搜档网
当前位置:搜档网 › 函数单调性和奇偶性的综合应用题

函数单调性和奇偶性的综合应用题

函数单调性和奇偶性的综合应用题
函数单调性和奇偶性的综合应用题

函数单调性和奇偶性应用

【巩固练习】

⑴函数y=(2k+1)x+b 在R 上是减函数,则实数k 的取值范围是 ______

⑵函数f(x)=2x 2-mx+3当x ∈[2,+∞)时是增函数,则实数m 的取值范围 _____

⑶设f(x)=ax 7+bx +5,已知f(-7)=-17,求f(7)的值. ⑷已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)= ,求f(x)、g(x). 【学习探究】

一、函数单调性的判断及应用 例1、试讨论函数 上的单调性

【变式训练】试讨论函数f(x) 上的单调性,其中a 为非零常数。

例2、函数f(x)=x 2-2ax -3在区间[1,2]上单调,则( )

A .a ∈(-∞,1]

B .a ∈[2,+∞)

C .a ∈[1,2]

D .a ∈(-∞,1]∪[2,+∞)

【变式训练】 已知函数f(x)=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,

求实数a 的取值范围.

例3、已知f(x)是定义在[-1,1]上的增函数,且f(x -2)

值范围

二、函数奇偶性的判断和应用

例4.判断下列函数的奇偶性

(1)f(x)=5x+3 (2)f(x)=x -2+x 4

(3) (4)

【例5】已知)(x f 是定义域R 为的奇函数,当0

的解析式.

11+x ),0()0(,)(+∞≠+=在a x a x x f )在(1,1-12-=x ax 2211)(x x x f -++=?????>++-=<-+=)0(32)0(0)0(32)(22x x x x x x x x f

三、单调性和奇偶性的的综合应用

例1: 设函数()f x 为定义在R 上的偶函数,且()f x 在[0,)+∞为减函数,则(2),(),(3)f f f π--的大小顺序 练习:

1:()y f x =在(0,2)上是增函数,(2)y f x =+是偶函数,则157(),(),()222

f f f 的大小关系

2:若函数2()f x x mx n =++,对任意实数x ,都有(1)(3)f x f x -=+成立,试比较(1),(2),(4)f f f - 的大小关系

3、已知函数21()4f x ax bx a b

=+++是定义在[1,2]a a -上的奇函数,且(1)5f =,求a 、b

4、若2()(2)(1)3f x K x K x =-+-+是偶函数,则()f x 的递减区间是 。 例2:已知()y f x =在定义域(1,1)-上是增函数且为奇函数,(1)(21)0f t f t -+-<,求实数t 的取值范围.

例3:已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-, 求()f x 的解析式.

例4:函数()y f x =是[2,2]-上的偶函数,当[0,2]x ∈时,()f x 是减函数,解不等式(1)()f x f x -<。

练习:已知()f x 是定义在(1,1)-的偶函数,且在(0,1)上为增函数,若

(2)(3)

f a f a -<-,求a 的取值范围。

例5:已知函数()f x 是R 上的奇函数且是增函数,解不等式(45)0f x -+>。

练习:1.()f x 是定义在(0,)+∞上的增函数,且()()()x f f x f y y

=-。(1)求(1)f 的值;(2)若(6)1f =,解不等式1(3)()23

f x f +-<。 2.R +上的增函数满足()()()f xy f x f y =+,且(8)3f =,解不等式(2)(2)f f x +-≥6

【课后作业】

1.若2(3)21f x x =-,则()f x 的解析式为 。

2.求函数定义域(1)5()||3

x f x x -=- (2)11y x x =-+- 3.已知2211()1f x x x x

-=++,则函数()f x 的解析式 4.函数822+--=x x y 的单调增区间为

5.已知函数2()(2)(1)3f x m x m x =-+-+是偶函数,则实数m 的值

6.已知函数53()8f x x ax bx =++-若(2)10f -=,则(2)f 的值

7.定义在实数集上的函数()f x ,对任意x y R ,∈,有

f x y f x y f x f y ()()()()++-=2且f ()00≠.

(1)求证f ()01=;(2)求证:y f x =()是偶函数。

8.已知定义在R 上的偶函数()f x 在区间[0,)+∞上是单调增函数,若

(1)(lg )f f x <,求x 的取值范围.

