间期——房室传导时间。

Q-T间期——从QRS波开始到T波结束,反映心室肌除极和复极的总时间。

ST段——从QRS波结束到T波开始,反映心室各部分都处于去极化状态医学`教育网搜集整理。

心脏的电生理学基础

心脏的电生理学基础 一、心肌细胞的分类 心肌细胞按生理功能分为两类:一类为工作细胞,包括心房肌及心室肌,胞浆内含有大量肌原纤维,因而具有收缩功能,主要起机械收缩作用。除此以外,还具有兴奋性、传导性而无自律性。另一类为特殊分化的心肌细胞,包括分布在窦房结、房间束与结间束、房室交界、房室束和普肯耶纤维中的一些特殊分化的心肌细胞,胞浆中没有或很少有肌原纤维,因而无收缩功能,主要具有自律性,有自动产生节律的能力,同时具有兴奋性、传导性。无论工作细胞还是自律细胞,其电生理特性都与细胞上的离子通道活动有关,跨膜离子流决定静息膜电位和动作电位的形成。 根据心肌电生理特性,心肌细胞又可分为快反应细胞和慢反应细胞。 快反应细胞快反应细胞包括心房肌细胞、心室肌细胞和希-普细胞。其动作电位0相除极由钠电流介导,速度快、振幅大。快反应细胞的整个APD中有多种内向电流和外向电流参与。 慢反应细胞慢反应细胞包括窦房结和房室结细胞,其动作电位0相除极由L-型钙电流介导,速度慢、振幅小。慢反应细胞无I k1控制静息膜电位,静息膜电位不稳定、易除极,因此自律性高。有关两类细胞电生理特性的比较见表1。 表1快反应细胞和慢反应细胞电生理特性的比较 参数快反应细胞慢反应细胞 静息电位-80~-95mV -40~-65mV 0期去极化电流I Na I Ca 0期除极最大速率200~700V/s 1~15V/s 超射+20~+40mV -5~+20mV 阈电位-60~-75mV -40~-60mV 传导速度0.5~4.0m/s 0.02~0.05m/s 兴奋性恢复时间3期复极后 10~50ms 3期复极后100ms以上 4期除极电流I f I k,I Ca,I f 二、静息电位的形成 静息电位(restingpotential,RP)是指安静状态下肌细胞膜两侧的电位差,一般是外正内负。利用微电极测量膜电位的实验,细胞外的电极是接地的,因此RP是指膜内相对于零的电位值。在心脏,不同组织部位的RP是不相同的,心室肌、心房肌约为-80~-90mV,窦房结细胞-50~-60mV,普肯耶细胞-90~-95mV。 各种离子在细胞内外的浓度有很大差异,这种浓度差的维持主要是依靠位于细胞膜和横管膜上的离子泵。如Na-K泵(Na-Kpump),也称Na-K-ATP酶,其作用将胞内的Na+转运至胞外,同时将胞外的K+转运至胞内,形成细胞内外Na+和K+浓度梯度。Na-K-ATP酶的磷酸化需要分解ATP,通常每分解一分子ATP可将3个Na+转运至膜外,同时将2个K+转运至膜内。

临床心脏电生理基础题库1-0-8

临床心脏电生理基础 题库1-0-8

问题: [单选,A型题]关于心腔内电生理的描述,不正确的是()。 A.高位右心房刺激可形成接近窦性心律时的心脏激动顺序 B.冠状窦内发放电刺激可代表左心房起搏 C.希氏束部位刺激形成正常QRS波群时,该部位记录到的是右束支电位 D.在右心室心尖部刺激,体表心电图常呈左束支阻滞图形 E.导管电极在心腔内某个部位记录到的波形代表该局部的电活动 希氏束部位刺激形成正常QRS波群时,该部位记录到的是希氏束电位,而非右束支电位。

