搜档网
当前位置:搜档网 › 1151差压变送器电路原理图

1151差压变送器电路原理图

1151差压变送器电路原理图

差压变送器工作原理及常见故障分析

差压变送器工作原理及常见故障分析 差压变送器工作原理及常见故障分析 差压变送器在工业自动化生产中对压力、压差流量的测最应用愈见广泛,生产中遇到的问题也越来越多,故障的及时判定分析和处理,对正在进行的生产来说是至关重要的。本文介绍日常维护中的经验和故障判定分析方法,供参考。 一、差压变送器工作原理 来自双侧导压管的差压直接作用于变送器传感器双侧隔离膜片上,通过膜片内的密封液传导至洲量元件上,测最元件将测得的差压信号转换为与之对应的电信号传递给转换器,经过放大等处理变为标准电信号输出。差压变送器的几种应用测最方式: 1 .与节流元件相结合,利用节流元件的前后产生的差压值测量液体流量. 2 .利用液体自身重力产生的压力差,测是液体的高度。 3 .直接测量不同管道、魄休液体的压力差值。 二、差压变送器故障诊断方法 除了回顾故障发生前的打火、冒烟、异味、供电变化、雷击、潮湿、误操作、误维修等情况;以及观察回路的外部损伤、导压管的泄漏,回路的过热,供电开关状态等现象外,还应通过检测来诊断故障。 1 .断路检侧:将怀疑有故障的部分与其他部分分割开来,查看故障是否消失,如果消失,则可确定故障在此处。否则可进行下一步查找,如:智能差压变送器不能正常Ha 性远程通讯,可将电源从仪表本体中断开 用现场另加电源的方法为变送器通电进行通讯,以查看是否叠加有约Zk - HZ 的电磁信号而干扰通讯。 2 .短接检测:在保证安全的情况下,将相关部分回路直接短接,如:差压变送器输出值偏小,可将导压管断开,从一次取压阀外将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路有无堵、漏及连通性。 3 .替换检测:更换怀疑有故障的部分,判断故障部位。如:怀疑变送器电路板发生故障,可临时更换一块,以确定原因。 4 .分部检侧:将测皿回路分割成几个部分(如:供电电源、信号输出、信号变送、信号检测),按各部分分别检查,由简至繁,由表及里,缩小范围,找出故障位置。 三、常见故障检修 1 .输出过大的可能原因和解决方法: ( l )导压管。检查导压管是否泄漏或堵塞;检查截止阀是否全开;检查气体导压管内是否有液体,液体导压管内是否有气休;检查变送器压力容室内有无沉积物. ( 2 )变送器的电气连接。检查变送器的传感器组件连接情况.保证接插件接触处清洁;检查8 号插针是否可靠接表壳地. . ( 3 )变送器电路故障。用备用电路板代换检查、判断有故障的电路板及更换有故障的电路板. ( 4 )检查电源的输出是否符合所需的电压值. 2 .输出过小或无输出的可能原因和解决方法: ( 1 )导压管。检查导压管是否泄漏或堵塞;检查液体导压管内是否有气体;检查变送器压力容室内有无沉积物;检查截止阀是否开全,平衡阀是否关严。 ( 2 )变送器的电气连接。检查变送器传感器组件的引出线是否短接;保证接插件接触处清洁;检查各调节螺钉是否在控制范围内。

差压变送器的校验步骤

差压变送器的校验步骤 差压变送器在工厂有广泛的应用,为保证其正常运行及准确性,定期检查、校准是很有必要的。现介绍一种不用拆除导压管就进行现场校准的方法。 一.准备工作 我们知道差压变送器在应用中是与导压管相连接的,通常的做法,需要把导压管和差压变送器的接头拆开,再接入压力源进行校准。这样是很麻烦的,并且工作和劳动强度大,最担心的是拆装接头时把导压管扳断或出现泄漏问题。我们知道不管什么型号的差压变送器,其正、负压室都有排气、排液阀或旋塞;这就为我们现场校准差压变送器提供了方便,也就是说不用拆除导压管就可校准差压变送器。为此dlr加工制作了与排气、排液阀或旋塞相同螺纹的接头(又称为奶嘴),如图所示。 对差压变送器进行校准时,先把三阀组的正、负阀门关闭,打开平衡阀门,然后旋松排气、排液阀或旋塞放空,然后用自制的接头来代替接正压室的排气、排液阀或旋塞;而负压室则保持旋松状态,使其通大气。压力源通过胶皮管与自制接头相连接,关闭平衡阀门,并检查气路密封情况,然后把电流表(电压表)、手操器接入变送器输出电路中,通电预热后开始校准。 二.常规差压变送器的校准 先将阻尼调至零状态,先调零点,然后加满度压力调满量程,使输出为 20mA,在现场调校讲的是快,在此介绍零点、量程的快速调校法。调零点时对满度几乎没有影响,但调满度时对零点有影响,在不带迁移时其影响约为量程调整量的1/5,即量程向上调整1mA,零点将向上移动约 0."2mA,反之亦然。例如: 输入满量程压力为100Kpa,该读数为 19."900mA,调量程电位器使输出为 19."900+( 20."000-

