搜档网
当前位置:搜档网 › 高纯硅的制备

高纯硅的制备

高纯硅的制备
高纯硅的制备

高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料硅单晶。

工业上是用硅石(SiO2)和焦炭以一定比例混合,在电炉中加热至1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:SiO2+2C=Si+2CO

粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SO4)混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为99.9%的工业粗硅。

高纯多晶硅的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅

目前我国制备高纯硅多晶硅主要采用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。一般说来,由于三氯氢硅还原法具有一定优点,目前比较广泛的被应用。此外,由于SiH4具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。下面我们就分别介绍上述三种方法制备高纯硅的化学原理。

1. 三氯氢硅还原法

(1)三氯氢硅的合成

第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加热至1600~1800℃可制得纯度为95%~99%的粗硅。其反应式如下:

SiO2+3C=SiC+2CO(g)↑

2SiC+SiO2=3Si+2CO(g)↑

总反应式:SiO2+2C=Si+2CO(g)↑

生成的硅由电炉底部放出,浇铸成锭。用此法生产的粗硅经酸处理后,其纯度可达到99.9%。

第二步:三氯氢硅的合成三氯氢硅是由干燥的氯化氢气体和粗硅粉在合成炉中(250℃)进行合成的。其主要反应式如下:Si+3HCl=SiHCl3+H2(g)

(2)三氯氢硅的提纯

由合成炉中得到的三氯氢硅往往混有硼、磷、砷、铝等杂质,并且它们是有害杂质,对单晶硅质量影响极大,必须设法除去。

近年来三氯氢硅的提纯方法发展很快,但由于精馏法工艺简单、操作方便,所以,目前工业上主要用精馏法。三氯氢硅精馏是利用三氯氢硅与杂质氯化物的沸点不同而分离提纯的。

一般合成的三氯氢硅中常含有三氯化硼(BCl3)、三氯化磷(PCl3)、四氯化硅(SiCl4)、三氯化砷(AsCl3)、三氯化铝(Al2Cl3)等氯化物。其中绝大多数氯化物的沸点与三氯氢硅相差较大,因此通过精馏的方法就可以将这些杂质除去。但三氯化硼和三氯化磷的沸点与三氯氢硅相近,较难分离,故需采用高效精馏,以除去这两种杂质。精馏提纯的除硼效果有一定限度,所以工业上也采用除硼效果较好的络合物法。

三氯氢硅沸点低,易燃易爆,全部操作要在低温下进行,一般操作环境温度不得超过25℃,并且整个过程严禁接触火星,以免发生爆炸性的燃烧。

(3)三氯氢硅的氢还原

提纯三氯氢硅和高纯氢混合后,通入1150℃还原炉内进行反应,即可得到硅,总的化学反应是:SiHCl3+H2=Si+3HCl

生成的高纯多晶硅淀积在多晶硅载体上。

硅溶胶的制备方法简述

硅溶胶的制备方法简述 目前,硅溶胶的制备主要有两种方法,即凝聚法和分散法。利用在溶液中的化学反应首先生成SiO2超微粒子,然后通过成核、生长,制得SiO2溶胶的方法为凝聚法;利用机械分散将SiO2微粒在一定条件下分散于水中制得SiO2溶胶的方法,即分散法。根据使用原料及工艺的不同,上述两种方法可细分成下面多种常见的制备方法。 1.离子交换法 用离子交换法制备硅溶胶的历史较长,1941年首先由美国人Bird 发明,其后发展迅速,到目前为止该项技术被国内外大多数硅溶胶生产企业所采用。该方法通常可分为3个步骤:活性硅酸制备,胶粒增长和稀硅溶胶浓缩。 首先,将稀释后的一定浓度的水玻璃依次通过强酸型阳离子交换树脂和阴离子交换树脂,分别除去水玻璃中的钠离子及其它阳离子和阴离子杂质,制得高纯度活性硅酸溶液。此溶液在酸性条件下不稳定,可用适当的NaOH或氨水调节其PH为8.5-10.5,以提高稳定性。在此步骤中使用的离子交换树脂应尽快再生。避免残余的硅酸形成凝胶,使交换柱失效。然后,将上述硅酸溶液加入到含晶种的母液中,通过控制加入速度和反应温度,使硅溶胶胶粒增长到所需粒径即可。最后将完成结晶聚合过程的聚硅酸溶液进行加热蒸发浓缩,或超滤浓缩,以得到合适浓度的产品。如果要进一步进行纯化,可采用离心分离法除去其中杂质,制得高纯硅溶胶。 可见,此方法本身具有不可克服的缺点:一是起始原料水玻璃受离

子交换的限制其浓度不能太高,这就致使第3部中的浓缩过程较长,能耗大,不利于能源的节约;二是离子交换树脂再生时会产生大量废水,对水的浪费较大且废水处理需要一定的成本;三是该法工艺程序多,生产周期长,反应过程中影响产品性能的因素众多以至较难控制。 2.直接酸中和法 一般采用稀水玻璃作为起始原料,经过离子交换出去钠离子,然后通过制备晶核,直接酸化反应,晶粒长大等步骤可制得硅溶胶。 (1) 离子交换除去钠离子:用离子交换树脂除去原料中的钠离子,制得SiO2/Na2O重量比较大的稀溶胶,稀溶胶中钠离子含量已较低。 (2)制备晶核:将上步骤制得的稀溶胶加热并停置一段时间,在稀溶胶中逐步形成数毫微米大小的晶核,与离子交换法中的离子增长反应步骤相似。 (3)直接酸化反应:将稀水玻璃原料及酸化剂(如稀硫酸)持续加入到前述制得的含晶核的稀溶液中,加入过程应注意控制混合液中钠离子的浓度、混合液加热温度、PH值、加入时间等条件。 (4)晶粒长大:上述混合液在控制适当条件下,进行晶粒长大过程,持续长大过程之后,即可制得硅溶胶成晶。 3.电解电渗析法 这是一种电化学方法。在电解电渗析槽中加入电解质,调节电解质溶液的PH值,控制电解电渗析反应的电流密度、温度等反应条件,在制备有合适的电极(如析氢电极、氧阴极)的电解电渗析槽中反应后可制取硅溶胶成品。