9. 函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且12()25

f =. (1)确定函数()f x 的解析式;

(2)用定义证明()f x 在(1,1)-上是增函数;

(3)解不等式(1)()0f t f t -+<.

例6:定义在(-1,1)上的奇函数f(x)在整个定义域上是减函数,若

f(1-a)+f(1-3a)<0,求实数a 的取值范围.

【变式练习】

已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)在[-7,-3]上是 ____ 函数,且最_____值是_________ .

【课后作业】

1.已知函数f (x)是定义在(0,+∞)上的增函数,且f (2)=1,且f (x +5)<1,求x 的取值范围

2.已知函数f (x)是R 上的偶函数,在[0, +∞)上是减函数,且f (2)=0,求不等式x f (x)<0的解.

3.已知函数f (x)是定义在[-2,2]上的减函数,且f (3x)<f (x +1),求x 的取值范围.

自己整理抽象函数单调性及奇偶性练习及答案

1、已知f x ()的定义域为R ,且对任意实数x ,y 满足f xy f x f y ()()()=+,求 证:f x ()是偶函数。 2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x ?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, f x ()<0, f(3)=-2. (1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值. 4、已知函数f (x )在(-1,1)上有定义,f (2 1)=-1,当且仅当0

6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1; (2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2)>1,求x 的取值范围。 7、已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2) 判断函数()f x 的单调性,并证明. 8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任 意,x y R ∈,有()[()]y f xy f x =;③1 ()13 f >. (1)求(0)f 的值; (2)求证: ()f x 在R 上是单调减函数;

函数的单调性与奇偶性综合

函数的单调性与奇偶性综合 【课时目标】 1、能准确判断函数的单调性与奇偶性 2、会灵活利用函数的单调性与奇偶性求参数或参数的取值范围 3、能够解决抽象函数的单调性与奇偶性的问题 【基础训练】 1、单调性: (1)函数||2x x y +-=,单调递减区间为 (2)函数b x k y ++=)12(在实数集上是增函数,则k 的取值范围是 (3)已知函数2()(3)2f x ax a x =+++在区间[1,)+∞上为增函数,则实数a 的取值范围是 ___ (4)已知()f x 为R 上的减函数,则满足)1()1(f x f >的实数x 的取值范围是____________ — 2、奇偶性: (1)下列函数具有奇偶性的有 ①x x y 13+= ②x x y 2112-+-= ③x x y +=4 ④?? ???<--=>+=)0(2)0(0)0(222x x x x x y (2)函数1()f x x x =-的图像关于__________对称 (3)若函数(1)()y x x a =+-为偶函数,则a =__________ (4)已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则_______ 【例题精讲】 例1、已知()f x 是偶函数,而且在0(,)+∞上是减函数.判断()f x 在0(,)-∞上是增函数还是减函数,并加以证明

例2、()f x 是定义在R 的奇函数,且()f x 在0(,)+∞上是增函数,10()f =,则不等式0()()f x f x x --<的解集为_________________ } 练习:已知()f x 是定义在(3,3)-上的偶函数,当0 x ≤< ()f x 的图象如右图,则不等式(1)()0x f x -?≤ 变:()f x 是定义在22[,]-的奇函数,且()f x 在02[,]上单调递减,若1()()f m f m -<,则实数m 的取值范围是________________ … 例3、已知函数()1).f x a =≠ (1)若0a >,则()f x 的定义域是 (2) 若()f x 在区间(]0,1上是减函数,则实数a 的取值范围是______________ 例4:(1)函数()y f x =的图象关于直线1x =对称,若当1x ≤时,2()1f x x =+,求()f x · (2)函数()y f x =的图象关于点(1,1)对称,若当1x ≤时,2()1f x x =+,求()f x

函数的单调性与奇偶性-练习题-基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2= C .y =x 2 -4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a ~ 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2 -mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2 -a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. - (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 ; 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数.