问题: [单选,A型题]关于分级递增起搏的描述,不正确的是()。 A.是常用的一种S1S1刺激方法 B.采用比自身心率快10~20次/分的频率起搏 C.每级刺激持续30~60秒 D.每级的刺激间隔为1~2分钟 E.不适用于窦房结功能测定 分级递增起搏是常用的一种S1S1刺激方法,一般用比自身心率快10~20次/分的频率起搏,每级刺激持续30~60秒,每级递增10次/分,每级的刺激间隔为1~2分钟。

问题: [单选,A型题]关于S1S2程序刺激的描述,不正确的是()。 A.可用于测定房室结的不应期 B.可用于测定旁路的不应期 C.可用于测定窦房结恢复时间 D.可用于检测房室结双径路 E.可用于诱发阵发性室上性心动过速 S1S2程序刺激可用于测定房室结和旁路的不应期、检测房室结双径路、诱发阵发性室上性心动过速。测定窦房结恢复时间一般选用S1S1分级递增起搏方式。 (辽宁11选5 https://www.sodocs.net/doc/d616471436.html,)

问题: [单选,A型题]关于右束支电位的表述,正确的是()。 A.A.是右束支的除极电位 B.B.时限一般为10ms左右 C.C.位于H波和V波之间 D.D.振幅比H波低,时限比H波短 E.E.以上都是

心脏电生理基础知识

心脏电生理检查及射频消融基本操作知识 目前,射频消融术(RFCA)已成为心动过速的主要非药物治疗方法,因此相应的心脏电生理检查实际上是RFCA中的重要部分。在此将心脏电生理检查和RFCA作为一个诊疗整体逐一描述其基本操作步骤。 病人需常规穿刺锁骨下静脉,股静脉,必要时穿动脉,常规放置心内电生理电极导管,最长的为高位右房(HR),HIS束,冠状窦CS,和右室心尖(RV)和射频导管熟称“大头”常规投照体位位左前斜位(LAO)右前斜位(RAO)前后位(AP)和后前位(PA)一、基本操作需知 病人选择及术前检查:2002射频消融指南 血管穿刺:股静脉、股动脉、颈内静脉、锁骨下静脉 心腔置管:HRA、CS、HBE、RVA、LA、PV、LV 体表和心脏内电图:HRA、CSd…CSp、HBEd…HBEp、RVA、PV、Abd、Abp 电生理检查:刺激部位:RA、CS、LA、RV、LV 刺激方法:S1S1、S1S2、S1S2S3、RS2↓ 消融靶点定位:激动顺序、起搏、靶标记录、拖带、特殊标测↓ 消融+消融方式:点消融、线消融 能量控制:功率、温度、时间 消融终点:电生理基础、心动过速诱发、异常途径阻滞、折返环离断、电隔离、其它 二、血管穿刺术 经皮血管穿刺是心脏介入诊疗手术的基本操作,而FCA则需要多部血管穿刺。心动过速的类型或消融方式决定血管刺激的部位。一般而言,静脉穿刺(右例或双侧)常用於右房、希氏束区、右室、左房及肺静脉置管;颈内静脉或锁骨下静脉穿刺则是右房、右室和冠状静脉窦(窦状窦)置管的途径;股颈脉穿刺是左室和左房的置管途径。例如房室结折返性心运过速的消融治疗需常规穿刺股静脉(放置HRA、HBE、RVA和消融导管)和颈内或锁骨下静脉(放置CS导管);左侧旁道消融则需穿刺股动脉放置左室消融导管。三、心腔内置管及同步记录心电信号 根据电生理检查和RFCA需要,选择不同的穿刺途径放置心腔导管。 右房导管常用6F4极(极间距0.5~1cm)放置於右房上部,记录局部电图为HRA1,2和HRA3,4图形特点为高大A波,V波较小或不明显。 希氏束导管常用6F4极(极间距0.5~1cm)放置於三尖瓣膈瓣上缘,记录局部电图为HBE1,2和HBE3,4,HBE1,2的H波高大,HBE3,4的A/V≥1,H波清楚。