19."900)* 1."25= 20."025m A.量程增加 0."125mA,则零点增加1/5* 0."125= 0." 025."调零点电位器使输出为 20."000m A.零点和满量程调校正常后,再检查中间各刻度,看其是否超差?必要时进行微调。然后进行迁移、线性、阻尼的调整工作。 三.智能差压变送器的校准 用上述的常规方法对智能变送器进行校准是不行的,因为这是由HART变送器结构原理所决定了。因为智能变送器在输入压力源和产生的4-20mA电流信号之间,除机械、电路外,还有微处理芯片对输入数据的运算工作。因此调校与常规方法有所区别。 实际上厂家对智能变送器的校准也是有说明的,如ABB的变送器,对校准就有: “设定量程”、“重定量程”、“微调”之分。其中“设定量程”操作主要是通过LRV.URV的数字设定来完成配置工作,而“重定量程”操作则要求将变送器连接到标准压力源上,通过一系列指令引导,由变送器直接感应实际压力并对数值进行设置。而量程的初始、最终设置直接取决于真实的压力输入值。但要看到尽管变送器的模拟输出与所用的输入值关系正确,但过程值的数字读数显示的数值会略有不同,这可通过微调项来进行校准。由于各部分既要单独调校又必需要联调,因此实际校准时可按以下步骤进行:

压力变送器的工作原理

压力变送器的工作原理 压力变送器的工作原理 压力变送器主要由测压元件传感器(也称作压力传感器)、放大电路和支持结构件三类组成。它能将测压元件传感器测量到的气体、液体等物理压力参数变化转换成电信号(如4~20mA等),以提供指示报警仪、记载仪、调理器等二次仪表进行显示、指示和调整。 压力变送器用于测量液体、气体或蒸汽的液位、密度和压力,然后转换为成4~20mA 信号输出。 压差变送器也称差压变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力差信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 差压变送器根据测压范围可分成一般压力变送器(0.001MPa~20MPA)和微差压变送器(0~30kPa)两种。 差压变送器的测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的 电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。 压力传感器工作原理 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1 、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式

压力和差压变送器详细使用说明

压力和差压变送器详细使用说明 (一)差压变送器原理与使用 本节根据实际使用中的差压变送器主要介绍电容式差压变送器。 1. 差压变送器原理 压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。 差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。 图1.1 测量转换电路 图1.2 差动电容结构 差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。中心可动极板与两侧固定极板构成两个平面型电容H C和L C。可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。 2. 变送器的使用 (1)表压压力变送器的方向 低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。图1.3为低压侧压力口。 图1.3 低压侧压力口 (2)电气接线 ①拆下标记“FIELD TERMINALS”电子外壳。 ②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。应使用屏蔽的双绞线以获得最佳的测量效果,为了保证正确通讯,应使用24AWG或更高的电缆线。 ③用导管塞将变送器壳体上未使用的导管接口密封。 ④重新拧上表盖。 (3)电子室旋转 电子室可以旋转以便数字显示位于最好的观察位置。旋转时,先松开壳体旋转固定螺钉。 3. 投运和零点校验

变送器的工作原理

常见变送器的工作原理 常见变送器的工作原理 作者:未知 文章来源:网络 点击数: 463 更新时间:2009-5-7 传感器和变送器在仪器、仪表和工业自动化领域中起着举足轻重的作用。与传感器不同,变送器除了能将非电量转换成可测量的电量外,一般还具有一定的放大作用。本文简单地介绍了各类变送器的特点,以供使用者选用。 一、一体化温度变送器 一体化温度变送器一般由测温探头(热电偶或热电阻传感器)和两线制固体电子单元组成。采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的变送器。一体化温度变送器一般分为热电阻和热电偶型两种类型。 热电阻温度变送器是由基准单元、R/V 转换单元、线性电路、反接保护、限流保护、V/I 转换单元等组成。测温热电阻信号转换放大后,再由线性电路对温度与电阻的非线性关系进行补偿,经V/I 转换电路后输出一个与被测温度成线性关系的4~20mA 的恒流信号。 热电偶温度变送器一般由基准源、冷端补偿、放大单元、线性化处理、V/I 转换、断偶处理、反接保护、限流保护等电路单元组成。它是将热电偶产生的热电势经冷端补偿放大后,再帽由线性电路消除热电势与温度的非线性误差,最后放大转换为4~20mA 电流输出信号。为防止热电偶测量中由于电偶断丝而使控温失效造成事故,变送器中还设有断电保护电路。当热电偶断丝或接解不良时,变送器会输出最大值(28mA )以使仪表切断电源。 一体化温度变送器具有结构简单、节省引线、输出信号大、抗干扰能力强、线性好、显示仪表简单、固体模块抗震防潮、有反接保护和限流保护、工作可靠等优点。 一体化温度变送器的输出为统一的4~20mA 信号;可与微机系统或其它常规仪表匹配使用。也可用户要求做成防爆型或防火型测量仪表。 二、压力变送器 压力变送器也称差变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 压力变送器的测量原理图如图3所示。其测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm 级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV 级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV 级的电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。 压力变送器根据测压范围可分成一般压力变送器(0.001MPa ~20MP3)和微差压变送器(0~30kPa )两种。 三、液位变送器 1、浮球式液位变送器 浮球式液位变送器由磁性浮球、测量导管、信号单元、电子单元、接线盒及安装件组成。

