搜档网
当前位置:搜档网 › 时变转速工况下行星齿轮箱故障诊断方法研究

时变转速工况下行星齿轮箱故障诊断方法研究

时变转速工况下行星齿轮箱故障诊断方法研究
时变转速工况下行星齿轮箱故障诊断方法研究

时变转速工况下行星齿轮箱故障诊断方法研究行星齿轮箱较之于传统定轴齿轮箱而言,具有传动比高、负载能力强、结构紧凑等优势,因此被广泛应用于风力发电、重载车辆、船舶运输等工业现场。然而,由于这些复杂装备长期在沙尘、腐蚀等恶劣环境条件下工作,行星齿轮箱容易出现齿面划痕、齿根裂纹、齿轮疲劳断裂等缺陷。这些故障可能导致系统振动加剧、传动效率降低、计划外停机甚至整体结构毁坏等后果,造成严重经济损失。因此,行星齿轮箱的状态监测与故障诊断,对保障工业设备安全高效运行、减少不必要的经济损失、避免重特大工业事故,有着十分重要的意义。然而,对于行星齿轮箱故障诊断问题,目前仍存在两方面难点尚未得到

有效解决:(1)行星齿轮箱的故障机理和特征形式尚未得到系统梳理

总结。现有参考多基于固定转速条件下的频谱峰值分布,而未考虑时变转速工况下时变边带的特征。并且大多数研究只针对横向振动,并未考虑其它物理量特征的故障特征反馈。(2)时变转速工况下的行星齿轮箱非平稳信号分析方法还有待进一步提高。行星齿轮箱信号具有复杂的调幅调频结构,在时变转速工况下,旋转相关的特征频率呈现

时变特性,基于时域或频域的故障诊断方法难以揭示变化的频率特征,而常用的时频分析方法存在时频分辨率低或交叉项/自项干扰等缺陷,难以准确显示复杂的时变故障特征。本文针对以上两方面难点,对行星齿轮箱时变转速工况下的故障诊断问题,进行了深入研究。从理论建模、非平稳信号时频结构分析、故障特征提取方面入手,通过理论推导、仿真分析和实验验证,完成了一系列创新研究:1.在理论建模方

面,系统总结了包括横向振动信号、扭转振动信号、电机电流信号在内的3种行星齿轮箱特征信号解析模型,并具体实现了:(1)将现有的恒定转速故障特征推广至更通用的时变转速工况故障特征;(2)将故障调制特征的载波成分从常用的啮合频率推广至固有频率;(3)将基于横向振动的行星齿轮箱故障特征规律研究延伸至扭转振动信号和感应电机定子电流信号分析。这些研究为行星齿轮箱故障特征提取提供了理论基础。2.在非平稳信号时频结构分析方面,考虑传统时频分析方法在应对行星齿轮箱故障诊断问题上的局限和不足,应用前沿信号处理方法进行故障特征提取,并针对性地做出了改进和创新:(1)针对传统方法时频分辨能力不足的问题,应用重排小波尺度谱,有效提取了时变边带和冲击特征;(2)针对重排方法应对复杂时频结构的不足,提出基于迭代广义重排的多种高性能时频分布;(3)针对前沿的同步压缩变换理论,改进其时间方向定位能力的不足,提出迭代广义同步压缩变换方法。这三种方法具有时频精度高、无交叉项或自项干扰的优点,能够适应复杂结构的行星齿轮箱非平稳信号特征提取问题。

3.在故障特征提取方面,将传统的幅值解调和频率解调分析方法推广到了时变转速的条件,并基于迭代广义解调提出了一种新的阶比谱分析方法。此外,针对扭转振动信号提出了基于扭转共振边带识别的故障诊断方法,针对电流信号提出了基于时变空间向量分析的故障诊断方法。为多渠道、更方便地提取非平稳故障特征提供了有效途径。本论文中,结合不同齿轮故障条件下的行星齿轮箱时变转速测试结果,验证了所提出的行星齿轮箱时变转速工况下的横向振动、扭转振动以

及电流模型的准确性。进一步结合这些信号模型,验证了所提出的时频分析、时变解调和阶比分析方法的优越性。最后,将这些方法应用于实验条件下的真实行星齿轮箱信号分析中,成功诊断出了不同位置的行星齿轮箱齿轮故障。综上而言,针对应用广泛的行星齿轮箱的时变转速工况下故障特征提取问题,包括横向振动、扭转振动、定子电流在内的多种特征信号在本文中被成功解析建模;包括时频分析、时频解调分析、阶比分析、空间向量分析在内的多种非平稳信号故障特征提取方法,以及同步压缩变化、迭代广义解调在内的多种先进算法,在本文中被具体应用和验证。这些理论和技术将为广泛的设备监测诊断提供创新性的指导和帮助。

机械设计试验报告2(附答案)