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

抽象函数单调性、奇偶性、周期性和对称性典例分析[1]

抽象函数的对称性、奇偶性与周期性 一、典例分析 1.求函数值 例1.设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于( ) (A )0.5; (B )-0.5; (C )1.5; (D )-1.5. 例2.已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,,32)1(+=f 求)1989(f 的值.(1989)f = 。 2、比较函数值大小 例3.若))((R x x f ∈是以2为周期的偶函数,当[]1,0∈x 时,,)(1998 1x x f =试比较)1998( f 、)17101(f 、)15 104(f 的大小. 3、求函数解析式 例 4.设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当 0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式. 例5.设)(x f 是定义在),(+∞-∞上以2为周期的周期函数,且)(x f 是偶函数,在区间[]3,2上,. 4)3(2)(2 +--=x x f 求[]2,1∈x 时,)(x f 的解析式. 4、判断函数奇偶性 例6.已知)(x f 的周期为4,且等式)2()2(x f x f -=+对任意R x ∈均成立,判断函数)(x f 的奇偶性. 5、确定函数图象与x 轴交点的个数 例7.设函数)(x f 对任意实数x 满足)2()2(x f x f -=+,=+)7(x f ,0)0()7(=-f x f 且判断函数)(x f 图象在

专题抽象函数的单调性和奇偶性应用

抽象函数的单调性和奇偶性应用 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数。它是高中数学中的一个难点,因为抽象,解题时思维常常受阻,思路难以展开,而高考中会出现这一题型,本文对抽象函数的单调性和奇偶性问题进行了整理、归类,大概有以下几种题型: 一、判断单调性和奇偶性 1. 判断单调性 根据函数的奇偶性、单调性等有关性质,画出函数的示意图,以形助数,问题迅速获解。 例1.如果奇函数f x ()在区间[]37,上是增函数且有最小值为5,那 么f x ()在区间[]--73,上是 A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 分析:画出满足题意的示意图,易知选B 。 例2.偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是 增函数还是减函数,并证明你的结论。 分析:如图所示,易知f x ()在()-∞,0上是增函数,证明如下: 任取 x x x x 121200<-> 因为f x ()在(0),+∞上是减函数,所以 f x f x ()()-<-12。 又f x ()是偶函数,所以 f x f x f x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数。 2. 判断奇偶性 根据已知条件,通过恰当的赋值代换,寻求f x ()与f x ()-的关系。 例3.若函数y f x f x =≠()(())0与y f x =-()的图象关于原点对称,判断:函数 y f x =()是什么函数。

函数的单调性奇偶性训练题20130117

函数的单调性奇偶性训练题 一、选择题 1. 下列函数中,在区间 上为增函数的是( ). A . B . C . D . 2.函数 的增区间是( )。 A . B . C . D . 3. 在 上是减函数,则a 的取值范围是( )。 A . B . C . D . 4 已知函数2()3f x ax bx a b =+++是偶函数,且其定义域为[1,2a a -],则( ) A .3 1=a ,b =0 B .1a =-,b =0 C .1a =,b =0 D .3a =,b =0 5.设偶函数)(x f 的定义域为R ,当[)+∞∈,0x 时,)(x f 是增函数,则),2(-f )(πf ,)3(-f 的大小关系是 A )2()3()(->->f f f π B )3()2()(->->f f f π C )2()3()(-<-?是R 上的减函数,那么a 的取值范围是( ) A.(0,1) B.1 (0,)3 C.11 [,)73 D.1 [,1)7 二、填空题 11.函数 ,当 时,是增函数,则f(1)的范围为___________ 12 已知()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则0x <时()f x =___________

最新函数的奇偶性和单调性综合训练及答案

一、选择题 1.下列判断正确的是( ) A .函数2 2)(2--=x x x x f 是奇函数 B .函数1()(1)1x f x x x +=--是偶函数 C .函数2()1f x x x =+ -是非奇非偶函数 D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2 ()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 3.函数11y x x = +--的值域为( ) A .( ]2,∞- B .(] 2,0 C .[ ) +∞,2 D .[)+∞,0 4.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2 ()2f x ax bx =++与x 轴没有交点,则2 80b a -<且0a >;(3) 223y x x =--的 递增区间为[)1,+∞;(4) 1y x =+和2(1)y x = +表示相等函数。 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题 1.函数x x x f -=2 )(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2 -+=x x x f , 那么0x <时,()f x = . d d 0 t 0 t O A . d d 0 t 0 t O B . d d 0 t 0 t O C . d d 0 t 0 t O D .