压力变送器的原理安装和使用

压力变送器的原理安装和 使用 This model paper was revised by the Standardization Office on December 10, 2020

压力变送器的安装及使用 压力是重要的工业参数之一, 正确测量和控制压力对保证生产工艺过程的安全性和经济性有重要意义。压力及差压的测量还广泛地应用在流量和液位的测量中。压力变送器的任务是将检测出来的非电量(物理量)大小转换为相应的电信号,传输到显示仪表中进行监视和控制,将非电量转换为电量的方法有: 1电容式压力变送器 2扩散硅压阻变送器 3电感式变送器 4振弦式变送器 20世纪80年代中末期,国内开始引进国外生产的压力变送器,主要是非智能的,在选购变送器时,要根据生产工艺过程的不同压力检测点的压力,来选择不同压力变送器的量程,由于被测压力点数量多,订货时,所定压力变送器的规格多,同时,在备件上造成很大的资金积压。由于早期的压力变送器没有微处理器进行各种性能的补偿,容易受到环境的影响,造成仪表的漂移和测量不准确。 美国霍尼韦尔(HONEYWELL)公司于1983年独家率先向全世界推出智能化现场仪表ST3000 100系列全智能压力变送器,这是对传统现场仪表的一次深刻变革!它为工业自动化仪表及其系统应用,向更高层次的发展奠定了基础,全智能变送器的问世,开创了现场仪表的新纪元。 美国霍尼韦尔公司在92年4月向中国推出了ST3000/900系列全智能变送器,它具有数字式全智能变送器的全部优越性能,而价格接近传统模拟式常规变送器。97年底,霍尼韦尔公司又推出可测高温的压力变送器,现场环境温度最高可达150℃。通过使用专用的手操器,可以对运行中的变送器进行零点、量程、变送器的工作温度、使用单位等很多参

差压式变送器调试方法

差压变送器在工厂有广泛的应用,为保证其正常运行及准确性,定期检查、校准是很有必要的。 现介绍一种不用拆除导压管就进行现场校准的方法。 一.准备工作: 我们知道差压变送器在应用中是与导压管相连接的,通常的做法,需要把导压管和差压变送器的接头拆开,再接入压力源进行校准。这样是很麻烦的,并且工作和劳动强度大,最担心的是拆装接头时把导压管扳断或出现泄漏问题。我们知道不管什么型号的差压变送器,其正、负压室都有排气、排液阀或旋塞;这就为我们现场校准差压变送器提供了方便,也就是说不用拆除导压管就可校准差压变送器。对差压变送器进行校准时,先把三阀组的正、负阀门关闭,打开平衡阀门,然后旋松排气、排液阀或旋塞放空,然后用自制的接头来代替接正压室的排气、排液阀或旋塞;而负压室则保持旋松状态,使其通大气。压力源通过胶皮管与自制接头相连接,关闭平衡阀门,并检查气路密封情况,然后把电流表(电压表)、手操器接入变送器输出电路中,通电预热后开始校准。 二.常规差压变送器的校准: 先将阻尼调至零状态,先调零点,然后加满度压力调满量程,使输出为 20mA,在现场调校讲的是快,在此介绍零点、量程的快速调校法。调零点时对满度几乎没有影响,但调满度时对零点有影响,在不带迁移时其影响约为量程调整量的1/5,即量程向上调整1mA,零点将向上移动约0.2mA,反之亦然。例如: 输入满量程压力为100Kpa,该读数为19.900mA,调量程电位器使输出为19.900+(20.000-19.900)*1.25=20.025mA.量程增加0.125mA,则零点增加1/5* 0.125=0.025.调零点电位器使输出为20.000mA.零点和满量程调校正常后,再检查中间各刻度,看其是否超差?必要时进行微调。然后进行迁移、线性、阻尼的调整工作。 三.智能差压变送器的校准

压力变送器工作原理

罗斯蒙特3051 智能型压力变送器 工作原理 工作时,高、低压侧的隔离膜片和灌充液将过程压力传递给中心的灌充液,中心灌充液将压力传递到δ- 室传感器中心的传感膜片上。传感膜片是一个张紧的弹性元件,其位移随所受压差而变化(对于GP表压变送器,大气压力如同施加传感膜片的低压则一样,AP绝压变送器低压侧始终保持一个参考电压)。传感膜片的最大位移量为0.004英寸(0.10毫米)且位移量与压力成正比,两侧的电容极板检测传感膜片的位置。传感膜片和电容极板之间的电容的差值被转换成相应的电流,电压或数字HATR输出信号。 线路板模块 变送器线路板模块采用专用集成电路(ASICS)和表面封装技术。 线路块接收来自传感器膜头的数字信号和修正系数后,对信号进行修正和显性化。线路板模块的输出部分将数字信号转换成一个模拟信号输出,并可与HATR手操器通讯。可选的夜晶表头插入线路板上,可