实验二、机械设计课程减速器拆装实验报告减速器名称班级日期 同组实验者姓名

回答下列问题 减速器拆装步骤及各步骤中应考虑的问题 一、观察外形及外部结构 1.起吊装置,定位销、起盖螺钉、油标、油塞各起什么作用?布置在什么位置? 答: 定位销:为安装方便,箱座和箱盖用圆锥定位销定位并用螺栓连接固紧 起盖螺钉:为了便于揭开箱盖,常在箱盖凸缘上装有起盖螺钉 起吊装置:为了便于吊运,在箱体上设置有起吊装置箱盖上的起吊孔用于提升箱盖箱座上的吊钩用于提升整个减速器 油标:为了便于检查箱内油面高低,箱座上设有油标 油塞:拔下即可注油,拧上是为了防止杂质进入该油箱,常在箱体顶部位置设置油塞 2.箱体、箱盖上为什么要设计筋板?筋板的作用是什么,如何布置? 答: 原因:为保证壳体的强度、刚度,减小壳体的厚度。 作用:增大减速机壳体刚度。 布置:一般是在两轴安装轴承的上下对称位置分别布置较好。 3.轴承座两侧联接螺栓应如何布置,支承螺栓的凸台高度及空间尺寸应如何确定? 答: 轴承旁凸台高度h 由低速级轴承座外径确定,以便于扳手操作为准。取50mm 轴承旁连接螺栓的距离S 以Md1螺栓和Md3螺钉互不干涉为准尽量靠近一般取S=D。 4.铸造成型的箱体最小壁厚是多少?如何减轻其重量及表面加工面积? 答: 大约10mm左右。减轻重量主要是减少厚度,做加强筋来满足。 5.箱盖上为什么要设置铭牌?其目的是什么?铭牌中有什么内容? 答: 为了显示型号,基本参数,外国的产品还包含序列号,给厂家提供序列号,可以查到出厂时的所有参数,方便使用维护,比如用了几年,你要买备件或备机,提供名牌信息。 二、拆卸观察孔盖 1.观察孔起什么作用?应布置在什么位置及设计多大才是适宜的? 答: 为了检查齿轮与齿轮(或涡轮与蜗杆)的啮合情况、润滑状况、接触斑点、齿侧间隙、齿轮损坏情况,并向减速器箱体内注入润滑油。 应设置在箱盖顶部的适当位置:孔的尺寸大小以便于观察传动件啮合的位置为宜,并允许手伸入箱体内检查齿面磨损情况。

500kV输电线路故障诊断方法综述_魏智娟

2012年第2期 1 500kV 输电线路故障诊断方法综述 魏智娟1 李春明2 付学文1 (1.内蒙古工业大学电力学院,呼和浩特 010080;2.内蒙古工业大学信息学院,呼和浩特 010080) 摘要 对近几年国内外具有代表的中外文献进行了学习研究,重点论述了输电线路故障诊断的四种方法:阻抗法,神经网络和模糊理论等智能算法,小波理论,行波法。综合输电线路的四种故障诊断方法,建议采用小波熵原理对输电线路故障模型进行故障类型识别,运用基于小波熵的单端行波测距方法实现故障定位。 关键词:故障诊断;阻抗法;智能算法;小波理论;行波法 The Survey on Fault Diagnosis in the 500kV Power Transmission Lines Wei Zhijuan 1 Li Chunming 2 Fu Xuewen 1 (1.The Power College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080; 2.The Information College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080) Abstract Based on the overview of typical literatures at home and abroad, this research focused on the four methods of failure diagnosis of transmission lines, namely, Impedance method, Intelligent method such as Neural Network Theory and Fuzzy Theory, Wavelet Theory and Traveling Wave method. And based on the synthesis of the four methods, this research suggested that simulation should be conducted to the failure models of transmission line by applying Wavelet Entropy Principle and the results of the simulation should be analyzed in order to identify the failure types; and the failure simulation should be conducted by the single traveling wave distance-testing method of wavelet entropy, and the results of the simulation should be analyzed in order to realize failure location. Key words :failure diagnosis ;impedance method ;intelligent algorithm ;the Wavelet Theory ;the traveling wave method 超高压输电线路是电力系统的命脉,它担负着传送电能的重任,其安全可靠运行是电网安全的根本保证。输电线路在实际运行中经常发生各种故障,如输电线路的鸟害故障[1]、输电线路的风偏故障等[2],及时准确地对输电线路进行故障诊断就显得非常重 要。国家电网公司架空送电线路运行规程明确规定 “220kV 及以上架空送电线路必须装设线路故障测 距装置”[3-4]。由于我国幅员辽阔,地形地貌的多样 性致使输电线路工作环境极为恶劣,输电线路发生 故障导致线路跳闸、电网停电,对电力系统安全运 行造成了很大威胁,所以,在线路发生故障后迅速 准确地进行故障诊断,减少因故障引起的停电损失, 降低寻找故障点的劳动强度,尽最大可能降低对整 个电力系统的扰动程度,确保电力系统的安全可靠稳定运行具有十分重要的意义。本文在总结前人的基础上,重点论述了超高压输电线路的4种故障诊断方法,建议采用小波熵原理对输电线路故障类型 进行故障识别,利用基于小波熵的单端行波测距方法实现故障定位。 1 输电线路故障诊断 当输电线路发生故障时,早先的故障定位通常是由经验丰富的运行人员在阅读故障录波图的基础上,综合电力用户提供的信息,进行预测、判断可能出现的故障位置,然后派巡线人员通过查线确认故障位置并及时排除故障。在电力市场竞争日渐激