工业硅酸钠工艺规程

工业硅酸钠工艺规程 1.目的为了对生产过程进行控制及便于操作,以保证生产出合格的硅酸钠产品。 2.范围适用于泡花碱车间马蹄焰窑炉硅酸钠产品生产过程。 3.产品说明 3.1 名称化学名称: 硅酸钠又称水玻璃俗名: 泡花碱英文名称: Sodium Silcate 化学式: Na2O?nSiO2 (其中n 为模数) 说明:模数在3以上的称为“中性”水玻璃,模数在3以下的称为“碱性”水玻璃。 3.2 性质 3.2.1 物理性质 3.2.1.1 外观固体水玻璃: 淡兰色、青绿色、天蓝色或黄绿色玻璃状物。液体水玻璃: 无色透明或带浅灰色粘稠状液体。当杂质含量极少时,玻璃状无水固体硅酸纳是无色透明的玻璃体。随着杂质含量的增加,玻璃体出现颜色。杂志中铁的氧化物使其呈现淡棕或深棕色,甚至是黑色。颜色的深浅又随模数的减小而加深。 3.1.1.2 密度: 随着模数的降低而增大。当模数从3.33 下降到1时,密度从2.413增大到2.560。 3.1.1.3 熔点: 无固定熔点, "中性"水玻璃大约在550℃左右软化。 3.1.1.4 对急冷急热非常敏感,受到这种作用时,立即裂成不规则的小碎块。 3.1.1.5 溶解度: 固体水玻璃在水中溶解度随下列因素有关 a 与压强有关,压强升高,溶解速度增大。 b 在相同的压强下,随水玻璃模数增大,溶解速度而减少。 c与固体水玻璃的粒度有关,粒度越大,所用的溶解时间越长。 3.1.1.5模数:硅酸纳中的二氧化硅与氧化纳的摩尔比称为模数。模数既显示硅酸纳的组成,又影响硅酸纳的物理、化学性质。模数与质量百分比的关系如下式: M=SiO 2%∕Na2O%×1.032 式中M为模数,1.032为换算系数(Na2O与SiO2分子量之比)。 3.2.2 化学性质无论是块状或粉状固体无水硅酸纳,对酸都很难起起作用。但易被氢氟酸分解,生成挥发性的SiF4和碱金属氟化物。苛性碱能溶解固体硅酸钠,特别对细粉状物的反应更快。 a 水玻璃的水溶液能发生强烈的水解反应而使溶液呈碱性。 b 强酸、弱酸、甚至电解质,在加热或在室温,都能使水玻璃水解而析出二氧化硅。 c氯气在低于100 ℃时,即能相当剧烈地分解固体硅酸钠。生成NaCl、SiO2、并放出氧气。 d H2O2能与固体硅酸纳起反应,生成含氧气泡的二氧化硅凝胶。模数高的硅酸钠

高纯硅的制备与硅烷法(doc 10页)

高纯硅的制备 硅在地壳中的含量为27%,主要来源是石英砂(SiO2)和硅酸盐(Na2SiO3) 。 1.2.1粗硅的制备方法: 石英砂与焦炭在碳电极的电弧炉中还原,可制得纯度为97%的硅,称为“粗硅”或“工业硅”。 粗硅的制备反应式: SiO2 + 3C ====== SiC + 2 CO (1) 2SiC + SiO2 ====== 3Si + 2 CO (2) 总反应SiO2 + 2C =====Si + 2 CO (1)高纯硅的化学制备方法 1、三氯氢硅还原法: 产率大,质量高,成本低,是目前国内外制备高纯硅的主要方法。 2、硅烷法 优点:可有效地除去杂质硼和其它金属杂质,无腐蚀性,不需要还原剂,分解温度低,收率高,是个有前途的方法。 缺点:安全性问题 3、四氯化硅还原法:硅的收率低。 三氯氢硅还原法制备纯硅的工艺过程:(三氯氢硅:室温下为无色透明、油状液体,易挥发和水解。在空气中剧烈发烟,有强烈刺激味。比SiCl4活泼,易分解。沸点低,容易制备,提纯和还原。) 一、三氯氢硅的制备: 原料:粗硅 + 氯化氢 流程:粗硅→ 酸洗 (去杂质) → 粉碎→ 入干燥炉→ 通入热氮气→ 干燥→ 入沸腾炉→ 通干HCl → 三氯氢硅 主反应: Si + 3HCl = SiHCl3 + H2 (副反应生成的杂质1、SiCl4 2、SiH2Cl2 ) 为增加SiHCl3的产率,必须控制好工艺条件,使副产物尽可能的减少。较佳的工艺条件: 1、反应温度280-300℃ 2、向反应炉中通一定量的H2,与HCl气的比值应保持在1:3~5之间。 3、硅粉与HCl在进入反应炉前要充分干燥,并且硅粉粒度要控制在0.18-0.12mm 之间。 4、合成时加入少量铜、银、镁合金作催化剂,可降低合成温度和提高SiHCl3的产率。 二、氯氢硅的提纯 目的:除去SiHCl3中含有的SiCl4和多种杂质的氯化物。 提纯方法:精馏 精馏提纯:是利用混合液中各组分的沸点不同来达到分离各组分的目的。 三、三氯氢硅还原 主反应: SiHCl3 + 3H2 → Si + 3HCl 副反应:4SiHCl3 + 3H2 = Si + 3SiCl4 + 2H2 SiCl4 + H2 = Si + 4HCl 升高温度,有利于SiHCl3的还原反应,还会使生成的硅粒粗大而光亮。但温度过高不利于Si在载体上沉积,并会使BCl3,PCl3被大量的还原,增大B、P的污染。反应中还要控制氢气量,通常H2:SiHCl3 =(10-20):1 (摩尔比)较合适。 硅烷法 主要优点: 1、除硼效果好 2、无腐蚀性 3、分解温度低,不使用还原剂,效率高 有利于提高纯度 4、产物中金属杂质含量低,(在硅烷的沸点-111.8℃下,金属的蒸气压低) 5、外廷生长时,自掺杂低,便于生长薄外廷层。 缺点:安全性