显示以压力工程单位或百分比为单位的数字输出。夜晶表头适用于标准变送器和低功耗变送器。 数据组态 组态数据存贮在变送器线路板上的永久性EEPROM存贮器中。变送器断电数据仍能保存,因此变送器一通电力可以工作。 数/模转换和信号传送 过程变量以数字方式存贮,可进行精确的修正和工程单位转换,之后经修正的数据被转换成一个模拟输出信号。HATR手操器存取传感器的数字信号,而不需要数/模转换从而达到更高精度。 通讯模式 1151型智能变送器采用HATR协议通讯,该协议采用工业标准bell202频移键控(FSK)技术,将一个高频信号叠加在电流输出信号上实现远程通讯。而不影响回路的一致性。 软件功能 HATR协议使用户很容易对1151智能型压力变送器进行组态,测试和具体设置。 组态 1151智能型可以很容易地用HATR手操器进行组态。组态包括两个方面。第一,对变送器可操作参数的设置,包括设置:·零点和量程设置点 ·线性或平方根输出 ·阻尼

PT100温度变送器的设计

课程设计 课程名称测控电路 题目名称 Pt100温度变送器设计 学生学院物理与信息工程学院 专业班级测控技术与仪器 班号 B08072021 学生组员张文焱胡聪罗成 指导教师范志顺 2011-1-5

课 程 设 计报告 一、实验要求: 设计一个用热电阻Pt100制作的温度变送器,要求其温度变化范围为0℃-400℃,输出为0.3V-1.5V,精度为5%,在此基础上构成一个输出为4mA-20mA 的电流源。 二、实验原理: 1.同相放大及差分放大部分: Uo 2.电压跟随器: ) 21 (9) 49(21214 99 112212R R R R R R Uo R R R Uo R R R +?+?? =+? =+?则:对同相放大器有: 11 101222 11R R R Uo +? =-对电压跟随器有:) 21(6 8 6 8578577 16 57712Uo Uo R R Uo R R R R R Uo R R R Uo R R R R Uo Uo -?==-+?=+?-则:因对差分放大电路有: Uo

3.电流源电路: Uo 16 100)1317(171412) 100(1214 12100R i R R R R R i Uo R Uo R R i Uo i -++-- + +-= 三、元件清单: 四、资料准备: 热电阻的测温原理与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)] 。式中,Rt 为温度t 时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 Rt=AeB/t 。式中Rt 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上 ),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。工业上常用金属热电阻从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数、电阻率要大(在同样灵敏度下减小传感器

PT100温度传感器测温详解

一种精密的热电阻测温方法 摘要: 本文介绍了一种采用恒压分压法精密测量三线制热电阻阻值的方法,对于Pt100热电阻,检测分辨率可以达到0.005W。同时采用计算的方法,能够使获得的温度准确度达到0.05℃。 关键词: 恒压;三线制;热电阻;精度 引言 温度参数是目前工业生产中最常用的生产过程参数之一,对温度的测量虽然有许多不同的方法,但热电阻凭借其优良的特性成为目前工业上温度测量中应用最广泛普遍的传感元件之一。由于金属铂优良的物理特性,使它成为制造热电阻的首选材料。它能够制造成体积微小的薄膜形式,或者缠绕在陶瓷和云母基板上制造出高稳定性的温度传感器,能够适应各种复杂的测温场合。一般在-200℃至+400℃的温度范围内,Pt100热电阻温度传感器是首选测温元件。 目前在各种检验设备中,如各种检验用恒温槽,都要求设备能够提供高精度的温度指示,这就要求作到对温度的高精度测量。又如,在配置Pt100热电阻传感器的智能型二线制一体化温度变送器中,也要求对温度有高精度的测量,这样才能够保证变送器在全量程范围内的高精度。为了消除导线电阻对测量的影响,在实验室和工业应用中,都是采用三线制引线接法来消除导线电阻影响的。本文介绍的就是一种精密测量三线制热电阻阻值的方案,同时提供了高精度的温度转换方法。 三线制热电阻阻值检测电路 图1是一个采用恒压分压法精密测量三线制热电阻阻值的检测电路,实际是一个高精度温度变送器的检测部分。它采用AD7705作为模数转换器,系统控制CPU采用P87LPC764,整体系统是一个低功耗系统。 图1中,电阻体RT接成了三线制,RL为三根导线电阻,一般每根导线电阻在5W之内。电阻体与测量电路以A、B、C三点连接,实际上是与电阻R 构成了对电压VREF的分压电路。一般情况下,为避免驱动电流导致电阻体发热引起测量误差,电流应该小于3mA,这里笔者通过选择VREF和R,使驱动热电阻的电流约为0.6 mA左右。当在VREF和R是已知的前提下,