(完整版)圆柱齿轮减速器设计开题报告

一、选题的依据及意义: 齿轮减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要,在某些场合也用来增速,称为增速器。其特点是减速电机和大型减速机的结合。无须联轴器和适配器,结构紧凑。负载分布在行星齿轮上,因而承载能力比一般斜齿轮减速机高。满足小空间高扭矩输出的需要。广泛应用于大型矿山,钢铁,化工,港口,环保等领域。与K、R系列组合能得到更大速比。按照齿形分为圆柱齿轮减速器、圆锥齿轮减速器和圆柱—圆锥齿轮减速器; 二级圆柱齿轮减速器就是按其分类来命名的。圆柱齿轮减速器的设计是按传统方法进行的。设计人员按照各种资料、文献提供的数据,结合自己的设计实验,并对已有减速器做一番对比,初步定出一个设计方案,然后对这个方案进行一些验算,如果验算通过了,方案便被肯定了。显然,这个方案是可采用的。但这往往使设计的减速器有很大的尺寸富余量,造成财力、物力和人力的极大浪费。因此,优化圆柱齿轮减速器势在必行。 圆柱齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点,这些已被我国越来越多的机械工程技术人员所了解和重视。由于在各种类型的圆柱齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。圆柱齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。因此,圆柱齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用。对这种减速器进行优化设计,必将获得可观的经济效益。 选做这个毕业设计,一方面对于减速器的内部结构和工作原理也有一定的了解和基础,其次通过对圆柱齿轮减速器这一毕业课题设计可以巩固我大学4年来所学的专业知识,对于我也是一种检验。可以全面检验我大学所学的知识是否全面,是否能灵活运用到实际生活工作中。在做的过程中我还可以不断学习和拓宽视野和思路,做到理论与实际相结合的运用。最重要的是对于即将离校走向社会的我是一种挑战,培养我独立思考,树立全局观念,为以后的我奠定坚实的基础。

故障诊断理论方法综述

故障诊断理论方法综述 故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法 基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。 二、基于信号处理的方法 当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。 三、基于知识的方法 在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。如图1.1

机械设计基础课程设计报告模板(减速器设计)

机械设计基础课程设计 ——单级斜齿轮圆柱齿轮减速器 学校:海洋大学 专业:轮机工程 学号:1703130103 姓名:*** 指导教师:丽娟

10年,单班制工作,输送带允许误差为5%。 设计工作量: 1.设计计算说明书1份(A4纸20页以上,约6000-8000字); 2.主传动系统减速器装配图(主要视图)1(A2图纸); 3.零件图(轴或齿轮轴、齿轮)2(A3图纸)。 专业科:斌教研室:郭新民指导教师:锋开始日期 20**年5月 5日完成日期20**年 6月 30 日

第一节设计任务 设计任务:设计一带式输送机用单级圆柱齿轮减速器。已知输送拉力F=1200N,带速V=1.7m/s,传动卷筒直径D=270mm。由电动机驱动,工作寿命八年(每年工作300天),两班制,带式输送机工作平稳,转向不变。 设计工作量: 1、减速器装配图1(A0图纸) 2、零件图2(输出轴及输出轴上的大齿轮A1图纸)(按1:1比例绘制) 3、设计说明书1份(25业)

第二节 、传动方案的拟定及说明 传动方案如第一节设计任务书(a )图所示,1为电动机,2为V 带,3为机箱,4为联轴器,5为带,6为卷筒。由《机械设计基础课程设计》表2—1可知,V 带传动的传动比为2~4,斜齿轮的传动比为3~6,而且考虑到传动功率为 KW ,属于小功率,转速较低,总传动比小,所以选择结构简单、制造方便的单级圆柱斜齿轮传动方式。 第三节 、电动机的选择 1.传动系统参数计算 (1) 选择电动机类型. 选用三相异步电动机,它们的性能较好,价廉,易买到,同步转有3000,1500,1000,750r/m 四种,转速低者尺寸大; 为了估计动装置的总传动比围,以便选择合适的传动机构和拟定传动方案,可先由已知条件计算起驱动卷筒的转速n w 经过分析,任务书上的传动方案为结构较为简单、制造成本也比较低的方案。 (2)选择电动机 1)卷筒轴的输出功率Pw 2)电动机的输出功率Pd P =P /η 传动装置的总效率 η=滑联齿轮滚带 ηηηηη????2 =0.96×0.98×0.98×0.99×0.96=0.86 故P =P /η=2.125/0.86=2.4KW 单级圆柱斜齿轮传动 P =2.4KW 12000.75 2.12510001000 FV Pw kw ?===w 601000601000 1.7 n 120.3/min 3.14270v r D ???===?πw n 120.3/min r = 2.125Pw kw =