最全最详细抽象函数的对称性、奇偶性和周期性常用结论

抽象函数的对称性、奇偶性与周期性常用结论 一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力 1、周期函数的定义: 对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。 分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。把)()(a b K KT x x f y -==轴平移沿个单位即按向量 )()0,(x f y kT a ==平移,即得在其他周期的图像: []b kT a kT x kT x f y ++∈-=,),(。 [][]? ??++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数: 设[][][]b a a b x b a x x f y ,,,),( --∈∈=或 ①若为奇函数;则称)(),()(x f y x f x f =-=- ②若为偶函数则称)()()(x f y x f x f ==-。 分段函数的奇偶性 3、函数的对称性: (1)中心对称即点对称: ①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++-- ③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。关于点与(函数),(0)2,2(0),b a y b x a F y x F =--= (2)轴对称:对称轴方程为:0=++C By Ax 。 ①))(2,)(2(),(),(2222//B A C By Ax B y B A C By Ax A x B y x B y x A +++-+++-=与点关于

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数. (2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f

9运用函数地单调性与奇偶性解抽象函数不等式(附加半节课)—学生版

教学容概要

教学容 【知识精讲】 一、常见的抽象函数模型: ① 正比例函数模型:()0,≠=k kx x f ┄┄┄()()()y f x f y x f ±=±。 ② 幂函数模型:()2 x x f =┄┄┄()()()y f x f xy f ?=;() ()y f x f y x f =??? ? ??。 ③ 指数函数模型:()x a x f =┄┄┄()()()y f x f y x f ?=+;()()() y f x f y x f = -。 ④ 对数函数模型:()x x f a log =┄┄()()()y f x f xy f +=;()()y f x f y x f -=??? ? ??。 ⑤ 三角函数模型:()x x f tan =┄┄┄()()()()() y f x f y f x f y x f ?-+= +1。 如何利用函数单调性解题是历年高考和模考的重点,其中利用函数单调性解不等式是一个重点中的难点,如何攻克这个难点呢?一个词:去壳。 二、奇偶函数的性质:

奇函数:(1)()()f x f x -=-; (2)若奇函数()f x 的定义域包含0,则(0)0f =; (3)图像关于原点对称; (4)y 轴左右两侧的单调性相同; 偶函数:(1)()()f x f x -=; (3)图像关于y 轴对称; (4)y 轴左右两侧的单调性相反; 三、函数单调性的逆用: 若()f x 在区间D 上递增,则1212()()f x f x x x .(1x 2,x D ∈). 四、不等式恒成立问题的解法 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 通过上面的等价转化,转换为函数求最值的问题。 【经典例题】

函数单调性奇偶性周期性和对称性的综合应用

函数单调性、奇偶性、周期性和对称性的综合应用 例1、设f (x )是定义在R 上的奇函数,且()x f y =的图象关于直线2 1=x 对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_0_______________. 【考点分析】本题考查函数的周期性 解析:()()00f f -=-得()00f =,假设()0f n = 因为点(n -,0)和点(1,0n +)关于12x =对称,所以()()()10f n f n f n +=-=-= 因此,对一切正整数n 都有:()0f n = 从而:()()()()()123450f f f f f ++++=。本题答案填写:0 例2、(2006福建卷)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x = 设63(),(),52a f b f ==5(),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 解:已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x = 设644()()()555a f f f ==-=-,311()()()222b f f f ==-=-,51()()22 c f f ==<0,∴c a b <<,选D. 例3、(安徽卷理)函数()f x 对于任意实数x 满足条件()() 12f x f x +=,若()15,f =-则()()5f f =__________。 【考点分析】本题考查函数的周期性与求函数值,中档题。 解析:由()()12f x f x +=得()() 14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5 f f f f f =-=-==--+。 【窥管之见】函数的周期性在高考考查中除了在三角函数中较为直接考查外,一 般都比较灵活。本题应直观理解()() 12f x f x += “只要加2,则变倒数,加两次则回原位” 则一通尽通也。 例4、设()f x 是()+∞∞-,上的奇函数,()()x f x f -=+2,当0≤x ≤1时,()x x f =,则f ()等于( ) A.0.5 B.-0.5 D.-