PT100转4-20mA、0-5V、0-10V热电阻温度变送器

一进一出温度信号隔离器 主要特性: ⑴输入:Pt100(-200~+600℃)(范围可选择)也可以选择输入为Pt1000,Pt10,Cu50,Cu100等等 ⑵输出信号:4~20mA,0~5V,0-10V等标准信号 ⑶辅助电源:5V、9V、12V、15V或24V直流单电源供电 ⑷工业级温度范围:-40~+85℃⑸精度等级:0.2级(FSR%,相对于温度) ⑹内含线性化和长线补偿功能⑺隔离耐压:2500VDC(1mA,60S),2路输入/2路输出/电源五隔离 ⑻安装方式:DIN35导轨安装 ⑼外形尺寸:79x69.5x25mm 概述: 该产品输入、输出和辅助电源之间是完全隔离(三隔离),可以承受2500VDC的隔离耐压。产品主要用于Pt100,Pt1000,Pt10,Cu50,Cu100等传感器信号的隔离与变送(传感器需用户自己配),在工业上主要用于测量-200~+600℃的温度。该变送器内有线性化和长线补偿功能,出厂时按照Pt100国标分度表校正,完全达到0.2级精度要求。 产品采用DIN35国际标准导轨安装方式,体积小、精度高,性能稳定、性价比高,可以广泛应用在石油、化工、电力、仪器仪表和工业控制等行业。 温度信号隔离变送器使用非常方便,仅需接好线,即可实现热电阻信号的隔离变送。 产品选型: DIN1x1SAR-Z□-T□-P□-I/U□ 选型举例1: 输入:Pt100温度范围:-20~100℃供电电压:24V输出:4-20mA 型号:DIN1x1SAR-Z1-T1-P1-I4 选型举例2: 输入:Pt1000温度范围:0~200℃供电电压:12V输出:0-10V 型号:DIN1x1SAR-Z5-T4-P2-U2 通用参数: 精度-------0.2%(相对于温度) 输入-------三线、四线或两线热电阻信号,可选择Pt100,Pt1000,Pt10,Cu50,Cu100等热电阻。 订购时需选择一个温度范围来和输出相对应。 输出-------标准的电压或电流信号。也可由用户自定义。 响应时间-------≤100mS 辅助电源-------DC5V、9V、12V、15V、24V

Pt100铂热电阻的温度变送器设计与实现

Pt100铂热电阻的温度变送器设计与实现 摘要:针对空压机专用变频器系统中温度检测的要求,设计并实现了一种三线制Pt100温度传感器。利用Pt100铂热 电阻的电阻-温度函数关系,将温度信号转换为电压信号,经过两级放大电路对电压信号进行放大,再将电压信号转换为标准 的电流信号输出。在A/D温度采集时,利用精密电流电压转换芯片,将电流信号转换为标准的电压信号。实践证明,该传感 器有较高的稳定性和灵活性,性能良好且容易实现,成本低,值得推广应用。 关键词:Pt100;三线制;传感器;电压/电流转换 温度是表征物体冷热程度的物理量,在工业生产、生活应用和科学研究中是一个非常重要的参数[1]。在工业控制过程中需要对控制对象进行温度监测,防止控制对象由于温度过高而损坏,因此温度的实时监测就显得更加重要。对温度的实时监测有利于对控制对象的及时检查、保护,并及时调整温度的高低。根据控制系统设计要求的不同,温度监测系统的设计也有所变化,有采用集成芯片的,也有采用恒流源器件和恒压源器件的。因铂热电阻具有测量范围大,稳定性好,示值复现性高和耐氧化等优点,该系统采用Pt100铂热电阻作为温度感测元件,进行温度传感器的设计与实现[2-3]。在设计中,将电压信号转换为标准的4~20 mA电流信号,既省去昂贵的补偿导线,又提高了信号长距离传送过程中的抗干扰能力。 1Pt100铂热电阻概述[2-5] 电阻值随温度的变化程度称为温漂系数,大部分金属材料的温漂系数是正数,而且许多纯金属材料的温漂系数在一定温度范围内保持恒定,具体应用中选用哪一种金属材料(铂、铜、镍等)取决于被测温度的范围。金属铂(Pt)电阻的温度响应特性较好,成本较低,可测量温度较高;它在0℃的额定电阻值是100Ω,是一种标准化器件。工作温度范围:-200~+850℃,考虑到工业的实际应用,本系统设计的测量范围为0~120℃。因为热敏电阻的阻值和温度呈正比关系,只需知道流过该电阻的电流就可以得到与温度成正比的输出电压。根据已知的电阻-温度关系[6],可以计算出被测量的温度值。Pt100温度感测器是一种以铂(Pt)做成的电阻式温度检测器,其电阻和温度变化的关系式为: Rt= R0[1+A T+BT2+C(t-100)T3] (1) 式中:R0为0℃下的电阻值,R0=100Ω;T为摄氏温度。因此,用铂做成的电阻式温度检测器,又称为Pt100温度传感器,即: A =3.908 3×10-3, B =-5.775×10-7, C =0, t≥0℃ -4.183×10-12, t <0℃ 显然,电阻与温度呈非线性关系,但当测量精度要求较低时,电阻值与温度的函数关系可以简化为[6]: Rt= R0(1+AT) (2) 实际应用中,Pt100的连接方式可以为两线制、三线制或四线制。该系统采用三线制接法即可满足要求。二线制连接时,由于引线电阻与Pt100串联,增大了电阻,会影响测量;三线制连