工业硅工艺流程资料讲解

.1项目主要建设内容 主要建设内容为:建设生产厂房8000平方米,供水系统、环保系统等配套设施用房10000平方米,厂区道路及停车场等4800平方米,厂区绿化3400平方米。购置和制作生产所需的冶炼炉、精炼炉、除尘系统等生产设备326台(套),监测、化验及其他设备9台套。 1.2.2产品规模 年产高纯工业硅5万吨,其中:1101级高纯工业硅4万吨,3N级高纯工业硅6000吨, 4N 级高纯工业硅4000吨。 1.2.3生产方案 1、产品方案 目前,国内外工业硅市场1101级以下(不包括1101级)产品基本处于供大于求的状况,且短时期内不会有很大变化。结合全油焦生产工艺产品产出比例,本项目产品方案为:年产高纯工业硅5万吨,其中:1101级高纯工业硅4万吨,3N级高纯工业硅6000吨, 4N级高纯工业硅4000吨。 2、技术方案 1)国内外现状和技术发展趋势 冶金级工业硅由于生产技术简单,全世界生产企业众多,产量较大,供需基本保持平衡,且耗能高、附加值低,属国家限制类行业。目前国外有工业硅生产厂家30多家,主要集中在美国、巴西和挪威三国,占世界生产能力的65%,最大生产厂家主要有挪威的埃肯、巴西的莱阿沙、美国的全球冶金,电炉变压器容量大多在10000KVA—60000KVA,通用炉型为3000 0KVA,小于10000KVA的电炉基本停用。其发展趋势是矿热炉大容量化,由敞开式的固定炉体向旋转、封闭炉体发展,自焙电极的应用、炉气净化处理、新型还原剂的开发与应用、炉外精炼技术的发展和应用、生产过程中的计算机管理和控制。其特点是电炉容量大、劳动生产率高、单位产品投资少、有利于机械化、自动化生产和控制环境污染。我国工业硅生产起步于上世纪的50年代,目前仍在生产的厂家约有300多家,电炉400多台,产能约为90—120万吨/年,产量约为70—90万吨。且大部分分布在福建和云、贵、川等小水电资源丰富的地区,受季节性影响较大。其突出特点是电炉容量小、台数多,厂家多而分散,操作机械化水平低、劳动生产率低,产品质量不稳,化学级工业硅产量低(不到产量的1/8),且能源消耗、原材料消耗和生产成本偏高(行业内称为“三高”)。从电炉变压器容量看,我国以3200Kva至6300kVA的电炉为主要炉型,2006年国内已建成的10000kVA工业硅电炉仅有

硅溶胶的制备

硅溶胶的制备 摘要:硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液,广泛应用于陶瓷、纺织、造纸、涂料、水处理、半导体等行业。本文介绍了硅溶胶的各种制备方法及几种特殊用途的硅溶胶的制备。阐述了影响硅溶胶稳定性的因素及其性能测试方法。 关键词:无机化学;硅溶胶制备;硅溶胶应用;综述 1 技术领域 本发明一般涉及适合用于造纸的含水二氧化硅基溶胶(Silica—based sols)。更具体地,本发明涉及二氧化硅基溶胶,它们的制备方法和在造纸中的用途。 本发明提供一种用于制备具有高稳定性、高含量SiO2和提高的滤水(drainage )性能的二氧化硅基溶胶的改进方法。 2技术背景[1, 2] 在造纸领域中,含有纤维素纤维以及任选的填料和添加剂的含水悬浮液(称为纸料)被装人流浆箱,该流浆箱将纸料喷到成型网架(wire)上。水从纸料中滤出,从而在网架上形成湿纸幅,然后在造纸机的干燥段对该纸幅进行进一步的脱水和干燥。 通常将滤水和留着(retention)助剂引人到纸料中,以便促进滤水并增加颗粒在纤维素纤维上的吸附,这样它们与纤维一起被保留在网架上。 虽然高比表面积和一定的聚集或微凝胶形成的程度对性能来说是有利的,但太高的比表面积和大量的颗粒聚集或微凝胶形成会导致二氧化硅基溶胶稳定性的显著降低,因此需要使该溶胶极其稀释,以避免形成凝胶。 国际专利申请公开WO 98/56715公开了一种用于制备含水聚硅酸盐微凝胶的方法,包括混合碱金属硅酸盐水溶液与pH 为11或更小的二氧化硅基材料的水相。该聚硅酸盐微凝胶与至少一种阳离子或两性聚合物一起在纸浆和纸的生产以及水净化中

用作絮凝剂。 国际专利申请公开WO 00/66492公开了一种用于生产包含二氧化硅基颗粒的含水溶胶的方法,该方法包括:酸化含水硅酸盐溶液至pH值为1—4以形成酸溶胶;在第一碱化步骤中碱化该酸溶胶;使碱化溶胶的颗粒生长至少10分钟和/或在至少30℃的温度下热处理该碱化溶胶;在第二碱化步骤中碱化所得到的溶胶;并且任选地,用例如铝对该二氧化硅基溶胶进行改性。 美国专利US 6372806公开了一种用于制备S值为20-50的稳定胶态二氧化硅的方法,其中所述二氧化硅具有大于700 m2/g的表面积,该方法包括: (1)在反应容器中加人阳离子型离子交换树脂(其离子交换能力的至少40%为氢形式),其中所述反应容器具有用于将所述离子交换树脂与所述胶态二氧化硅分离的装置; (2)向所述反应容器中加人SiO2与碱金属氧化物的摩尔比为15:1至1:1且pH值为至10.0的含水碱金属硅酸盐; (3)搅拌所述反应容器的内容物,直到所述内容物的pH 值为8.5—11.0; (4)用额外量的所述碱金属硅酸盐调节所述反应容器的内容物的pH值至大于10.0 ;并且将所得的胶态二氧化硅与所述离子交换树脂分离,同时将所述胶态二氧化硅移出所述反应容器。 (5)美国专利US 5176891公开了一种用于生产表面积为至少约1000m2/g的水溶性聚 铝硅酸盐微凝胶的方法,该方法包含下述步骤: (a)酸化包含约0.1—6重量%SiO2的碱金属硅酸盐稀溶液至pH值为2—10.5以制备聚酸;然后在该聚硅酸胶凝之前使其与水溶性铝酸盐进行反应,从而得到氧化钥/二氧化硅摩尔比大于约1/100的产物; (b) 然后在胶凝化发生之前稀释该反应混合物至SiO2含量为约2.0%(重量)或更少,以稳定该微凝胶。因此,有利地是能够提供一种具有高稳定性和SiO2含量及改进的 滤水性能的二氧化硅基溶胶。还有利地是能够提供用于生产具有高稳定性和SiO2含 量及改进的滤水性能的二氧化硅基溶胶的改进方法。还有利地是能够提供一种改进滤水的造纸方法。