高一函数单调性奇偶性经典练习题

函数单调性奇偶性经典练习 一、单调性题型 高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主. (一)函数单调性的判断 函数单调性判断常用方法: 121212121212()()0()()()()0()()()()()()()()()()()()f x f x f x f x x x x x f x f x f x f x f x g x f x f x g x f x g x g x g x f x ->>??>Q 210x x ∴->,1(4)0x ->,2(4)0x -> 12()()f x f x ∴> 故函数()f x 在区间(4)+∞,上为减函数. 练习1 证明函数21 ()3 x f x x -=+在区间(3)-+∞,上为减函数(定义法) 练习2 证明函数2()f x x =2()3 -∞,上为增函数(定义法、快速判断法) 练习3 求函数3 ()2 x f x x -=+定义域,并求函数的单调增区间(定义法) 练习4 求函数()f x x =定义域,并求函数的单调减区间(定义法)

函数奇偶性与单调性

一、函数的奇偶性 奇偶性定义:设函数()()y f x x D =∈,任取x D ∈,有()()f x f x =-,则称函数()y f x =为偶函数; ()()f x f x =--,则称函数()y x =为奇函数. 性质:(1)函数的奇偶性是函数的整体性质,是对函数的整个定义域而言; (2)由()()()()()f x f x f x f x =-=--知,若,x D ∈则x D -∈,因此,函数()f x 的定义域D 关于原点对称是函数()f x 为偶(奇)函数的必要条件(非充分) (3)若0D ∈,则()00f =是()f x 为奇函数的必要条件(非充分) (4)常数函数()()f x c x R =∈一定()0f x =是偶函数;若0c =则()f x 既是偶函数又是奇函数;函数()f x 既是偶函数又是奇函数?()0f x =(x D ∈,其中D 是关于原点对称的任何一个非空数集) (5)奇偶函数的图像特征:函数()f x 是奇函数?函数()f x 图像关于原点对称; 函数()f x 是偶函数?函数()f x 图像关于y 轴对称. (6)奇偶函数的运算性质:设()()1f x x D ∈为奇函数,()()2g x x D ∈为偶函数,12,D D D =则在D 上有:

(7)多项式函数()230123n n f x a a x a x a x a x =++++为奇函数?偶次项系数全为0; 多项式函数()230123n n f x a a x a x a x a x =++++为偶函数?奇次项系数全为0. 二、函数的单调性 单调性定义(唯一证明方法):对于区间D 上的函数()f x ,在D 上任取两个1212,,,x x x x < 若()()120,f x f x -<称()f x 在区间D 上是增函数,区间D 成为函数()f x 的单调增区间; 若()()120,f x f x ->称()f x 在区间D 上是减函数,区间D 成为函数()f x 的单调减区间. 性质:(1)函数单调性是函数的局部性质,研究函数的单调性可以在定义域的某个区间(定义域的子集)上进行(而不需要在整个定义域上);函数的定义域可以有若干个增减性不同的单调区间;若函数()f x 在整个定义域上单调,则称()f x 为单调函数. (2)函数单调性二个等价形式: ① ()() ()121200f x f x x x ->?>;若()f x 在R 上单调递减,则________. (4)设12,,x x D ∈则()()()()1212(0)x x f x f x f x -->

专题:抽象函数的单调性与奇偶性的证明.

特殊模型 抽象函数 正比例函数f(x)=kx (k≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f (x)f(y) [或) y (f )x (f )y x (f = ] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y )=f(x )f(y) [) y (f )x (f )y x (f = -或 对数函数 f(x )=lo ga x (a 〉0且a≠1) f(xy)=f(x )+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x )=si nx f (x)=cosx f(x+T )=f(x ) 正切函数 f(x )=tanx )y (f )x (f 1)y (f )x (f )y x (f -+= + 余切函数 f(x)=co tx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 1。已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。 证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。 2.奇函数()f x 在定义域(-1,1)内递减,求满足2 (1)(1)0f m f m -+-<的实数m 的取值范围。 解:由2 (1)(1)0f m f m -+-<得2 (1)(1)f m f m -<--,∵()f x 为函数,∴2 (1)(1)f m f m -<- 又∵()f x 在(—1,1)内递减,∴2 21111110111m m m m m -<--? 3。如果()f x =2 ax bx c ++(a 〉0)对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小 解:对任意t 有(2)2)f t f t +=-∴x =2为抛物线y =2 ax bx c ++的对称轴 又∵其开口向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数 ∴f (3)〈f (4),∴f (2)〈f (1)〈f (4) 4。 已知函数f (x )对任意实数x,y ,均有f(x +y )=f (x )+f (y ),且当x >0时,f (x)>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。 分析:由题设可知,函数f (x )是的抽象函数,因此求函数f (x )的值域,关键在于研究它的单调性。 解:设,∵当 ,∴ , ∵, ∴ ,即,∴f (x )为增函数. 在条件中,令y =-x ,则,再令x =y=0,则f (0)=2 f (0),∴f (0)=0,故f(-x)=f (x ),f(x )为奇函数, ∴f (1)=-f (-1)=2,又f (-2)=2 f (-1)=-4, ∴f(x )的值域为[-4,2]。