齿轮箱故障诊断

风力发电机组齿轮箱故障诊断 摘要: 通过对不同齿轮箱振动频谱的检测结果的分析,论述了判断齿轮箱由于长期处于某些恶劣条件下,如交变载荷或润滑油失效,引起的齿轮和轴承损坏的检测方法。分析了齿轮箱出现故障的原因以及应采取的措施。 关键词:风电机齿轮箱轴承状态检测 一、风电机组齿轮箱的结构及运行特征 我国风电场中安装的风电机组多数为进口机组。近几年来,一批齿轮箱发生故障,有些由厂家更换,也有的由国内齿轮箱专业厂进行了修理。有的风场齿轮箱损坏率高达40~50%,极个别品牌机组齿轮箱更换率几乎接近100%。虽然齿轮箱发生损坏不仅仅在我国出现,全世界很多地方同样出现过问题,但在我国目前风电机组运行出现的故障中已占了很大比重,应认真分析研究。 1) 过去小容量风电机组齿轮箱多采用平行轴斜齿轮增速结构,后来为避免齿轮箱造价过高、重量体积过大,500kW以上的风电机组齿轮箱多为平行轴与行星轮的混合结构。由于风电机组容量不断增大,轮毂高度增加,齿轮箱受力变得复杂化,这样就造成有些齿轮箱可能在设计上就存在缺陷。 2) 由于我国有些地区地形地貌、气候特征与欧洲相比有特殊性,可能对标准设计的齿轮箱正常运行有一定影响。我国风电场多数处于山区或丘陵地带,尤其是东南沿海及岛屿,地形复杂造成气流受地形影响发生崎变,由此产生在风轮上除水平来流外还有径向气流分量。我国相当一部分地区气流的阵风因子影响较大,对于风电机组机械传动力系来说,经常出现超过其设计极限条件的情况。作为传递动力的装置-齿轮箱,由于气流的不稳定性,导致齿轮箱长期处于复杂的交变载荷下工作。由于设备安装在几十米高空,不可能容易地送到工厂检修,因此经常进行状态监视可以及时发现问题,及时处理,还可以分析从出现故障征兆到彻底失效的时间,以便及时安排检修。

工程机械故障诊断方法综述

工程机械故障诊断方法综述 谢祺 机0801-1 20080534 【摘要】:机械设备的检测诊断技术在现代工业生产中的作用不可忽视,从设备诊断的基本方法、内容和技术手段等多方面对我国机械设备诊断技术的现状进行了综述,并在此基础上分析并提出了该技术在今后的发展趋势。 【关键字】:机械设备诊断技术发展趋势 引言 随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。开展机械设备故障检测与诊断技术的研究具有重要的现实意义。本文试图对机械设备故障监测诊断的内容、方法的现状及发展趋势进行探讨。 1机械故障诊断技术的历史 早在60年代末,美国国家宇航局(NASA)就创立美国机械故障预防MFPG(Machinery Fault Prevention Group),英国成立了机械保健中心(UK,Machineral Health Monitoring Center)。由于诊断技术所产生的巨大的经济效益,从而得到迅速发展。但各个工程领域对故障诊断的敏感程度和需求迫切性并不相同。例如一台机械设备因故障停机检修并不导致全厂生产过程停顿,或对产品质量产生严重的影响,它对故障诊断的需求性就不那么迫切。反之,就非要有故障诊断技术不可。目前监视诊断技术主要用于连续生产系统或与产品质量有直接关系的关键设备。 机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如 Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用[2]。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障

课程设计报告-二级展开式圆柱齿轮减速器(含全套图纸)

课程设计报告 二级展开式圆柱齿轮减速器 姓名: 学院: 专业: 年级: 学号: 指导教师: 2006年6月29日

一.设计题目 设计一用于卷扬机传动装置中的两级圆柱齿轮减速器。轻微震动,单向运转,在室内常温下长期连续工作。卷筒直径D=500mm,运输带的有效拉力F=10000N, 卷筒效率 5 η=0.96,运输带速度0.3/v m s =,电源380V,三相交流. 二.传动装置总体设计: 1. 组成:传动装置由电机、减速器、工作机组成。 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。 3. 确定传动方案:考虑到电机转速高,传动功率大,将V 带设置在高速级。 其传动方案如下: 三.选择电动机 1.选择电动机类型: 按工作要求和条件,选用三相笼型异步电动机,封闭型结果,电压380V ,Y 型。 2.选择电动机的容量

