搜档网
当前位置:搜档网 › 中考圆知识点总结复习(教学课件)

中考圆知识点总结复习(教学课件)

中考圆知识点总结复习(教学课件)
中考圆知识点总结复习(教学课件)

一、圆的概念

集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;

2、圆的外部:可以看作是到定点的距离大于定长的点的集合;

3、圆的内部:可以看作是到定点的距离小于定长的点的集合

轨迹形式的概念:

1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);

3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;

4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;

5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系

1、点在圆内?d r

2、点在圆上?d r

=?点B在圆上;

3、点在圆外?d r

>?点A在圆外;

三、直线与圆的位置关系

1、直线与圆相离?d r

>?无交点;

2、直线与圆相切?d r

=?有一个交点;

3、直线与圆相交?d r

四、圆与圆的位置关系

外离(图1)?无交点?d R r

>+;

外切(图2)?有一个交点?d R r

=+;

相交(图3)?有两个交点?R r d R r

-<<+;

内切(图4)?有一个交点?d R r

=-;

内含(图5)?无交点?d R r

<-;

A

五、垂径定理

垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD

⊥③CE DE

=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O中,∵AB∥CD

∴弧AC=弧BD

六、圆心角定理

圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中,

只要知道其中的1个相等,则可以推出其它的3个结论,

即:①AOB DOE

∠=∠;②AB DE

=;

③OC OF

=;④弧BA=弧BD

七、圆周角定理

1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB

∠和ACB

∠是弧AB所对的圆心角和圆周角

∴2

AOB ACB

∠=∠

2、圆周角定理的推论:

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;

即:在⊙O中,∵C

∠、D

∠都是所对的圆周角

∴C D

∠=∠

推论2:半圆或直径所对的圆周角是直角;圆周角是直

角所对的弧是半圆,所对的弦是直径。

即:在⊙O中,∵AB是直径或∵90

C

∠=?

∴90

C

∠=?∴AB是直径

推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△ABC中,∵OC OA OB

==

B

D

B A

B A

O

∴△ABC 是直角三角形或90C ∠=?

注意:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

八、圆内接四边形

圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在⊙O 中, ∵四边ABCD 是内接四边形

∴180C BAD ∠+∠=? 180B D ∠+∠=?

DAE C ∠=∠

九、切线的性质与判定定理

1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线

2、性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理:

即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

十、切线长定理

切线长定理: 从圆外一点引圆的两条切线,它们的切线长

相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB =;PO 平分BPA ∠

十一、圆幂定理

1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ?=? 推论:如果弦与直径垂直相交,那么弦的一半是它分直径

所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =?

2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段

长的比例中项。

即:在⊙O 中,∵PA 是切线,PB 是割线

D

B

A

∴ 2PA PC PB =?

3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图)。

即:在⊙O 中,∵PB 、PE 是割线

∴PC PB PD PE ?=?

十二、两圆公共弦定理

圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。

如图:12O O 垂直平分AB 。

即:∵⊙1O 、⊙2O 相交于A 、B 两点

∴12O O 垂直平分AB

十三、圆的公切线

两圆公切线长的计算公式:

(1)公切线长:12Rt O O C ?

中,2

21

AB CO =

(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和

十四、圆内正多边形的计算 (1)正三角形

在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ?

中进行:::2OD BD OB =;

(2)正四边形

同理,四边形的有关计算在Rt OAE ?

中进行,::OE AE OA =

(3)正六边形

同理,六边形的有关计算在Rt OAB ?

中进行,::2AB OB OA =.

十五、扇形、圆柱和圆锥的相关计算公式

1、扇形:(1)弧长公式:180

n R

l π=;

l

O

(2)扇形面积公式: 21

3602

n R S lR π=

= n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积

2、圆柱:

(1)圆柱侧面展开图

2S S S =+侧表底=222rh r ππ+

(2)圆柱的体积:2V r h π=

3、圆锥侧面展开图

(1)S S S =+侧表底=2Rr r ππ+

(2)圆锥的体积:21

3

V r h π=

十六、内切圆及有关计算。

(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

(2)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c ,则内切圆的半径r=2

c

b a -+ 。

(3)S △ABC =)(2

1

c b a r ++,其中a ,b ,c 是边长,r 是内切圆的半径。

(4

如图,BC 切⊙O 于点B ,AB 为弦,∠ABC 叫弦切角,∠ABC=∠D 。 C

C 1

D 1

考点一:与圆相关概念的应用

利用与圆相关的概念来解决一些问题是必考的内容,在复习中准确理解与圆有关的概念,注意分清它们之间的区别和联系.

1.运用圆与角(圆心角,圆周角),弦,弦心距,弧之间的关系进行解题

【例1】已知:如图所示,在△ABO中,∠AOB=90°,∠B=25°,以O为圆心,OA长为半径的圆交AB于D,求弧AD的度数.

【例2】如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为().

A. 30°B. 45°C. 50°D.

60°

2.利用圆的定义判断点与圆,直线与圆、圆与圆的位置关系

【例3】已知⊙O的半径为3cm,A为线段OM的中点,当OA满足:

(1)当OA=1cm时,点M与⊙O的位置关系是 .

(2)当OA=时,点M与⊙O的位置关系是 .

(3)当OA=3cm时,点M与⊙O的位置关系是 .

【例4】⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是().

A. 相交B. 相切C. 相离D. 无法确定

【例5】两圆的半径分别为3cm和4cm,圆心距为2cm,那么两圆的位置关系是______________.

3.正多边形和圆的有关计算

【例6】已知正六边形的周长为72cm,求正六边形的半径,边心距和面积.