函数单调性、奇偶性、周期性与对称性综合.doc

专项5函数单调性、奇偶性、周期性、对称性综合 有关函数的奇偶性、单调性、周期性和图像的综合问题,历来都是一个难点,并且几乎是必考的重点内容,它考察的 内容应该说是非常多的,综合性也是非常强的,而且不易想,因而,对很多同学來说,十分头疼,在这一章节内容上, 我们绝对要摒弃大量做题不顾总结的复习思路,基于此,我们从以下几个方面讲这部分内容。 第一个问题,就是对于“已知奇/偶函数一段定义域上的解析式,求另一段的解析式”这样的问题,最为基础题,同学 们一定要知道怎么解决这种问题,但是对于求确切的/(G )的问题,这里的。代指一个确切的常数,我们可以不求出另 一 ?段上的解析式,我们采取“进/退周期”的方式,什么意思呢?就是如果讣我们求的于(G )中的。不在己经解析式的 定义域上,对于比定义域右端点值大的,要根据周期定义每次减一个周期,逐步将其转化到已知解析式的定义域之上, 比如,题目让我们求/(13),我们通过分析发现该函数的周期为2,而我们只知道XG (0,2).上的解析式,那么我们就 可以“退周期”,即/(13) = /(2x6+l) = /(l),即只需要求出这个/(I)就是了,同理,对于比定义域小的,我们用 同样方法,可以“进周期”,求解相关问题。 第二个问题,我们必须要说这个周期的问题,周期其实在高中教材中只是在必修四三角函数中学了,但是函数中却经 常出现,而且不算是超纲内容,这一点需要大家知道,不能因为函数教材屮没有讲就认为不需要掌握,但是有一点需 要大家知道,那就是对于周期性,我们更多的是记住一些结论,推到这些结论是不要求的,因此,我们在这里总结这 些结论,希望大家都记住。 如果一个函数满足= + 则这个函数就是以。为一个周期的函数,这里要强调“一个周期”,事实上,弦/都 是这个函数的周期,也就是说/(x) = f(ka + x), /(x) = f(ka-x), /(x) = f(x-a),还有一?些有关周期的拓展定义: 第三个问题,是有关于图像的问题,特别是图像的做法,有很多是需要掌握对称性规律的,相关的对称性规律结论请 回顾复习专项4,专项4屮有比较基础的对称性总结函数关于兀轴、y 轴、坐标原点对称的规律;特别强调下列三种函 数l.f(x)l,/(lg(x)l),/(g(lxl)),这三种绝对值加到不同地方的函数图像本身的对称性规律要掌握好。 奇函数、偶函数、反函数和一些常见的函数,如对号函数等的对称性 对于耍求函数有几个零点或者两个函数有几个交点的问题,作图是最主耍的方法,作图的吋候,一定要按照我们学过 的函数图像的三种变换进行画图,从授基本的图形开始画,通过平移、对称一步一步的得到我们想要的函数图像,做 图的过程小,如果有带有绝对值,一定要想着使丿IJ 相应带有绝对值的作图规律,坚决不允许通过描点连线的方式进行 作图。 下面开启做题Z 旅,下面的这些题,淘汰、更换历经了很长时间,不论简单还是难度稍微大些,都是非常好的试题, 一定要认认真真完成,对于错题,还要进行总结分析。 1. /⑴为奇函数,g ⑴= /(x) + 9,g(2) = 3,则/(2)= _______________ 2. .f(x)为定义在/?上的奇函数,当xhO 时,/(Q = 2" + 2x + b ,则/(-1)= _____________ ①弘+沪_卍);②弘+沪命;③弘+沪 1 /(x ) ,则函数/(兀)的周期为2a 。