电动机所需的功率为: W d a P P = η KW 1000 W FV P = KW 所以 1000d a FV P = η KW 由电动机到运输带的传动总功率为 1a 422345 η=η?η?η?η?η 1η—带传动效率:0.96 2η—每对轴承的传动效率:0.99 3η—圆柱齿轮的传动效率:0.96 4 η—联轴器的传动效率:0.99 5 η—卷筒的传动效率:0.96 则:4210.960.990.960.990.960.79a 422345η=η?η?η?η?η=????= 所以 94650.3 3.8100010000.81 d a FV p η= ?==?KW 3.确定电动机转速 卷筒的工作转速为 6010006010000.3 11.46 500V n D ???= ==∏∏?r/min 查指导书第7页表1:取V 带传动的传动比2i =~4带;二级圆柱齿轮减速器传动比840i =~减速器,所以总传动比合理范围为16160i =~总,故电动机转速的可选范围是: n n i =?=(16~160)?11.46=183~1834 总卷筒电机r/min 符合这一范围的同步转速有750、1000和1500r/min 。

风力发电机齿轮箱振动测试方法

风力发电机组齿轮箱振动测试与分析 唐新安谢志明王哲吴金强 摘要对齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。 关键词风力发电机组齿轮箱振动分析故障诊断 中图分类号 TH113. 21 文献标识码 A 我国风电场中安装的风力发电机组多为进口机组。因为在恶劣环境下工作,其损坏率高达40%~50%。随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。本文就齿轮箱的故障诊断作一些探索性研究。 一、齿轮箱振动测试 采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。齿轮箱特征频率见表1。 表1 齿轮箱特征频率表 Hz

二、信号分析 1.统计分析 由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。 表2 4#机组幅域统计表 m/s2 表2 5#机组幅域统计表 m/s2 5#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在古障。

2.时域分析 通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且 有明显的周期性,其频率约大20Hz 。

3.频坷分析 由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率 的幅值不对称)。

机械故障诊断综述

中国自动化学会中南六省(区)2010年第28届年会?论文集 机械故障诊断综述 Survey on Faults Diagnosis of Machine 赵宏伟1,2,张清华1,夏路易2,邵龙秋1(1广东石油化工学院 计算机与电子信息学院,广东 茂名525000;2太原理工大学 信息工程学院,山西 太原030024)摘要:本文较系统的介绍了故障诊断的基本过程、原理,在此基础上对故障诊断方法做了详细、系统的论述,并进一步对故障诊断技术的发展做了展望。 关键词:故障诊断;诊断原理;维修制度 Abstract: In this paper, the basic process and principle of fault diagnosis are introduced. On that basis, the main method of fault diagnosis isintroduced in detail. Finally, the development on technique of faults diagnosis is looked forward. Key Words: Faults Diagnosis; Diagnosis Principle; maintenance 1 引言 七十年代以来,计算机和电子技术飞跃发展,促使工业生产向现代化、机器设备向大型化、连续化、高速化、自动化发展。与此同时,现代化机械设备的应用一方面大大促进了生产的发展;另一方面也潜伏着一个很大的危机,即一旦发生故障所造成的直接和间接的损失将是十分严重。为解决这一问题,机械故障诊断技术孕育而出。这门新技术也是一门以高等数学、物理、化学、电子技术、机电设备失效学为基础的新兴学科。它的宗旨就是运用当代一切科技的新成就发现设备的隐患,以期对设备事故防患于未然。如今它已是现代化设备维修技术的重要组成部分,并且成了设备维修管理工作现代化的一个重要标志。 2 设备维修制度 目前,与故障诊断技术紧密相关的设备维修制度共有三种: (1)事后维修制度(POM):这是一种早期的维修制度。主要特点是“不坏不修,坏了再修。”这种维修制度对发生事故难以预料,并往往会造成设备的严重损坏,既不安全且又延长了检修时间。 (2)预防维修制度(PM):又称以时间为基础的设备维修制度(TBM)或计划维修制度。这是一种静态维修制度,主要特点是当设备运行达到计划规定的时间或吨公里时便进行强制维修。它比前一种维修制度大大前进了一步,对于保障设备和人身安全,起到了积极作用。同时,这种维修制度也存在明显的缺陷,即过剩维修和失修的问题。以滚动轴承为例,同一型号的滚动轴承,其实际的使用寿命有时相差达数十倍。在预防维修制度行监测与诊断故障的方法,具体包括声音监听法、频谱分析法和声强法。 温度信号监测诊断技术包括物体温度的直接测量和热红外分析技术。实际工业中不恰当的温度变化往往意味着热故障的发生。从被测设备的某一部分的温 130