十三、体表心电图产生的心肌细胞电生理基础

心电图临床应用已经一百周年,对心律失常、心肌肥厚、心肌缺血损伤以及心肌梗塞等疾病具有重要的诊断价值。但是,对于心电图波形发生的原理,多年来一直处于理论上的推断。近十年来,由于采用了同时记录心肌细胞电活动和跨壁心电图(transmural ECG )的方法,进入了心电图波形产生原理的实验研究阶段,跨出了可喜的一步。以下简单介绍心电图波形的产生原理: P 波: 反映右、左心房先后的激动兴奋。节律性兴奋自窦房结发出后,兴奋右心房,同时通过心房内的优势传导通路BAChmann 束将兴奋传导到左心房,其传导速度达到0.8~1.0米/秒。右、左心房的兴奋历时约100mS。P 波的前半代表右心房兴奋,后半代表左心房兴奋,所以右心房肥大造成P 波波幅高耸,左心房肥大引起P 波时间延长或伴有P 波切迹(切迹前代表右心房兴奋,切迹后代表左心房兴奋)。 心房的复极化波称为T 波,一般重合于P-R 段及QRS 波群而被掩盖,在房室完全传导阻滞、房室脱节或者心房肥大时,有时在心电图上可以见到T 波。 P-R 间期: 窦性节律兴奋一方面兴奋心房,另一方面通过心房内的优势传导通路,将兴奋传给房室结、希式浦肯野系统,一直到心室壁内层。在这个兴奋传布过程中,耗时最多的是房室结,因为一方面它们产生的是慢反应动作电位,另方面房室结细胞之间的缝隙连接稀疏,所以传导速度仅为0.1米/秒,兴奋通过房室结耗时约70mS。P-R 段的时间大多消耗在房室结内,造成房室延搁。 QRS xx: 反映左、右心室的兴奋激动过程。心室内兴奋的传布,依赖位于室壁内的左、右束支和浦肯野纤维网。它们的细胞膜上具有高密度的快钠通道,传导速度很快,使两侧心室很快兴奋激动。在心室的兴奋过程中,最先兴奋的是室间隔的左侧,然后兴奋循左、右束支的行进方向,引起心尖部位室壁由心内膜下

生物电现象的发现及心肌细胞的生物电现象

生物电现象的发现及心肌细胞的生物电现象 一、关于生物电现象的研究 人类发现生物电现象,可追溯到公元前三世纪有关地中海电鳐等具有强烈震击。直到十八世纪三十年代,才真正开始对生物电现象进行观察和研究。 1731年,英国人Gray.S.首先提出人体是可以带电的。但在当时的条件下无法用实验来证明。十八世纪末,意大利的医生和生理学家Galvani.A.在实验中发现,用金属导体连接蛙腿的神经和肌肉,肌肉就会收缩。科学家们开始研究探讨,然而直接证明生物组织本身是否带电,是在使用了电流计之后才有可能。电流计的发明使用,加速了生物电研究的进程,很快在肌肉、神经、甚至感官上都已证明确有生物电存在,并且在兴奋时这种电位会有波动。 对生物电现象的研究,是在研究生命的基本特征——兴奋性的过程中逐步展开的。早在十九世纪中后期生理学家应用离体青蛙或蟾蜍的神经肌肉标本进行实验时,施加机械性或适当的电刺激后,肌肉则随之表现机械收缩。人们就将这种能的记载力称为兴奋性。实际上,几乎所有生物的活组织或细胞都具有某种程度的对外界刺激发生反应的能力,并将其广泛称为应激性。兴奋性与应激性相比,使用范围就比较狭窄了,一般仅用于生理学中。 随着实验技术的发展,大量的实验表明:细胞处于兴奋状态时,尽管有不同的外部表现,但都有一个共同的、最先出现的反应,即受到刺激的细胞膜部分,膜两侧出现了一个特殊形式的电变化——动作电位,肌肉收缩、分泌活动等外部反应实为细胞膜动作电位进一步触发后产生,并且产生于受刺激部位的动作电位可沿着整个细胞膜扩散。故而兴奋性重新被认为是细胞受到刺激时产生动作电位的能力。 动作电位就是生物电的表现形式之一,另外还有静息电位、局部电位等。经前人研究总结,所谓静息电位就是细胞处于安静状态下(未受刺激时)膜内外的电位差。 表现为膜外相对为正而膜内相对为负;所谓动作电位就是可兴奋组织或细胞受到