高中数学:函数单调性和奇偶性的综合练习及答案

高中数学:函数单调性和奇偶性的综合练习及答案 1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是() A.y=x3 B.y=|x|+1 C.y=-x2+1 D.y=2-|x| 2.f(x)=x2+|x|() A.是偶函数,在(-∞,+∞)上是增函数 B.是偶函数,在(-∞,+∞)上是减函数 C.不是偶函数,在(-∞,+∞)上是增函数 D.是偶函数,且在(0,+∞)是增函数 3.已知函数f(x)=3x-(x≠0),则函数() A.是奇函数,且在(0,+∞)上是减函数 B.是偶函数,且在(0,+∞)上是减函数 C.是奇函数,且在(0,+∞)上是增函数 D.是偶函数,且在(0,+∞)上是增函数 4.定义在R上偶函数f(x)在[1,2]上是增函数,且具有性质f(1+x)=f(1-x),则函数f(x)() A.在[-1,0]上是增函数 B.在[-1,-]上增函数,在(-,0]上是减函数 C.在[1,0]上是减函数 D.在[-1,-]上是减函数,在(-,0]上是增函数 5.f(x)是定义在R上的增函数,则下列结论一定正确的是() A.f(x)+f(-x)是偶函数且是增函数 B.f(x)+f(-x)是偶函数且是减函数 C.f(x)-f(-x)是奇函数且是增函数 D.f(x)-f(-x)是奇函数且是减函数 6.已知偶函数f(x)在区间[0,+∞)上的解析式为f(x)=x+1,下列大小关系正确的是() A.f(1)>f(2) B.f(1)>f(-2) C.f(-1)>f(-2) D.f(-1)

7.已知f(x)是偶函数,对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,则下列关系式中成立的是() A.fb>0,给出下列不等式 ①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)g(b)-g(-a);④f(a)-f(-b)

(整理)函数的奇偶性与单调性76929

函数的奇偶性与单调性 一.知识总结 1.函数的奇偶性(首先定义域必须关于原点对称) (1)为奇函数;为偶函数; (2)奇函数在原点有定义 (3)任一个定义域关于原点对称的函数一定可以表示成一个奇函数和一个偶函数之和 即(奇)(偶). 2.函数的单调性(注:①先确定定义域;②单调性证明一定要用定义) (1)定义:区间上任意两个值,若时有,称为 上增函数,若时有,称为上减函数. (2)奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反.判断函数单调性的方法:①定义法,即比差法;②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则. 3.周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段.求周期的重要方法:①定义法;②公式法;③图象法;④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a≠b,则T=2|a-b|.

二.例题精讲 【例1】已知定义域为的函数是奇函数. (Ⅰ)求的值; (Ⅱ)若对任意的,不等式恒成立,求的 取值范围. 解析:(Ⅰ)因为是奇函数,所以=0, 即 又由f(1)= -f(-1)知 (Ⅱ)由(Ⅰ)知.又由题设条件得: , 即:, 整理得 上式对一切均成立,

从而判别式 【例2】设函数在处取得极值-2,试用表示和,并求的单调区间. 解:依题意有而 故解得 从而。 令,得或。 由于在处取得极值, 故,即。 (1)若,即,则当时,; (2)当时,;当时,; 从而的单调增区间为; 单调减区间为

若,即,同上可得, 的单调增区间为;单调减区间为 【例3】(理)设函数,若对所有的,都有 成立,求实数的取值范围. (文)讨论函数的单调性 (理)解法一:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g′(x)=ln(x+1)+1-a 令g′(x)=0,解得x=e a-1-1, (i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数,又g(0)=0,所以对x≥0,都有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax. (ii)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)是减函数, 又g(0)=0,所以对0<x<e a-1-1,都有g(x)<g(0),即当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上,a的取值范围是(-∞,1]. 解法二:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)≥ax成立即为g(x)≥g(0)成立. 对函数g(x)求导数:g′(x)=ln(x+1)+1-a令g′(x)=0,解得x=e a

相关主题