工业硅生产常识问答

1、硅的主要物理化学性质有哪些 答:硅的主要物理化学性质如下: 原子量:28.086 比重:2.34g/cm3 沸点:3427 C 熔点:1413 C 比热:(25 C时)4.89卡/克分子度 比电阻:(25 C时)214000欧姆厘米 纯净结晶硅是一种深灰色、不透明、有金属光泽的晶体物质。它即不是金属,又不是 非金属,介于两者之间的物质。它质硬而脆,是一种良好的半导体材料。硅在常温下很不活 泼,但在高温下很容易和氧、硫、氮、卤素金属化合成相应的硅化物。 硅与氧的化学亲合力很大,硅与氧作用产生大量的热,并形成SiO2: Si+ O2= SiO2 △ H298=-21O.2千克/克分子 二氧化硅在自然界中有两种存在形式:结晶态和无定形态。结晶态二氧化硅主要以简 单氧化物及复杂氧化物(硅酸盐)的形式存在于自然界。冶炼硅所用硅石,就是以简单氧化 物形式广泛存在的结晶态二氧化硅。结晶态二氧化硅根据其晶型不同,在自然界存在三种不同的形态:石英、鳞石英、方石英。这几种形态的二氧化硅又各有高温型和低温型两种变体。 因而结晶态二氧化硅实际上有六种不同的晶体,各种不同的晶型存在范围、转化情况,随压 力温度的变化二氧化硅的晶型转化不同,不仅晶型发生变化,而且晶体体积也随着自发生变 化。特别是从石英转化成鳞石英时,体积发生明显的膨胀,这就是硅石在冶炼过程中发生爆 裂的主要原因。 结晶的二氧化硅是一种硬、较脆,难熔的固体。二氧化硅的熔点为1713C 、沸点为2590C 。二氧化硅的化学性质很不活泼,是一种很稳定的氧化物。除氢氟酸外、二氧化硅不溶于任何 一种酸。在低温下比电阻很高(1.0 to3Q?Cm但温度升高时,二氧化硅的比电阻急剧下降,

高纯硅制备的化学原理

高纯硅制备的化学原理(1) 高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料硅单晶。 工业上是用硅石(SiO2)和焦炭以一定比例混合,在电炉中加热至 1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:SiO2+2C=Si+2CO 粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SO4)混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为99.9%的工业粗硅。 高纯多晶硅的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅,其工艺流程大致如图1: 目前我国制备高纯硅多晶硅主要采用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。一般说来,由于三氯氢硅还原法具有一定优点,目前比较广泛的被应用。此外,由于SiH4具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。下面我们就分别介绍上述三种方法制备高纯硅的化学原 理。 1. 三氯氢硅还原法 (1)三氯氢硅的合成 第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加热至1600~1800℃ 可制得纯度为95%~99%的粗硅。其反应式如下: SiO2+3C=SiC+2CO(g)↑

硅溶胶制备与应用

硅溶胶制备与应用 材料学院化工一班李彦辉20090583 内容摘要: 硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液,广泛应用于陶瓷、纺织、造纸、涂料、水处理、半导体等行业。介绍了硅溶胶的各种制备方法及几种特殊用途的硅溶胶的制备。阐述了影响硅溶胶稳定性的因素及其性能测试方法。 关键词:无机化学硅溶胶制备硅溶胶应用高分子 正文:硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液。1915年美国人首先用电渗析法制备出SiO2质量分数为2.4%的硅溶胶,硅溶胶得以大规模生产和应用,是在年美国人发明利用离子交换法生产硅溶胶以后。目前硅溶胶已被广泛应用于纤维、织物、纸张、橡胶、涂料、油漆、陶瓷、耐火涂料、地板蜡等行业中。另外其在半导体硅晶片的抛光、水处理、矿物浮选和啤酒、葡萄酒酿造等工艺中也有应用。 自1996年以来,随着电子工业迅速发展,作为硅晶片抛光液的原料———硅溶胶的产量快速增加。瑞士公司在2001年第1季度将它位于Martin的硅溶胶厂的生产能力提高了1倍,达到1.4万t/a。同期,日本Fuso Chemial公司也将它位于东京的硅溶胶厂的生产能力由原来的0.7万t/a提高到2.5万t/a. 从20世纪90年代开始,有机硅溶胶的研究和应用也得到较大发展。有机硅溶胶可应用于非水性体系,如用于制造磁性胶体和记录介质,高技术陶瓷化合物和催化剂载体需要有机硅溶胶特殊用途的改性产品研制也得到快速发展,如日本日产化学工业株式会社提出的用于墨水容纳层和喷墨记录介质的念珠状硅溶胶的制备方法。另外该公司申请的中国专利提供了一种含细长形非晶体胶体SiO2粒子的稳定硅溶胶的制备方法。铝改性硅溶胶的研究也取得了进展,这种硅溶胶的最大特点是体系呈中性时很稳定,而采用碱金属氢氧化物作稳定剂的硅溶胶,在体系呈中性时很快就凝胶 我国硅溶胶的研制和生产始于20世纪50年代,南京大学配位化学研究所、天津化工研究院、兰州化学工业公司化工研究院、青岛海洋化工厂、大连油漆厂、广州人民化工厂等都从事硅溶胶产品的研制和生产,但品种和产量与国外都有很大差距。 2002年11月4~8日,全国无机硅化合物技术与市场信息交流大会在广西桂林市召开,大会认为硅溶胶、层硅、聚硅、气相法白炭黑等将是行业发展的新热点。 【一】硅溶胶制备方法 1.1渗析法 渗析法是用酸中和硅酸钠水溶液,经陈化后,再通过半透膜渗析钠离子。该法缺点是渗析所需时间太长,不适于工业化生产。 1.2硅溶解法 采用无机或有机碱作催化剂,以单质硅与纯水反应来制备硅溶胶的方法称硅溶解法。Joseph等在1950年申请的专利中,利用可溶性有机碱作催化剂,使水和硅粉反应来制备 硅溶胶。其中的有机碱ph值(20~25摄氏度时)为6~12,含1~8个碳原子的脂肪胺或脂环胺,硅粉粒径为80~320目。硅粉在使用前应预活化,除去硅粉表面形成的惰性膜。活化时先用质量分数为48%的氢氟酸洗涤,然后依次用纯水、醇、醚冲洗,最后在氮气保护下干燥。活化后的硅粉与水在胺催化作用下,于20~100温度下反应,可制备粒径8~15mm的硅