心脏电生理基础知识

目前,射频消融术(RFCA)已成为心动过速的主要非药物治疗方法,因此相应的心脏电生理检查实际上是RFCA中的重要部分。在此将心脏电生理检查和RFCA作为一个诊疗整体逐一描述其基本操作步骤。 病人需常规穿刺锁骨下静脉,股静脉,必要时穿动脉,常规放置心内电生理电极导管,最长的为高位右房(HR),HIS束,冠状窦CS,和右室心尖(RV)和射频导管熟称“大头”常规投照体位位左前斜位(LAO)右前斜位(RAO)前后位(AP)和后前位(PA) 一、基本操作需知 病人选择及术前检查:2002射频消融指南 血管穿刺:股静脉、股动脉、颈内静脉、锁骨下静脉 心腔置管:HRA、CS、HBE、RVA、LA、PV、LV 体表和心脏内电图:HRA、CSd…CSp、HBEd…HBEp、RVA、PV、Abd、Abp 电生理检查:刺激部位:RA、CS、LA、RV、LV 刺激方法:S1S1、S1S2、S1S2S3、RS2↓ 消融靶点定位:激动顺序、起搏、靶标记录、拖带、特殊标测↓ 消融+消融方式:点消融、线消融 能量控制:功率、温度、时间 消融终点:电生理基础、心动过速诱发、异常途径阻滞、折返环离断、电隔离、其它二、血管穿刺术 经皮血管穿刺是心脏介入诊疗手术的基本操作,而FCA则需要多部血管穿刺。心动过速的类型或消融方式决定血管刺激的部位。一般而言,静脉穿刺(右例或双侧)常用於右房、希氏束区、右室、左房及肺静脉置管;颈内静脉或锁骨下静脉穿刺则是右房、右室和冠状静脉窦(窦状窦)置管的途径;股颈脉穿刺是左室和左房的置管途径。例如房室结折返性心运过速的消融治疗需常规穿刺股静脉(放置HRA、HBE、RVA和消融导管)和颈内或锁骨下静脉(放置CS导管);左侧旁道消融则需穿刺股动脉放置左室消融导管。 三、心腔内置管及同步记录心电信号 根据电生理检查和RFCA需要,选择不同的穿刺途径放置心腔导管。 右房导管常用6F4极(极间距0.5~1cm)放置於右房上部,记录局部电图为HRA1,2和HRA3,4图形特点为高大A波,V波较小或不明显。 希氏束导管常用6F4极(极间距0.5~1cm)放置於三尖瓣膈瓣上缘,记录局部电图为HBE1,2和HBE3,4,HBE1,2的H波高大,HBE3,4的A/V≥1,H波清楚。 右房导管常用6F4极(极间距0.5~1cm),放置於右室尖部,局部电图为大V波,无A波。 冠状窦电极可用6F 4极(极间距1cm),但目前常用专用塑形的6F 10极(极间距2-8-2mm)导管,经股静脉、颈内静脉或锁骨下静脉插管易於进入CS,理想位置应将导管最近端电极放置在其口部(CSO),局部电图特点多数病人A>V,少数病人A<V。 左室导管常用7F 4极大头电极,主要同於标测消融,其部位取决於消融的靶点部位。此外,左房房速、肺静脉肌袖房性心律失常和部分左侧旁道需经股静脉穿刺房间隔放置导管。以上各部位的局部电图与体表心电图同步记录,心腔内局部电图的滤波范围为30~400Hz。同步记录由上而下的顺序为体表心电图、HRA、HBE、CS、RVA和消融电极局部电图(Ab)。部分特殊病例或置入特殊导管(如Hallo导管、laso导管等)需调整记录顺序。

相关主题