搜档网
当前位置:搜档网 › 高中数学排列组合经典题型全面总结版

高中数学排列组合经典题型全面总结版

高中数学排列组合经典题型全面总结版
高中数学排列组合经典题型全面总结版

高中数学排列与组合

(一)典型分类讲解

一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.

解:由于末位和首位有特殊要求,应该优先安排,

先排末位共有

1

3C 然后排首位共有1

4C 最后排其它位置共有

34

A

由分步计数原理得1

1

3

434

288C C A =

练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?

二.相邻元素捆绑策略

例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元

素部进行自排。由分步计数原理可得共有

522522480A A A =种不同的排法

练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20

三.不相邻问题插空策略

例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,

第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种

46

A 不同的方法,由分步计数原理,节目的不同顺序共有54

56A A 种

练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30

四.定序问题倍缩空位插入策略

例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法

解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素

之间的全排列数,则共有不同排法种数是:

73

73/A A

(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有

47

A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4

7A 种方法。 思考:可以先让甲乙丙就坐吗?

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有方法

练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?5

10C

五.重排问题求幂策略

例5.把6名实习生分配到7个车间实习,共有多少种不同的分法

解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原

理共有6

7种不同的排法

练习题:

1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插

法的种数为 42 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法8

7 4

4

3

允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n

m 种

六.环排问题线排策略

例6. 8人围桌而坐,共有多少种坐法?

解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人

44A 并从此位置把圆形展成直线其余

7人共有

(8-1)!种排法即7!

练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120

七.多排问题直排策略

例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法

解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有

24A 种,再排后4个位置上的特殊元素丙有

14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215

A A A 种

前 排

练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相

邻,那么不同排法的种数是 346

八.排列组合混合问题先选后排策略

例8.有5个不同的小球,装入4个不同的盒,每盒至少装一个球,共有多少不同的装法.

解:第一步从5个球中选出2个组成复合元共有2

5C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒有4

4A 种方

法,根据分步计数原理装球的方法共有24

54C A

练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1

人参加,则不同的选法有 192 种

九.小集团问题先整体后局部策略

例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?

解:把1,5,2,4当作一个小集团与3排队共有

22A 种排法,再排小集团部共有22

22A A 种排法,由分步计数原理共有

222

222A A A 种排法练习题:

1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有列方式的种数为

254

254A A A

2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有

255

255A A A 种

十.元素相同问题隔板策略

例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?

解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额

分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有6

9C 种分法。

一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1

m n A n

一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.

七班

练习题:

1. 10个相同的球装5个盒中,每盒至少一有多少装法? 4

9C 2 .100x y z w +

++=求这个方程组的自然数解的组数 3

103

C

十一.正难则反总体淘汰策略

例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的

取法有多少种?

解:这问题中如果直接求不小于10的偶数很困难,

可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有

3个偶数的取法有35C ,只含有1个偶数的取法有1255C C ,和为偶数的取法共有12

3

555

C C C +。再淘汰和小于10的偶数共9种,符合条件的取法共有1

2

355

59C C C +-

练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在的

抽法有多少种?

十二.平均分组问题除法策略

例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?

解: 分三步取书得222

642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF ,若第一步取AB,第二步取CD,第三

步取EF 该分法记为(AB,CD,EF),则222

642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有

33

A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有22236423/C C C A 种分法。

练习题:

1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?(5

4

4

2

1384

2/C C C A )

2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法(1540)

3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______(2

2

2

24262/

90C C A A =)

十三. 合理分类与分步策略

例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法

解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究只会唱的5人中没有人选上唱

歌人员共有2233C C 种,只会唱的5人中只有1人选上唱歌人员112

534C C C 种,只会唱的5人中只有2人选上唱歌人员有

2255C C 种,由分类计数原理共有 22112

22335

3455C C C C C C C ++种。 1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有34 2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27) 本题还有如下分类标准:

*以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果 将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为11

m n C --

有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰. 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n n A (n 为均分的组数)避免重复计数。

十四.构造模型策略

例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2

盏,求满足条件的关灯方法有多少种? 解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有3

5C 种

十五.实际操作穷举策略

例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法

解:从5个球中取出2个与盒子对号有2

5C 种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球, 3,4,5

号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有2

52C 种

号盒

练习题:

1.同一寝室4人,每人写一贺年卡集中起来,然后每人各拿一别人的贺年卡,则四贺年卡不同的分配方式有多少种? (9)

2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种

5

4

3

21

十六. 分解与合成策略

例16. 30030能被多少个不同的偶数整除

分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×11×13,依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数为:1

2345

55555C C C C C ++++

练习:正方体的8个顶点可连成多少对异面直线

解:我们先从8个顶点中任取4个顶点构成四体共有体共4

81258C -=,每个四面体有3对异面直线,正方体中的8个顶点可连

成358174?=对异面直线

十七.化归策略

例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种? 解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×3方队中选3人的方法有111

321C C C 种。再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列有33

55C C 选法所以从5×5方阵选不在同一行也不在同一列的3人有

3311155321C C C C C 选法。

练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最短路径有多少种?(37

35C

=)

B

A

十八.数字排序问题查字典策略

例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数? 对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果

分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案 ,每个比较复杂的问题都要用到这种解题策略

处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解

决找到解题方法,从而进下一步解决原来的问题

解:297221

122334455=++++=A A A A A N

练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第

71个数是 3140

十九.树图策略

例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有______

练习: 分别编有1,2,3,4,5的人与椅,其中i 号人不坐i 号椅(54321,,,,i =)的不同坐法有多少种?44=N

二十.复杂分类问题表格策略

例20.有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种

不同的取法

二十一:住店法策略

解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.