风力发电机组齿轮箱的故障及其分析

毕业设计(论文)2010 级风能与动力技术专业 题目:风力发电机组齿轮箱的故障及其分析 毕业时间: 学生姓名:X X X 指导教师:X X X 班级:10风电(1)班

目录 一、绪论 (1) (一)风力发电机组齿轮箱故障诊断的意义 (1) 二、风力发电机组齿轮箱的故障诊断 (2) (一)风力发电机组齿轮箱的常见故障模式及机理分析 (2) (二)齿轮箱典型故障振动特征与诊断策略 (6) (三)针对齿轮箱不同故障的改进措施 (9) 三、结论 (12) 参考文献: (12) 致谢 (13)

风力发电机组齿轮箱的故障及其分析 摘要:随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词:风力发电机;故障模式;齿轮箱;故障诊断 一、绪论 (一)风力发电机组齿轮箱故障诊断的意义 风电对缓解能源供应,改善能源结构、保护环境和电力工业的持续发展意义重大。这些年来,风电机组在我国得到了广泛的安装使用。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,风力发电机的故障也成为一个不容忽视的问题。 随着风电机组运行时间的加长,目前这些机组陆续出现了故障(包括风轮叶片、变流器、齿轮箱、变桨轴承,发电机、以及偏航系统等都有),导致机组停止运行。当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故。风电机组的部分部件一旦损坏,在风电场无法修复,必须运到专业厂家进行修理。因其维修费用高、周期长、难度大,势必给风电场造成巨大的经济损失,严重影响了风电的经济效益。 风电机组的输出功率是波动的,可能影响电网的电能质量,如电压的偏差、电压的波动和闪变、谐波以及周期电压脉动等。当风电机组发生故障时,输往电网的

机械故障诊断的发展现状与前景

《机械故障诊断技术》读书报告 MAO pei-gang 南阳理工机械与汽车工程学院 473004 动平衡诊断案例分析综述 Diagnosis of dynamic balance Case Analysis were Review 摘要 简要阐述组动平衡故障诊断中所使用的现代测试与分析技术。通过五个动不平衡故障的诊断与处理实例,指出了波德图、频谱图等现代分析技术对于组动平衡故障诊断的价值和意义;总结了基于现代测试与分析技术的动平衡故障的主要特征。;验证了影响系数法对于动平衡故障处理的准确性及实用性。对于提高动平衡故障诊断的准确性及其精度具有推广和借鉴意义。 关键词:动平衡故障诊断振动分析 Abstract The modern measuring and analyzing technologies applied in the dynamic balance fault diagnoses are described briefly。In view of five dynamic unbalance fault diagnoses and treatments。the significance and purpose of the modern analyzing technologies such as Bode Plot,Spectrum Plot for the dynamic balance fault diagnoses are put forward,and its characteristics based on testing and analyzing technologies are summarized.The accuracy and practicability of the influence coefficient method for its treatment are proved.The instructions and experiences of improving the

参考 齿轮箱开题报告

本科学生毕业设计 (论文)开题报告 1、目的及意义(含国内外的研究现状分析) 1.2 选题背景 磨煤机是将煤块破碎并磨成煤粉的机械,它是煤粉炉的重要辅助设备。煤在磨煤机中被磨制成煤粉,主要是通过压碎、击碎和研碎三种方式进行。磨煤机经常运行于高速、重载以及恶劣环境等条件下,齿轮及齿轮箱作为机械设备中必不可少的连接和传递动力部件由于加工工艺复杂,装配精度要求高,又常常在高速度、重载荷的环境下连续工作,出现故障的概率较高。而齿轮的失效又是诱发机械故障的重要因素。齿轮箱在机械设备中是核心部件,出现故障后将会导致整个机械设备的失效。轻则降低生产质量或导致停产,重则会造成事故。据统计传动机械中齿轮引发的故障占 80%左右,旋转机械中约为 10%左右。齿轮箱的故障和失效轻则带来经济损失,重则造成人员伤亡。据日本新日铁会社的统计,在机器的总故障次数中,齿轮故障约占 10.3%左右,而在齿轮箱的失效零件中,齿轮失效占 60%左右,轴承和轴故障约为 30%左右。对齿轮箱进行状态检测与故障诊断中采用这些先进的技术,能够节省大量的人力、物力、财力,提高设备的利用率,可及时发现故障隐患,提高故障诊断效率,降低因为齿轮箱故障而引起的灾难,因此对电厂磨煤机齿轮箱进行状态监测与故障诊断具有重大的意义。 1.2 齿轮箱故障诊断的发展现状 齿轮箱振动与噪声的研究发展比较早,但是将齿轮的振动与噪声运用到齿轮箱的故障诊断中却是在20世纪60年代中期,美国的Buckingham和德国的Niemann,英国学者H.Optiz仔细研究了齿轮振动与噪声的原理,指出其是传动功率和齿轮传动误差及齿轮精度的函数。随后一些简单的齿轮箱故障诊断技术开始出现,这些技术手段主要是通过测量齿轮箱工作过程中一些简单的振动参数,如有效值、振动峰值、均方根值等来对齿轮箱进行直接分析。70年代末到80年代中期,利用频谱来分析齿轮箱的故障取得了重大成果,其中B.Randall和James I.Taylor等人作