工业硅冶炼操作工艺

工业硅冶炼操作工艺 西安宏信矿热炉有限公司

一、工业硅生产工艺流程图

二、工业硅生产安全管理制度 工业硅生产是铁合金生产中最为精细的一种产业,要求每个操作人员必须经过严格培训,掌握生产个环节的重点和工艺要素,作到心中有数。只有这样才能将生产管理规范化、精细化,生产出高品级的工业硅。 1、冶炼工技术操作职责 ?保证高温冶炼,尽量减少热损失,使SiC的形成和破坏保持相对平衡。 ?炉料混合均匀后加入炉内。 ?正常冶炼的操作程序是沉料—攒热料—加新料—焖扎盖。 ?要垂直于电极加料,不要切线加料。料落点距电极100mm左右,不允许抛散炉料。 ?炉料形状和分布要合理,集中加料后,使料面呈馒头形状,料面要高于炉口200—300mm。 ?每班接时要捣炉,捣出的黏料捣碎后推到炉心。 ?沉料、捣炉时动作要块,不要碰撞电极、铜瓦和水套。 ?根据炉料融化情况加料,尽量做到加料量、用料量和出硅量相适应。 ?保持合理的料层结构,捣松的炉料就地下沉,不要大翻炉膛。 ?使用铁质工具沉料、捣炉时,动作要块,避免融化铁铲和捣炉棒。 ⑴木块等碳质还原剂在加料平台上可单独堆放,沉料结束或处理炉况时先加木块于电极根部凹坑处,然后加混合料盖住。 ⑵ 仔细观察仪表,协调其他人员用计算机控制电极的压放,使三根电极平衡运行。 ⑶ 随时了解电炉电流、电压的变化情况,给予适当的调整。

2、出炉工技术操作职责 ①正常情况下,每班出3—4炉,尽量大流量、快出硅。 ②出炉前先将炉眼、流槽清理干净,准备好出炉工具和材料。 ③用烧穿器前,要先将钢钎清除炉嘴外的结渣硅,使炉眼保持φ150mm左右的喇叭口形状,然后用烧穿器烧开炉眼。能用钢钎捅开时不用烧穿器。 ④当流量小时,要用木棒捅炉眼、拉渣,用烧穿器协助出硅。 ⑤堵炉眼前炉眼四周和内部渣滓扒净,用烧穿器修理炉眼至通畅光滑,然后堵眼,深度超过或达到炉墙厚度。 ⑥堵眼时如果炉气压力过大无法堵塞,要停电堵眼。 ⑦出炉口和硅包附近要保持干燥,禁止积水,防止跑眼爆炸。 ⑧精练产品要按方案进行,不可随意改变供气量、精练时间、造渣剂的比例等。精练时注意安全,防止硅液飞溅、过大氧气回火等事故发生。 ⑨浇注前要修补好锭模,放好挡渣棒,锭模底部可适当放适量合格硅粒,或涂脱模剂,保护锭模。 ⑩浇注时,硅包倾倒至硅液快要流出时,稍停片刻,使硅渣稳定,再使硅液从包嘴慢慢流入缓冲槽。 ⑴工业硅锭冷却到乌红时,用专用吊具从锭模中吊出,转移到冷却间。严禁用水急冷。 3、电工技术操作职责 ①持证上岗,遵守供用电制度,要求与变电站和生产指挥紧密配合。 ②电工作到四会:会原理、会检修、会接线、会操作

高纯硅的制备

高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料硅单晶。 工业上是用硅石(SiO2)和焦炭以一定比例混合,在电炉中加热至1600~1800C而制 得纯度为95%~99的粗硅,其反应如下:SiO2+2C=Si+2CO 粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SQ4混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为99.9%的工业粗硅。 高纯多晶硅的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅 目前我国制备高纯硅多晶硅主要采用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。一般说来,由于三氯氢硅还原法具有一定优点,目前比较广泛的被应用。此外,由于SiH4 具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。下面我们就分别介绍上述三种方法制备高纯硅的化学原理。 1. 三氯氢硅还原法 (1)三氯氢硅的合成第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加

热至1600~1800C 可制得纯度为95%~99的粗硅。其反应式如下: SiO2+3C=SiC+2CO (g)T 2SiC+SiO2=3Si+2CO (g)T 总反应式: SiO2+2C=Si+2CO (g)T 生成的硅由电炉底部放出,浇铸成锭。用此法生产的粗硅经酸处理后,其纯度可达到99.9%. 第二步:三氯氢硅的合成三氯氢硅是由干燥的氯化氢气体和粗硅粉在合成炉中(250C) 进行合成的。其主要反应式如下:Si+3HCI=SiHCI3+H2 (g) (2)三氯氢硅的提纯 由合成炉中得到的三氯氢硅往往混有硼、磷、砷、铝等杂质,并且它们是有害杂质, 对单晶硅质量影响极大,必须设法除去。 近年来三氯氢硅的提纯方法发展很快,但由于精馏法工艺简单、操作方便,所以, 目前工业上主要用精馏法。三氯氢硅精馏是利用三氯氢硅与杂质氯化物的沸点不同而分离 提纯的。

工业硅安全生产各岗位职责

XXXX硅业有限公司安全生产各岗位职责 第一章总则 为进一步贯彻落实“安全第一,预防为主”的方针,强化各级安全生产责任制,确保安全生产,特制定本制度。 企业法定代表人是本企业安全生产的第一责任人,应贯彻管生产必须管安全,谁主管谁负责的原则。企业的各级领导人员和职能部门,必须在各自工作范围内对实现安全生产负责。 安全生产人人有责,企业的每个职工都必须在自己的岗位上认真履行各自的安全职责,实现全员安全生产责任制。

总经理安全生产职责 1、认真贯彻执行国家安全生产方针、政策、法律和法规,把安全工作列入公司管理的重要议事日程,亲自主持重要的安全生产工作会议,批阅上级有关安全方面的文件,签发有关安全工作的重大决定,对本公司的安全生产工作全面负责。 2、负责建立健全安全生产责任制,督促检查安全生产工作,及时消除生产安全事故隐患。 3、组织制定并实施公司安全规章制度、安全操作规程、重大安全技术措施和生产安全事故应急预案。 4、保证安全生产投入的有效实施,解决安全措施费用。 5、健全安全管理机制,充实专职安全生产管理人员,定期听取安全生产管理部门的工作汇报,及时研究解决或审批有关安全生产中的重大问题。 6、按规定和事故处理的“三不放过”原则,组织对事故的调查处理。 7、加强对各项安全活动的领导,决定安全生产方面的重要奖惩。