例21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有. 分析:因同一学生可以同时夺得n 项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得75

种.

排列组合易错题正误解析

1没有理解两个基本原理出错

排列组合问题基于两个基本计数原理,即加法原理和乘法原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提. 例1从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有种.

误解:因为可以取2台原装与3台组装计算机或是3台原装与2台组装计算机,所以只有2种取法.

错因分析:误解的原因在于没有意识到“选取2台原装与3台组装计算机或是3台原装与2台组装计算机”是完成任务的两“类”办法,每类办法中都还有不同的取法.

正解:由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意选取2台,有2

6C 种方法;第二步是在组装计

算机任意选取3台,有35C 种方法,据乘法原理共有3526C C ?种方法.同理,完成第二类办法中有2

536C C ?种方法.据加法原理完成

全部的选取过程共有+?3526C C 3502

536=?C C 种方法.

例2 在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )种.

(A )3

4A (B )34 (C )4

3 (D )34C

误解:把四个冠军,排在甲、乙、丙三个位置上,选A .

正解:四项比赛的冠军依次在甲、乙、丙三人中选取,每项冠军都有3种选取方法,由乘法原理共有4

33333=???种. 说明:本题还有同学这样误解,甲乙丙夺冠均有四种情况,由乘法原理得34.这是由于没有考虑到某项冠军一旦被一人夺得后,其他人就不再有4种夺冠可能. 2判断不出是排列还是组合出错

在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合. 例3 有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?

误解:因为是8个小球的全排列,所以共有8

8A 种方法.

错因分析:误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法. 正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这

3个红球完全相同,所以没有顺序,是组合问题.这样共有:563

8=C 排法.

3重复计算出错

在排列组合中常会遇到元素分配问题、平均分组问题等,这些问题要注意避免重复计数,产生错误。 例45本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为( )

(A )480 种 (B )240种 (C )120种 (D )96种

误解:先从5本书中取4本分给4个人,有45A 种方法,剩下的1本书可以给任意一个人有4种分法,共有48044

5=?A 种不同

的分法,选A .

错因分析:设5本书为a 、b 、c 、d 、e ,四个人为甲、乙、丙、丁.按照上述分法可能如下的表1和表2:

表1是甲首先分得a 、乙分得b 、丙分得c 、丁分得d ,最后一本书e 给甲的情况;表2是甲首先分得e 、乙分得b 、丙分得c 、丁分得d ,最后一本书a 给甲的情况.这两种情况是完全相同的,而在误解中计算成了不同的情况。正好重复了一次.

正解:首先把5本书转化成4本书,然后分给4个人.第一步:从5本书中任意取出2本捆绑成一本书,有2

5C 种方法;第二

步:再把4本书分给4个学生,有44A 种方法.由乘法原理,共有?25C 2404

4=A 种方法,故选B .

例5 某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有( )种. (A )5040 (B )1260 (C )210 (D )630

误解:第一个人先挑选2天,第二个人再挑选2天,剩下的3天给第三个人,这三个人再进行全排列.共有:12603

32527=A C C ,

选B .

错因分析:这里是均匀分组问题.比如:第一人挑选的是周一、周二,第二人挑选的是周三、周四;也可能是第一个人挑选的是

周三、周四,第二人挑选的是周一、周二,所以在全排列的过程中就重复计算了.正解:6302

33

2527=A C C 种.

4遗漏计算出错

在排列组合问题中还可能由于考虑问题不够全面,因为遗漏某些情况,而出错。 例6 用数字0,1,2,3,4组成没有重复数字的比1000大的奇数共有( ) (A )36个 (B )48个 (C )66个 (D )72个

误解:如右图,最后一位只能是1或3有两种取法,又因为第1位不能是0,在最后一位取定后只有3种取

法,剩下3个数排中间两个位置有2

3A 种排法,共有36322

3=??A 个.

错因分析:误解只考虑了四位数的情况,而比1000大的奇数还可能是五位数.

正解:任一个五位的奇数都符合要求,共有36323

3=??A 个,再由前面分析四位数个数和五位数个数之和共有72个,选D .

5忽视题设条件出错

在解决排列组合问题时一定要注意题目中的每一句话甚至每一个字和符号,不然就可能多解或者漏解. 例7 如图,一个地区分为5

种颜色可供选择,则不同的着色方法共有种.(以数字作答)

误解:先着色第一区域,有4种方法,剩下3种颜色涂四个区域,即有一种颜色涂相对的

两块区域,有1222

213=??A C 种,由乘法原理共有:48124=?种.

错因分析:没有看清题设“有4种颜色可供选择..

”,不一定需要4种颜色全部使用,用3种也可以完成任务. 正解:当使用四种颜色时,由前面的误解知有48种着色方法;当仅使用三种颜色时:从4种颜色中选取3种有3

4C 种方法,先着色第一区域,有3种方法,剩下2种颜色涂四个区域,只能是一种颜色涂第2、4区域,另一种颜色涂第3、5区域,有2种着色

方法,由乘法原理有24233

4=??C 种.综上共有:

722448=+种.

例8 已知02

=-b ax

是关于x 的一元二次方程,其中a 、}4,3,2,1{∈b ,求解集不同的一元二次方程的个数.

误解:从集合}4,3,2,1{中任意取两个元素作为a 、b ,方程有24A 个,当a 、b 取同一个数时方程有1个,共有1312

4=+A 个.

错因分析:误解中没有注意到题设中:“求解集不同....

的……”所以在上述解法中要去掉同解情况,由于?

??==???==42

21b a b a 和同解、

乙 丙 丁 a 甲 e

d

c b 表1

丙 丁 a

甲 e d

c b 表

2

相关主题