风力发电机齿轮箱结构及其主要故障类型的处理方法

风力发电机齿轮箱结构及其主要故障类型的处理方法摘要 第一章绪论 1.1论文的目的和意义 1.2风力发电的现状 1.3风力发电齿轮箱的研究现状 第二章齿轮箱结构 2.1风力发电机的整体结构 2.2齿轮箱的结构及其传动方案 第三章风力发电机组齿轮箱故障类型 3.1齿轮箱的主要故障类型 3.2风力发电机组齿轮箱振动故障分析 3.3风力发电机组传动齿轮油温故障分析 第四章风力发电的发展存在问题和主要趋势 4.1我国风电齿轮箱设计生产存在问题 4.2风电发展的主要趋势 致谢 参考文献

中文摘要 摘要:风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。 本文以兆瓦级风力发电机齿轮箱为对象,通过方案选取,齿轮参数确定等对其配套的齿轮箱进行阐述。 首先,介绍全球风力发电产业高速发展和国内外风电设备制造业概况,阐述我国风力发电齿轮箱的现状及齿轮箱的研究。 其次,确定齿轮箱的机械结构。选取两级行星派生型传动方案,通过计算,确定各级传动的齿轮参数。对行星齿轮传动进行受力分析,得出各级齿轮受力结果。依据标准进行静强度校核,结果符合安全要求。 然后,论述了风力发电机组齿轮箱故障诊断的主要类型,深入探究风电机组齿轮箱振动故障机理,研究了油温高的故障机理,分析了传动齿轮温度场和热变形的情况。 最后,阐述我国风力发电存在的主要问题和发展前景。 关键词:风电齿轮箱;结构;故障类型;存在问题

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

齿轮箱设计报告大学论文

齿轮箱设计报告

1 概述 (4) 2 齿轮箱设计 (5) 2.1齿轮箱设计的基本要求 (5) 2.2齿轮箱设计的计算项目 (5) 2.3齿轮箱主要零部件设计 (6) 2.3.1 齿轮 (6) 2.3.1.1齿轮计算 (6) 2.3.1.2齿轮的修形 (7) 2.3.1.3齿轮材料及热处理 (7) 2.3.1.4齿轮的精度 (7) 2.3.1.5齿面粗糙度 (7) 2.3.1.6齿轮的变位系数 (8) 2.3.2 轴承 (8) 2.3.2.1轴承选型 (8) 2.3.2.2轴承静承载能力 (10) 2.3.2.3轴承寿命计算 (11) 2.3.2.4轴承的最大接触应力 (12) 2.3.3 润滑、冷却和加热系统 (12) 2.3.3.1散热器 (12) 2.3.3.2加热器 (14) 2.3.3.3过滤装置 (14) 2.3.4轴 (14) 2.3.5箱体、行星架和扭力臂 (14) 2.3.6轴封 (15) 2.3.7 润滑油 (15) 2.3.7.1润滑油选型 (15) 2.3.7.2润滑油容量 (15) 2.3.7.3润滑油测试 (15) 2.3.7.4润滑油清洁度 (16) 3 国内外主要供应商分析 (16) 3.1齿轮箱设计 (16) 3.2 制造技术 (16) 3.3 试验测试技术 (17) 4 齿轮箱样机试验 (17) 4.1 样机试验规范 (18) 4.1.1 试验前的准备工作 (18) 4.1.2 空载试验 (18) 4.1.3 加载试验 (18) 4.1.4 强化试验 (20) 4.1.5 故障处理 (21) 4.1.6 拆检 (22) 5 包装与运输 (22) 6 油漆及防腐保护 (23) 6.1 油漆 (23)