副总经理安全生产职责(生产副总) 1、组织开展安全生产技术研究工作,积极引进、采用先进技术和安全生产防护装置,组织研究落实重大事故隐患的整改方案。 2、督促车间主任落实本公司的各项安全生产规章制度、安全技术规程,编制安全生产技术措施计划、并组织实施。 3、每周组织一次安全生产大检查,着重抓好重大隐患的整改工作,坚持每周四次安全例会制度,扎实的做好安全工作。 4、在组织新车间、新设施、新设备以及技术改造项目的设计、施工和投入使用时,做到“三同时”(安全设施与主体工程同设计、同施工、同时投入使用)。 5、审查公司安全技术规程和安全技术措施时,应保证切实可行。 6 负责督促事故的调查处理,并及时上报上一级领导。 7、负责召开公司安全生产专项会议,分析安全生产动态,解决安全生产中存在的问题与隐患。

高纯硅的制备

高纯硅的制备 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

高纯硅的制备一般首先由(SiO2)制得工业硅(粗硅),再制成高纯的,最后拉制成硅单晶。 工业上是用(SiO2)和以一定比例混合,在中加热至1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:SiO2+2C=Si+2CO 粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的不溶)。其生产工艺过程是:将粗碎后,依次用盐酸、、(HF+H2SO4)混合酸处理,最后用洗至中性,烘干后可得含量为99.9%的工业粗硅。 高纯的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅(或称,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的 目前我国制备高纯硅多晶硅主要采用氢还原法、热解法和四氢还原法。一般说来,由于还原法具有一定优点,目前比较广泛的被应用。此外,

由于SiH4具有易提纯的特点,因此热分解法是制备高纯硅的很有发展潜力的方法。下面我们就分别介绍上述三种方法制备高纯硅的化学原理。 1. 还原法 (1)三氯氢硅的合成 第一步:由制取粗硅硅石(SiO2)和适量的混合,并在内加热至 1600~1800℃ 可制得纯度为95%~99%的粗硅。其反应式如下: SiO2+3C=SiC+2CO(g)↑ 2SiC+SiO2=3Si+2CO(g)↑ 总反应式: SiO2+2C=Si+2CO(g)↑ 生成的硅由底部放出,浇铸成锭。用此法生产的粗硅经酸处理后,其纯度可达到99.9%。

硅溶胶

硅溶胶生产设备 硅溶胶无机高分子涂料是近几年发展起来的。制备该涂料的关键技术是用特殊的方法除去水玻璃中水溶性的钠离子。一般可以用离子交换、酸中和、水分解、电渗析等方法来实现,以生成一种极细的二氧化硅超微粒子胶状水溶液,粒径为580mum(一般乳液颗粒为8001000mum)其中Si2O含量20%30%,Na2O含量0.3%¥,氧化硅和氧化钠的比例在40%以上。以这种硅溶液/胶为基料,配合颜料和各种助剂而制成硅溶胶无机高分子涂料。硅溶液在失去水分时,单体硅酸逐渐聚合成高聚硅胶,随水分的蒸发,胶体分子增大,最后形成-SIO-O-SIO-涂膜:IO-SI-OH+HO-SI-OH因NA2O在硅溶胶中的含量低,硅溶胶具有一定量成膜溶解的特性,其耐水性、耐热性能明显优于有机涂料。涂膜致密且较硬,不产生静电,空气中各种尘埃难粘附。在目前的建筑涂料中,它的抗污染能力是较强的。 细微的颗粒,对基层有较强的渗透力,能通过毛细管渗透到基层内部,并能与混凝土基层中的氢氧化钙反应生成硅酸钙,使涂料具有较强的粘结力。 但硅溶胶在成膜过程中体积收缩较大,涂膜易开裂。硅溶胶能与丙烯酸酯、醋酸乙烯等乳液任意相溶。两者的特性相互补充,可以配制出性能优良的有机、无机复合涂料。 1、硅溶胶的制备 制备硅溶胶的工艺有:离子交换树脂处理硅酸钠稀溶液的方法;用硫酸中和水玻璃稀溶液的方法;水解硅酸酯的方法等等。其基本原理都是去掉易溶于水的钠离子。举例如下: (1)离子交换法 a 离子交换树脂。阳离子交换树脂采用强酸性苯乙烯阳离子交换树脂;阴离子交换树指采用弱碱性苯乙烯

系阴离子交换树脂。 b 生产工艺 将模数为3.5的硅酸钠溶液用水稀调整至含SiO24%,Na201.15%;将液通过填装阳离子交换树脂的闪换柱,得含SIO23.6%,NA200.005%,SiO2/Na2O摩尔比703,PH值2.5的硅酸胶稀液。 离子交换是一个平衡反应,反应的过程是:当把含有Na+的硅酸溶液通过交换树指时Ma+取代了阳离子交换树脂上的H+。 于是水玻璃中的NAa+已被除去,H+阳离子与硅离子与硅酸钠中的SiO3生成具有活性的硅溶胶稀溶液流出。 硅溶胶的离子交换质量与下列因素有关: 树脂再生的程度、平衡性质、树脂的高度、流入深度、离子大小等。 把通过阳离子交换柱的硅溶胶稀深再通过弱碱性阴离子树脂交换柱,去除液体中的阴离子CL-,以达到更加稳定的状态。以交换柱流出来的稀硅深胶浓渡很低,需进行浓缩,为了防止浓缩时胶凝,浓缩前必须迅速加入稳定剂。稳定剂常的为MOH(M为L,Na,K,Rb,Cs,NH4.NH2等)稳定剂的用量应该恰当,若小于SiO2摩尔数的1%则难于起到稳定作用;若超过5%则将降低制品的纯度。取5kg上述硅溶胶用10%NAOH溶液调PH值至78。取900g调整液注信减压器中进行真这减压浓缩。并以保持容器内液面恒定为原则,徐徐加入剩余的4100g调整液。浓缩温度保持78℃,最后制得900g含SiO220%,Na200.33%PH为9.6的硅溶胶,其平均粒径约16mum。 离子交换树脂进行离子交换后,已失去交换能力。需用盐酸稀液洗涤,用HCL中的H9+取代树脂上的Na+。而使离子交换树脂的活性基团氧化,使树脂再生,恢复交换能力。再生后和离子交换树指必须用蒸馏水冲洗至规定的PH值为止,备下次使用。 硅溶胶的技术性能: SiO2含量地20%30%(以H2SiO3计含量>26%)水分70%80%比重1.141.21Na2O含量0。4%0.5%粘度(涂4)10.9S可存期一年 (2)酸中和法。用酸中和水玻璃时首先选取含有-(CH2)nCH3.R-CH2-R及含亲水基的物质,经过化学反应制得一种产物A,用此产物A 再与钠水玻璃及H2SO4进行反应,最后制提改性水玻璃B。此产物溶于水中的稳定期不少于三个月,失水成膜后,遇水不再溶解。 2、涂料的配制工艺 硅溶胶无机高分子涂料的配制工艺其他涂料没什么特殊区别,只是硅溶胶应慢慢加入,否则涂料将发生质变。可以休取以下的配制工:

工业硅

我国工业硅产业如何改变无序状况 一、业内有关人士提出以产业升级为主要途径 1、工业硅生产从无到有,经过50多年的发展,我国现已成为产能、产量和出口量均居世界首位的工业硅生产大国。但多年来中国工业硅生产和出口基本处于盲目发展和无序竞争状态,企业生产和产品出口的效益欠佳。业内人士认为,在国家不断加强和改善宏观调控的情况下,工业硅应逐步实现产业升级,改变这种无序的状态。 2、工业硅产业发展现状 中国的工业硅生产始于1957年。上世纪50年代末到70年代末,工业硅生产主要是国内自产自用。1980年,工业硅开始出口,90年代末年出口量达到20万吨以上,2007年出口量增加到近70万吨。现在我国工业硅的产能产量和出口量已均居世界首位,出口的国家和地区数近60个,年出口量已相当于发达国家总消费量的一半以上。 虽然我国是世界工业硅生产大国和出口大国,却不是工业硅出口强国。多年来,工业硅生产和出口的效益一直欠佳。上世纪90年初以来,工业硅出口的价格经常比国际市场正常价低20%~30%。2007年下半年以来,特别是2008年初以来,我国工业硅出口价格有相当幅度的提高。2007年我国工业硅出口全年的平均离岸价是1381美元/吨,今年1月至5月的平均离岸价上涨到2001美元/吨。但与此同时,国际市场工业硅价格也在迅速上涨,同期美国和欧盟的工业硅现货价也从2200美元/吨左右上涨到3500美元/吨左右。 二、盲目扩张导致困局 我国工业硅出口长期价格偏低的原因,除美国、欧盟等长期对我国工业硅出口实行反倾销之外,也与我国工业硅项目的盲目扩张,低水平重复建设和相互压价的无序竞争有关。 2004年以来,在国家不断加强宏观调控下,工业硅项目低水平重复建设的势头受到一定遏制,落后生产能力开始被淘汰,节能环保意识有所增强。但在取得这些初步成效的同时,长期盲目扩张积累的问题仍很突出,整个硅业要真正遏制盲目扩张的势头,消除无序竞争,还有很多工作要做。 进入2008年以来,国家从1月1日起对出口工业硅开征10%的出口关税,年初南方地区遭遇的罕见低温雨雪冰冻灾害和5月汶川特大地震灾害,使这些地区相当数量的工业硅企业遭受不同程度的破坏,生产和贸易均受到影响。 业内人士认为,工业硅产业长期的低水平重复建设和无序竞争,不

硅溶胶的制备及其影响因素-化工

硅溶胶的制备及其影响因素-化工

————————————————————————————————作者:————————————————————————————————日期:

硅溶胶的制备及其影响因素-化工 硅溶胶的制备及其影响因素 张翠李绍纯金祖权赵铁军 (青岛理工大学土木工程学院,山东青岛266033)【摘要】硅溶胶是二氧化硅的胶体分散于水中或溶剂中的一种胶体溶液,具有一系列优异的性能,广泛应用于涂料、纺织等行业。本文综述了以正硅酸乙酯为原料采用溶胶-凝胶法制备硅溶胶的过程及稳定性的影响因素。 关键词硅溶胶;正硅酸乙酯;稳定性;溶胶-凝胶法 【Abstract】Silica sol is a colloidal dispersion of silica in water or solvent in a kind of colloid solution, Silica sol has many excellent performance, thus it widely used in paint, textile and other industries, the ethyl silicate as the raw material is to be the reaction of silica sol prepared by sol-gel method process and the influence factors of stability are summarized in the paper , in order to make certain directive significance to the design process of silica sol. 【Key words】Silica sol; Ethyl silicate; Stability; Sol - gel method 0 引言 硅溶胶是二氧化硅的胶体粒子分散于水中或溶剂中的一种胶体溶液,又名硅酸溶液或二氧化硅水溶液[1]。根据pH值的不同硅溶胶分为酸性硅溶胶和碱性硅溶胶。其基本成分为无定型的二氧化硅,分子式mSiO2·nH2O,胶团结构如图1所示。

二氧化硅的工业化生产

二氧化硅的工业化生产 1.1二氧化硅的种类 二氧化硅也称硅质原料,不仅包括天然矿物,也包括各种合成产品,其产品可分为结晶态和无定形态两类。 二氧化硅天然矿物通常包括结晶态二氧化硅矿物石英砂、脉石英、粉石英和无定形硅矿物硅藻土。 合成产品主要是白炭黑(无定形二氧化硅),包括气相白炭黑(气相二氧化硅)、沉淀白炭黑(沉淀二氧化硅)。 石英是二氧化硅天然矿物的主要矿物组分,化学成分为SiO2,玻璃光泽,断口呈油脂光泽。贝壳状断口,莫氏硬度7,密度2.65~2.66。颜色不一,无色透明的叫水晶,乳白色的叫乳石英。按其结晶习性分,三方晶系的为低温石英,又叫-石英;六方晶系的为高温石英,又称-石英。 石英砂是一个矿产品的专门名词,它泛指石英成分占绝对优势的各种砂,诸如海砂、河砂、湖砂等。地质学按成因将它们划分为冲积砂、洪积砂、残积砂等。石英砂的矿物含量变化很大,以石英为主,其次包含各类长石、岩屑、重矿石(石榴子石、电气石、辉石、角闪石、榍石、黄玉、绿帘石、钛铁矿等)以及云母、绿泥石、黏土矿物等。