4.运用弧长及扇形面积公式进行有关计算

【例7】如图,矩形ABCD中,BC=2,DC=4,以AB为直径的半圆O与DC相切于点

E,则阴影部分的面积为(结果保留).

5.运用圆锥的侧面弧长和底面圆周长关系进行计算

【例8】已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径长的比是 .

考点二:圆中计算与证明的常见类型

1.利用垂径定理解题

垂径定理及其推论中的三要素是:直径、平分、过圆心,它们在圆内常常构成圆周角、等分线段、直角三角形等,从而可以应用相关定理完成其论证或计算.

【例1】在⊙O中,弦CD与直径AB相交于点P,夹角为30°,且分直径为1∶5两部分,AB=6,则弦CD 的长为 .

A. 2B. 4C. 4D. 2

2.利用“直径所对的圆周角是直角”解题

“直径所对的圆周角是直角”是非常重要的定理,在解与圆有关的问题时,常常

添加辅助线构成直径所对的圆周角,以便利用上面的定理.

【例2】如图,在⊙O的内接△ABC中,CD是AB边上的高,求证:∠ACD=∠OCB.

3.利用圆内接四边形的对角关系解题

圆内接四边形的对角互补,这是圆内接四边形的重要性质,也揭示了确定四

点共圆的方法.

【例3】如图,四边形ABCD为圆内接四边形,E为DA延长线上一点,若∠C=45°,

AB=2,则点B到AE的距离为________.

4. 判断圆的切线的方法及应用

判断圆的切线的方法有三种:

(1)与圆有惟一公共点的直线是圆的切线;

(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;

(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.

【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=3

4,D是线段BC的中点.

(1)试判断点D与⊙O的位置关系,并说明理由.

(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.

【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.

B

O

A

P

C

【例6】 如图,半圆O 为△ABC 的外接半圆,AC 为直径,D 为劣弧上一动点,P 在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.

题库

一. 选择题:

1. ⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥R ,则P 点 [ ] A.在⊙O 内或圆周上 B.在⊙O 外

C.在圆周上

D.在⊙O 外或圆周上

2. 由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为[ ] A 、2或3 B 、3 C 、4 D 、2 或4

3.如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是[ ]

° ° ° °

4.在⊙O 中,弦AB 垂直并且平分一条半径,则劣弧AB 的度数等于[ ] ° ° ° °

5.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是[ ] A、相离 B、相切 C、相切或相交 D、相交 6、如图,PA切⊙O 于A,PC交⊙O 于点B、C ,若PA =5,PB =B C,则PC的长是[ ] A、10 B、5 C、25 D、35

7.如图,某城市公园的雕塑是由3个直径为1m 的圆两两相垒立在水平的地面上,则雕塑的最高点到地面的距离为[ ] A .

232+ B.233+ C.2

2

2+ D. 223+

8、已知两圆的圆心距是9,两圆的半径是方程2x 2

-17x+35=0的两根,则两圆有[ ]条切线。

A 、 1条

B 、2条

C 、3条

D 、4条

D E B A C O 9、如果等腰梯形有一个内切圆并且它的中位线等于20cm ,则梯形的腰长为[ ]

A、10cm B、12cm C、14cm D、16cm

10、如图,⊙O 1和⊙O 2相交于A 、B 两点,且A O 1、A O 2分别是两圆的切线,A 是切点,若⊙O 1的半径r=3,⊙O 2的半径R=4,则公共弦AB 的长为[ ] A 、2 B 、 C 、3 D 、

11、水平放置的排水管(圆柱体)截面半径是1cm ,水面宽也是1cm ,则截面有水部分(弓形)的面积是[ ] A 、

B 、

C 、

D 、

二. 填空题:

长的一条弦所对的圆周角为90°,则此圆的直径为 。 13.在⊙O 中,AB 是直径,弦CD 与AB 相交于点E ,若 ,则CE=DE (只需填一个适合的条件)。 14.在圆内接四边形ABCD 中,∠A ∶∠B ∶∠C=5∶2∶1,则∠D= 。 15.若三角形的外心在它的一条边上,那么这个三角形是 。

16.如图,圆内接四边形ABCD 的对角线AC ,BD 交于E 点,AB=120°,CD=70°则∠AEB= 。

17.已知两个圆的半径分别为8 cm 和3 cm ,两个圆的圆心距为7 cm ,则这两个圆的外公切线长为 。 18.如图,⊙O 中,弦AB ⊥弦CD 于E ,OF ⊥AB 于F ,OG ⊥CD 于G ,若AE=8cm ,EB=4cm ,则OG= cm 。

19. 已知圆锥的母线长为5厘米,底面半径为3厘米,则它的侧面积为 。 四.解答题

20.如图在△ABC 中,∠C=90°,点O 为AB 上一点,以O 为圆心的半圆切AC 于E ,交AB 于D ,AC=12,BC=9,求AD 的长。

21.如图在⊙O 中,C 为ACB 的中点,CD 为直径,弦AB 交CD 于点P ,又PE ⊥

CB 于E ,若BC=10,且CE ∶EB=3∶2,求AB 的长.

22.已知:如图,A 是以EF 为直径的半圆上的一点,作AG ⊥EF 交EF 于G ,又B 为AG 上一点,EB 的延长线

交半圆于点K , 求证:EK EB AE ?=2

23.已知:如图,△ABC 内接于⊙O ,AE 是⊙O 的直径,CD 是△ABC 中AB 边上的高, 求证:AC ·BC=AE ·CD

相关主题