风电齿轮箱润滑状态监测与故障诊断系统开发

? 149 ? ELECTRONICS WORLD ?技术交流 我国的风力发电机组主要布置在偏远山区,环境较为恶劣,而且还有部分风力发电机组布置在高原、海上等,受到高强度风的冲击,可极易引发故障。本文主要针对风电齿轮箱润滑系统进行研究,提出当前风电齿轮箱润滑状态运行中存在的问题,针对问题提出装填监测与故障诊断系统设计方案,给出硬件和软件设计,并分析其功能。1.风电齿轮箱 风电齿轮箱作为风力发电机组中的重要组成部件,能够实现动力传递,将风能转化为机械能并将动力传递给发电机获得相应转速。在风力的作用下,发电机组能够获得一定的动力,但是风轮的转速往往很低,不能满足发电机发电要求,因此需要在风力发电机组中配备相应的齿轮箱来实现增速,提高风能利用率。根据风力发电机组运行的实际要求进行不同设置,对于传动轴(大轴)和齿轮箱既可以合为一体也可以分开进行布置,在两者之间还往往通过联轴节进行连接。在风力发电机组中还往往在齿轮箱的输入/出端配备相应的刹车装置来实现风力发电机组的制动能力。配合叶尖制动(定浆距风轮)或变浆距制动装置共同对机组传动系统进行联合制动。 2.风电齿轮箱润滑常见故障及原因分析2.1 润滑油黏度变化 对于风力发电机组而言,基本上每天都在运行进行发电工作。由于工作时间较长、负载较大,会导致油温升高出现氧化情况,而氧化会产生油泥沉积物等物质,这些物质会使得润滑油的粘度先下降后上升,润滑肉的承载能力下降明显,对于齿轮箱中的各个部件而言,没有很好的润滑会产生较大磨损,引发故障。而且润滑油的粘度增大,使用中油温和油压均会出现明显升高现象,出现齿面胶合等现象,甚至严重情况下会引发轴承受热变形。2.2 齿轮油水分影响 对于风力发电机组而言往往在海岛等地区进行工作,另外还在荒漠等地区这些地区的温度往往较低,如果不能及时的更换齿轮箱中的空气呼吸机,长期下来就会导致水分的沉积。而水分是影响齿轮箱润滑油质量的一个关键因素之一,如果水分含量过大会导致齿轮箱的油发生乳化,齿轮件极易出现锈蚀问题。2.3 氧化因素 由于风力发电机组长时间工作,润滑油也会长时间使用。而长时间的运行必然导致油温升高,油会出现氧化问题,而且在运行中还会由于各种不可控因素导致污染产生,最终导致润滑油的氧化程度升高,性能会随之下降,在齿轮箱当中产生酸性物质,对于齿轮箱中的各个部件而言会产生严重腐蚀,对于滤芯以及各个配件而言会产生不同程度的损耗。2.4 磨损检测 对于齿轮运行而言,通过渐开线接触的方式进行啮合,这种运行方式下齿轮不会发生相对滑动。在齿轮箱中引入润滑油主要是润滑齿轮,保证齿轮发生比较小的磨损。在风力发电机组的运行中必须关注异常磨损问题,卡阻异常会导致异常磨损更加严重。润滑油快速发黑并且在齿轮箱中有铁屑的时候应该考虑异常卡阻问题,异常磨损往往与油膜无法有效建立相关;磨屑增多及滑油粘度异常也有关联关系,另外是滑油变性,或水分等腐蚀齿轮的成分增大时,也会出现齿轮磨损增大。 3.风电齿轮箱润滑状态监测与故障诊断系统设计3.1 硬件系统设计及构成 对于风力发电机组的润滑状态监测系统而言,必须要有相应的系统硬件进行支持。整个监测系统由数据传感器来进行信息的采集,并由变送器来进行信息传递,另外还有数采模块以及工控机通信线路协调配合实现最终功能。 3.1.1 传感器 在风力发电机的齿轮箱中,往往涉及到多个参数以及变量的监控,针对不同的参数以及变量需要采用不同的传感器俩进行采集,传感器型号的选择如表1所示。 表1 传感器及其选型 测量对象型号参数 振动YD010量程:0-20mm/s 温度PT100量程:-60-200℃压力HDA4400 量程:6000-100000kPa 图1 软件系统程序设计图 3.1.2 温度变送器 前面提出油温是影响并反映齿轮箱润滑状态的重要参数,因此必须要对油温进行监控。在本设计中采用Pt100温度传感器来进行油温采集,这一温度传感器主要通过内部电阻值变化来反映温度变化值。另外还在系统中引入SBWZ-2280变送器,提供整个系统的变送电路支持。 3.1.3 数采模块 在该系统当中引入了COMWAYWRC-616来提供测控,这控制系统集成模拟和数字信号采集、过程IO控制和无线数据通道等功能。采用压力传感器与变送器的继承模块HAD4XX4-A来进行系统控制。对于系统中的油压以及温度模块而言,还往往采用两线制电流输出的接线方式;对于整个系统中的振动模块而言,往往采用三线制的连接方式。数采模块通过RS485串口输出接入到整个系统当中,另外还通过RS485-To-RS232转换串口接入到工控机串口当中。为实现其功能还在系统中引入远程通讯模块,能够通过智能手机实现监控系统和外部的通讯。 风电齿轮箱润滑状态监测与故障诊断系统开发 中广核新能源控股公司吉林分公司 杨 鹏 DOI:10.19353/https://www.sodocs.net/doc/d617943026.html,ki.dzsj.2019.04.088

相关主题