石英砂岩,是一种固结的砂质岩石,常简称为砂岩,是自然界最常见、最普通的硅质矿物原料之一,其石英和硅质碎屑含量一般在95%以上,副矿物多为长石、云母和黏土矿物,重矿物含量很少。常见的重矿物有电气石、金红石、磁铁矿等。 石英岩是由石英砂岩或其他硅质岩石经过变质作用而形成的变质岩。脉石英是与花岗岩有关的岩浆热液矿脉,其矿物组成几乎全部为石英。 粉石英是一种颗粒极细、二氧化硅含量很高的天然石英矿。粉石英这一词过去叫法很多,它既包括天然的粉石英,同时也包括了由硅质矿物原料(石英岩、脉石英)加工而成的石英细粉。 硅砂是以石英为主要成分的砂矿飞总称。以天然颗粒状态从地表或地层中产出的硅砂,以及石英岩、石英砂岩风化后呈粒状产出的砂矿称为“天然硅砂”(或简称“硅砂”)。与此对应,将块状石英岩、石英砂岩粉碎成粒状则称“人造硅砂”。 1.2二氧化硅的性质 1.2.1性质 二氧化硅在自然界分布很广,如石英、石英砂等。白色或无色,含铁量较高的是淡黄色。密度2.65~2.66。熔点1670℃(鳞石英);1710℃

高纯硅的制备

高纯硅的制备一般首先由(SiO2)制得工业硅(粗硅),再制成高纯的,最后拉制成硅单晶。 工业上是用(SiO2)和以一定比例混合,在中加热至1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:S i O2+2C=S i+2C O 粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的不溶)。其生产工艺过程是:将粗碎后,依次用盐酸、、(HF+H2SO4)混合酸处理,最后用洗至中性,烘干后可得含量为%的工业粗硅。 高纯的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅(或称,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的 目前我国制备高纯硅多晶硅主要采用氢还原法、热解法和四氢还原法。一般说来,由于还原法具有一定优点,目前比较广泛的被应用。此外,由于SiH4具有易提纯的特点,因此热分解法是制备高纯硅的很有发展潜力的方法。下面我们就分别介绍上述三种方法制备高纯硅的化学原理。 1.还原法 (1)三氯氢硅的合成

第一步:由制取粗硅硅石(SiO2)和适量的混合,并在内加热至1600~1800℃可制得纯度为95%~99%的粗硅。其反应式如下: S i O2+3C=S i C+2C O(g)↑ 2S i C+S i O2=3S i+2C O(g)↑ 总反应式:S i O2+2C=S i+2C O(g)↑ 生成的硅由底部放出,浇铸成锭。用此法生产的粗硅经酸处理后,其纯度可达到%。 第二步:三氯氢硅的合成三氯氢硅是由干燥的气体和粗在合成炉中(250℃)进行合成的。其主要反应式如下:S i+3H C l=S i H C l3+H2(g) (2)三氯氢硅的提纯 由合成炉中得到的三氯氢硅往往混有硼、磷、砷、铝等杂质,并且它们是有害杂质,对质量影响极大,必须设法除去。 近年来三氯氢硅的提纯方法发展很快,但由于精馏法工艺简单、操作方便,所以,目前工业上主要用精馏法。三氯氢硅精馏是利用三氯氢硅与杂质的沸点不同而分离提纯的。

工业硅精炼提纯工艺

工业硅精炼提纯工艺 1.概述 工业硅是在埋弧电炉中用电热法冶炼生产的,在高温和强还原条件下一些由含硅原料和还原剂带入的氧化物杂质必然会得到部分被还原而进入产品金属相中。作为一般用途的工业硅,其杂质含量并不构成使用上的困难。但作为有机硅产品的原料,必须是化学级工业硅, 因此必须进行精炼, 除去其中的Ca、Al等杂质。 从化学反应角度来看,炉外精炼主要分为氯化精炼和氧化精炼两种。氯化精炼由于在处理过程中会造成环境污染, 而氧化精炼也能有效地除去工业硅中的主要杂质铝和钙, 且工艺过程简单, 硅烧损率低,故一般采用炉外硅包氧化底吹精炼。精炼原理是利用渣-金属元素相平衡的原理,将工业硅中的Ca 和Al氧化脱除后使其进入渣相。整个过程不需要输入能量,只考虑硅包的散热损失。 2.精炼过程简述 2.1保持精炼过程的能量平衡 为使精炼过程顺利完成, 采用氧气和空气混吹的方式(应设有氧气站和空压站)。纯氧氧化元素时放出的热量最多, 空气次之, 元素被氧化放出的热量能够和精炼过程中的散热保持平衡。要维持精炼过程的能量平衡必须选择1580~ 1690℃作为精炼过程的温度区间。 2.2精炼的吹气方式 采用底吹方式, 底吹氧的透气砖安装在包底中,透气砖内有较多的细铜管, 氧气和空气从细铜管中吹向硅熔液实施精炼, 空气在吹氧结束后亦通过透气砖向硅熔液中形成正压。 2.3精炼的搅拌 采用压缩空气搅拌, 在吹入氧气进行精炼时以一定比例混入空气进行搅拌是为了改善渣--金属元素相反应的动力学条件, 加速造渣, 尽快脱除杂质, 减少热损失和硅液粘包。 2.4工艺简述 从氧气站和空压站输送来的氧气和压缩空气经计量由耐热橡胶管输入硅包底部散气砖中与刚出炉的硅液进行反应, 脱除杂质Ca和Al。在出炉前2~3min, 先向包底通入压缩空气,以防止硅液灌入透气孔, 当硅液达三分之一硅包深度时,即可开启氧气进行氧化精炼。待出完炉堵眼后并完成精炼, (铝、钙等含量达要求值以下) 即可关闭氧气, 并将砖包由出炉小车拉至浇铸间进行浇铸, 倒完硅液后继续通入压缩空气3~5min, 防止散气孔的堵塞, 稍后即可拔去热耐橡胶管, 并扒去硅渣, 等待出下一炉。 2.5工艺指标 (1) 氧气: 压力为0.5MPa, 消耗指标0.06T/T.Si(42m3) ;

相关主题