压力和差压变送器详细详解使用说明书样本

压力和差压变送器详细使用说明 ( 一) 差压变送器原理与使用 本节根据实际使用中的差压变送器主要介绍电容式差压变送器。 1. 差压变送器原理 压力和差压变送器作为过程控制系统的检测变换部分, 将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流), 作为显示仪表、运算器和调节器的输入信号, 以实现生产过程的连续检测和自动控制。 差动电容式压力变送器由测量部分和转换放大电路组成, 如图1.1所示。 图1.1 测量转换电路

图1.2 差动电容结构差动电容式压力变送器的测量部分常采用差动电容结构, 如图 1.2所示。中心可动极板与两侧固定极板构成两个平面型电容 H C和L C。可动极板与两侧固定极板形成两个感压腔室, 介质压力是经过两个腔室中的填充液作用到中心可动极板。一般采用硅油等理想液体作为填充液, 被测介质大多为气体或液体。隔离膜片的作用既传递压力, 又避免电容极板受损。 当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时, 经过腔室内硅油液体传递到中心测量膜片上, 中心感压膜片产生位移, 使可动极板和左右两个极板之间的间距不相对, 形成差动电容, 若不考虑边缘电场影响, 该差动电容可看作平板电容。差动电容的相对变化值与被测压力成正比, 与填充液的介电常数无关, 从原理上消除了介电常数的变化给测量带来的误差。 2. 变送器的使用 ( 1) 表压压力变送器的方向 低压侧压力口( 大气压参考端) 位于表压压力变送器的脖颈处,

在电子外壳的后面。此压力口的通道位于外壳和压力传感器之间, 在变送器上360°环绕。保持通道的畅通, 包括但不限于由于安装变送器时产生的喷漆, 灰尘和润滑脂, 以至于保证过程通畅。图1.3为低压侧压力口。 图1.3 低压侧压力口 ( 2) 电气接线 ①拆下标记”FIELD TERMINALS”电子外壳。 ②将正极导线接到”PWR/COMN”接线端子上, 负极导线接 到”-”接线端子 上。注意不得将带电信号线与测试端子( test) 相连, 因通电将损坏测试线路中的测试二极管。应使用屏蔽的双绞线以获得最佳的测量效果, 为了保证正确通讯, 应使用24AWG或更高的电缆线。 ③用导管塞将变送器壳体上未使用的导管接口密封。 ④重新拧上表盖。 ( 3) 电子室旋转 电子室能够旋转以便数字显示位于最好的观察位置。旋转时, 先松开壳体旋转固定螺钉。

Pt100(-200-+600℃)热电阻温度信号隔离变送器

IBF热电阻温度信号隔离变送器(DIN导轨安装式) 主要特性: Array >>输入:Pt100(-200-+600℃)(范围可选择) 也可以选择输入为Pt1000, Pt10,Cu50,Cu100等等 >>输出信号:4~20mA,0~5V,0-10V 等标准信号 >>辅助电源:5V、9V、12V、15V或24V直流单电源供电 >>工业级温度范围: - 45 ~ + 85 ℃ >>精度等级:0.2级(FSR%,相对于温度) >>内含线性化和长线补偿功能 >>隔离耐压:2500VDC(1mA,60S),输入/输出/电源三隔离 >>安装方式:DIN35导轨安装 >>外形尺寸:79x69.5x25mm 图1 模块外观图 概述: 热电阻温度变送器产品主要用于Pt100,Pt1000,Pt10, Cu50,Cu100等传感器信号的隔离与变送(传感器需用户自己配),在工业上主要用于测量-200~+600℃的温度。该变送器内有线性化和长线补偿功能,出厂时按照Pt100国标分度表校正,完全达到0.2级精度要求。输入、输出和辅助电源之间是完全隔离(三隔离),可以承受2500VDC的隔离耐压。产品采用DIN35国际标准导轨安装方式,体积小、精度高,性能稳定、性价比高,可以广泛应用在石油、化工、电力、仪器仪表和工业控制等行业。 温度信号隔离放大器使用非常方便,仅需接好线,即可实现热电阻信号的隔离变送。 产品选型: 选型举例1: 输入:Pt100 温度范围:-20~100℃供电电压:24V 输出:4-20mA 型号:IBF11-Z1-T1-P1-A4

选型举例2: 输入:Pt1000 温度范围:0~200℃供电电压:12V 输出:0-10V 型号:IBF11-Z5-T4-P2-V2 通用参数: 精度 ------- 0.2% (相对于温度) 输入 ------- 三线、四线或两线热电阻信号,可选择Pt100, Pt1000, Pt10, Cu50, Cu100等热电阻。 订购时需选择一个温度范围来和输出相对应。 输出------- 标准的电压或电流信号。也可由用户自定义。 响应时间------- ≤100mS 辅助电源 ------- DC5V、9V、12V、15V、24V 功率------- < 1W 温度漂移------- 50ppm/℃(典型值) 负载能力 ------- 电压输出:≥ 2kΩ 电流输出:≤450Ω 隔离 ------- 信号输入/输出/输出/辅助电源三隔离 隔离电压 ------- 2500VDC,1分钟,漏电流 1mA 耐冲击电压------- 3KV, 1.2/50us(峰值) 工作温度 ------- -40 ~ +85℃ 存储温度 ------- -45 ~ +80℃ 工作湿度 ------- 10 ~ 90% (无凝露) 存储湿度 ------- 10 ~ 95% (无凝露) 产品接线图: 引脚定义:

PT100温度变送器的正温度系数补偿

PT100温度变送器的正温度系数补偿 温度是非常重要的物理参数,热电偶和热敏电阻(RTD)适合大多数高温测量,但设计人员必须为特定的应用选择恰当的传感器,表1提供了常用传感器的选择指南。 RTD具有较高的精度,工作温度范围:-200°C至+850°C。它们还具有较好的长期稳定性,利用适当的数据处理设备就可以传输、显示并记录其温度输出。因为热敏电阻的阻值和温度呈正比关系,设计人员只需将已知电流流过该电阻就可以得到与温度成正比的输出电压。根据已知的电阻-温度关系,就可以计算出被测温度值。 电阻值随温度的变化称为“电阻的温度系数”,绝大多数金属材料的温度系数都是正数,而且许多纯金属材料的温度系数在一定温度范围内保持恒定。所以,热敏电阻是一种稳定的高精度、并具有线性响应的温度检测器。具体应用中选用哪一种金属材料(铂、铜、镍等)取决于被测温度范围。 铂电阻在0°C的标称电阻值是100Ω,尽管RTD是一种标准化器件,但在世界各地有多种不同的标准。这样,当同一标准的RTD用在不同标准的仪表设计中时将会产生问题。 铂金属的长期稳定性、可重复操作性、快速响应及较宽的工作温度范围等特性使其能够适合多 种应用。因此,铂电阻RTD是温度测量中最稳定的标准器件。以下公式描述了PT100的特性,显然它的温度与电阻呈非线性关系: RT = R0(1 + AT + BT2 + C(T-100)T3) 其中: A = 3.9083 E-3 B = -5.775 E-7 C = -4.183 E-12 (低于0°C时)或0 (高于0°C时)。 表3是表格形式。 具体应用中,PT100的连接方式可以采用2线、3线或4线制(图1、2和3)。有多种模拟和数字的方法进行PT100的非线性误差补偿,例如,可以利用查表法或上述公式实现数字非线性补偿。 查表法是将代表铂电阻阻值与温度对应关系的一个表格存储在μP内存区域,利用这个表格将一个测量的PT100电阻值转换为对应的线性温度值。另一种方法是根据实际测量的电阻值,采用以上公式直接计算相关的温度。 查表法只能包含有限的电阻/温度对应值,电路的复杂程度取决于精度和可用内存的空间。为了计算某一特定的温度值,需要首先确认最接近的两个电阻值(一个低于RTD测量值,一个高于RTD测量值),然后用插值法确定测量温度值。 例如:如果测试的电阻值等于109.73Ω,假设查询表格精度为10°C,那么两个最接近的值是107.79Ω (20°C)和111.67Ω (30°C)。综合考虑这三个数据,利用下式进行计算: 以上数字补偿的方法需要微处理器(μP)的支持,但是采用图4的简单模拟电路可以获

EJA变送器工作原理及维护

EJA 差压变送器工作原理及产品维护: EJA变送器是日本横河电机株式会社九十年代中期最新推出的产品,率先采用真正的数字化 传感器—单晶硅谐振式传感器,开创了变送器的新时代,产品具有更高的精度、稳定性、可靠性,自推向市场,深受各界好评。 EJA差压变送器采用日本横河电机开发的单晶硅谐振式传感器技术,是目前世界上最先进的 变送器,进入中国市场后,深受广大用户的青睐,是变送器领域最具活力的名牌产品。CYS 作为日本横河电机EJA智能变送器全球三大生产基地之一,以IS09000质量保证体系与日本 横河电机5M质量管理方式相结合,采用其先进的制造工艺和高新设备,确保CYS制品与日本制品同一品质。为了满足市场的更高需求,公司推出了精度更高、安全性更强、重量更轻、功能更全的EJX 系列智能变送器。 主要特点: 除保证高精度外,还实现了静压、温度等环境影响极小的高性能。可长期连续使用的高可靠性。 小型、轻量,使其不受安装场所的限制,可自由安装。采用微型计算机技术,具有完整的自诊断功能和通讯功能。开发时重视零点的稳定性,提高了维护效率。连续五年不需调校零点。 EJA差压变送器工作原理: 采用微电子加工技术 (MEMS在一个单晶硅芯片表面的中心和边缘制作两个形状、尺寸、材质完全一致的H形状的谐振梁,谐振梁在自激振荡回路中作高频振荡。单晶硅片的上下表面 受到的压力不等时,将产生形变,导致中心谐振梁因压缩力而频率减小,边缘谐振因受拉伸力而频率增加。两频率之差信号直接送到CPU进行数据处理,然后 (1) 经D/A转换成4-20mA输出信号,通讯时叠加Brain或Hart数字信号; (2) 直接输出符合现场总线( Fieldbus Foun dation TM )标准的数字信号。 优越性能:压影响忽略不计,当加有静压(工作压力)时,两形状、尺寸、材质完全一致的谐振梁形变相同,故频率变化也一致,故偏差自动清除(公式和图类似温度影响) 。 单向过压特性优异,接液膜片与膜盒本体采用独创的波纹加工技术,使外部压力增大到某一数值时,接液膜片能与本体完全接触,硅油传递给传感器的压力不再随外力的增加而增加,从而达到对传感器的保护作用。 (安装灵活,可无需支架,直接安装,常规使用,无需三阀组,组态灵活简便,可通过计算机或手操器对变送器组态,也可通过变送器上的量程设置按钮和调零按钮,进行现场调整。 差压变送器常出现的问题及简单维护:一、差压变送器输出不稳定是差压变送器应用过程中经常出现的问题,差压式流量计( V 锥流量计或者孔板流量计) 现场应用的时候,经常会遇到这样那样的问题,但是追究其原因,只要是在安装正确的情况下,主要问题都是出现在二次仪表和差压变送器上,下面主要给大家介绍下出现这些问题的时候主要检查的地方: 1 、差压变送器输出过低 主要原因在于:正压管发生泄露或者堵塞,差压变送器量程过大,管道内流量过小。对于一般测量流体,导压管发生泄露或者堵塞正是不可能的,发生这个现象的正常是现场测量煤气或者含杂质的介质,只要我们即使检查导压管,排除堵塞,调整差压变送器量程和调节 工艺流量。

pt100温度变送器

\ Pt100温度变送器设计报告 HEBEI UNITED UNIVERSITY 小组成员:09电气(1)任燕凯 09表(2)周震 09表(2)张柔

目录 一:变送器的设计原理 (3) 1:pt100热电阻的介绍 (3) 2:基于双恒流源的三线热电阻测温探头电路的设计 (3) 3:单片机最小系统介绍 (4) 4:基于ADC0804的采样系统设计 (5) 5:基于1602的显示电路的设计 (6) 6:基于DAC0832的模拟量输出设计 (7) 7 :4~20mA电路的设计 (8) 三:程序设计 (8) 1. 程序流程图 (8) 2.程序如下所示: (9)

一:变送器的设计原理 1:pt100热电阻的介绍 热电阻:电阻体的阻值随温度的变化而变化,利用此特性就可以进行对温度的测量。 pt100是铂热电阻,它的阻值跟温度的变化成正比。PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。应用于医疗、电机、工业、温度计算、阻值计算等高精温度设备,应用范围非常之广泛。 2:基于双恒流源的三线热电阻测温探头电路的设计 (1)稳流源电路

2 1 TL431 5 6 7 4 1 1 U2:B LM324 R2 2k 100k R8 100k R9 100k R10 100k R11 100k R 1 电流输出 图为恒流源三线式铂阻测温电路,有两个1.25mA的电流源分别施加给PT100和100Ω (千分之一精度)电阻及各自同质同长的导线上。由于采用由LM324构成的39倍差分放大 电路,使温度在0~100摄氏度变化,电压输入在0~1.9伏之间变化,且导线的分压部分已被 消除,即0摄氏度时Pt100为100Ω,差分放大器两端两个输入电压为0V,当升温后,差 分放大电路将Pt100变化的阻值进行放大。由LM324构成的电压跟随器经阻容低通滤波起 作为反映当前温度的电压值,待后续处理。该电路传感器引线的长度可达到300多米且保证 精确的测量。 3:单片机最小系统介绍

pt100智能温度变送器说明书

PT100智能温度变送器 一.概述: BS-10温度变送器是一种可以PC组态的两线制智能温度便送模块,他能接收PT100热电阻的信号输入,量程可设定,并能对PT100进行线性化处理输出与温度对应的4~20mA的电流信号。此模块一般安装在变送器的头部接线盒里面。变送器设计紧凑,线路采用低功耗设计,并且全部采用低温漂的元器件,降低电路的发热和环境温度对变送器的影响。加强的抗干扰设计,使之可以长期稳定的工作在-40~80℃的工业级环境中。 二.特点: ◆智能两线制4~20mA工作方式,抗干扰能力更好,信号无损远传。 ◆提供传感器恒流激励,标准三线PT100接入方式。 ◆专用定制ASSIC电路,集成度更高,可靠性更好. ◆全数字校准,无可动电位器,温漂更低至<20ppm。 ◆加强的EMC抗干扰设计,硬件看门狗,适合各种电磁环境恶劣的工业环境。 ◆纯数字的PT100校准计算,精度更高。 ◆智能USB/单线校准接口,接线接单,专业校准组态软件,校准使用方便快捷。 ◆专业变送器校准软件,软件具有用户版本和工厂版本,用户版本无法修改校准参数。 ◆标准三线PT100接法,线路阻抗自动抵消。 三.主要参数: 电源电压:10~36VDC,推荐24VDC。 测量范围:-200℃~850℃,最小50℃的变送范围。可以PC组态。 Pc 接口:USB. 输出信号:两线制4~20mA,电流分辨率约1.6uA。 限制电流:约23Ma. 温漂系数:<20ppm/℃或0.004%FS/1℃(基本量程) 工作环境:温度-40℃~85℃,湿度<85%,干燥无腐环境。 外形尺寸:直径44mm*22.5mm圆柱形。 测量精度:0.1%FS。 四.外形尺寸:

相关主题