搜档网
当前位置:搜档网 › 酒精测量仪毕业论文

酒精测量仪毕业论文

酒精测量仪毕业论文
酒精测量仪毕业论文

酒精浓度探测仪

一、课题的背景和意义

从18世纪产业革命以来,到20世纪信息技术的快速发展,传感技术逐渐走向成熟,在现实生产生活中的应用也渐渐在普及。传感器应用广泛,在各个领域都有着举足轻重的作用,所以传感器不断向高精度,高可靠性,微型化,微功耗无源化和智能化数字化发展,以便更好的服务于我们的生产和生活。

气体与人类的日常生活密切相关,检测气体是保护和改善我们居住环境的必要工作,要检测气体就少不了用到气体传感器。本设计基于AT89S51单片机设计的酒精浓度探测仪,可用来检测酒精气体浓度,最主要的用途是检测司机的酒精含量。开车司机只要将嘴对着传感头使劲吹气,仪器就能发上显示出酒精浓度的高低,从而判断该司机是否酒后驾车,避免事故的发生。当然,最好的办法是在车安装这种测试仪,司机一进入车检测仪就检测司机的酒精含量,如果超出允许值,系统控制引擎无法启动,这样就可从根本上解决酒后驾车问题。

酒精浓度探测仪在生产中也有重要的应用,比如,在一些环境要求严格的生产车间,用这种酒精浓度探测仪,可随时检测车间的酒精气体浓度,当酒精气体浓度高于允许限定值时要及时通风换气,做到安全生产。当然,依照同样的原理也可设计检测其他气体的探测仪,与我们的生活息息相关的是检测有毒气体。

传感头是酒精浓度探测仪中感受酒精的重要部分。目前,所设计的该类传感器多选用以二氧化锡为基本材料,添加不同物质制成的气敏传感器。本设计所选用的MQ-3气敏传感器的敏感部分是由二氧化锡的N型半导体微晶烧结层构成,灵敏度高,响应速度快,可靠性好。也有选择以其他氧化物为基本材料制成的传感器,如选二氧化钛作为气体传感材料。虽然目前的二氧化钛薄膜有电阻值高,工作温度高,敏感性差的缺点,但是二氧化钛薄膜具有良好的电学性能,优异的光学性能,化学稳定性高,机械强度高,且可用于多种气体的检测。单片机在整个传感器中起操作和相应数据处理并送显示的作用,是传感器的核心部分。

目前,气敏传感器已有较高的精度,可达万分之一以上。随着新材料发展和新加工技术的提高,有了高可靠性和低功耗的气体传感器。智能化数字化的气体传感器克服了目前气敏传感器人工测试带来的效率低,误差大和操作人员长时间工作等问题。

二、系统设计

1、设计方案

由酒精浓度测试仪对待测气体(液体)进行检测,气体传感器是将一种气体体积分时转化成对应电信号的转换器。探测头通过气体传感器的对气体样品进行处理,通常包括滤除杂质和干燥气体、干燥或制冷处理,样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快的测量。转换成输出电压信号。然后以单片机为核心的控制:定时进行各个功能模块的自诊断,并对外界的异常情况做出快速处理。对无法解决的问题,应及时切换到后背装置或报警。具有完善的输入输出通道和实时控制能力:对生产过程进行检测和控制,有多种信号需要传送,因此要求系统配备完善的模拟量和数字量输入输出通道和完善的中断系统和处理功能。信号采集处理、声光报警电路以及显示、键盘、PC接口电路。测试仪进行气体检测的基本步骤是单片机采集酒精传感器的响应信号,并且进行转换,模数转换就是用于快速,高精度的对输入信号采样编码,然后转化成数字量储存在数据储存器中,然后单片机通过特定的算法进行气体浓度的识别,同时和所设值进行对比,超出则报警同时显示浓度数值,没超出只显示浓度数。并且将结果输出到LCD显示屏幕上。

2、元器件选择

1)单片机的选择

本系统采用单片机为控制核心。我们选择单片机STC89C51为控制核心;主要基于考虑STC89C51是无法解密低功耗,超低价高速,高可靠强抗静电,强抗干扰,功能强大的单片机。

STC89C51有40个引脚,32个外部双向输入/输出(I/O)端口,同时含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,片振荡器及时钟电路,89C5X可以按照常规方法进行编程,也可以在线编程。同时STC89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的容,但振荡器停止工作并禁止其他所有部件工作直到下一个硬件复位。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发本。STC单片机有PDIP、PQFP/TQFP及PLCC等三种封装形式,以适应不同产品的需求。

STC89C51单片机单片机引脚功能如图

图1

?Vcc:电源电压

?GND:地

STC89C51是的低电压,高性能CMOS 8位单片机,片含8K bytes的可反复擦写的只读程序存储器(PEROM)和256K bytes的随机存取数据存储器,器件采用高密度,非易失性存储技术生产,与标准MCS-51指令系统及8051产品引脚兼容,片置通用8位中央处理器和FLASH 存储单元,功能强大,STC89C51单片机适合于许多较为复杂控制应用场合[3]。

主要性能参数:

?8K字节可重擦写FLASH闪存存储器

?1000次写/擦循环

?时钟频率:0Hz—24MHz

?三级加密存储器

?256字节部RAM

?32个可编程I/O口线

?3个16位定时/计数器

?6个中断源

?可编程串行UART通道

?低功耗的空闲和掉电模式

?片振荡器和时钟电路

2)传感器

气体传感器是气体检测系统的核心,通常安装在探测头。从本质上讲,气体传感器是一

种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速地测量[2]。在选择传感器的时候,一定要考虑到稳定性、灵敏度、选择性和抗腐蚀性,本系统选择MQ3 型酒精传感器。MQ3 酒精传感器是气敏传感器,其具有很高的灵敏度、良好的选择性、长期的使用寿命和可靠的稳定性[4]。

MQ3 型气敏传感器由微型Al2O3、陶瓷管和SnO2 敏感层、测量电极和加热器构成的敏感元件固定在塑料或者不锈钢的腔体,加热器为气敏元件的工作提供了必要的工作条件。传感器的标准回路有两部分组成:其一为加热回路;其二为信号输出回路,它可以准确反映传感器表面电阻的变化。传感器表面电阻RS 的变化,是通过与其串联的负载电阻RL 上的有效电压信号VRL 输出面获得的[6]。二者之间的关系表述为:RS/RL=(VC-VRL)/VRL,其中VC 为回路电压,10V。负载电阻RL 可调为0.5~200K,加热电压Uh 为5V。上述这些参数使得传感器输出电压为0~5V。MQ3 型气敏传感器的结构和外形如图所示,标准回路如图所示。为了使测量的精度达到最高,误差最小,需要找到合适的温度,一般在测量前需要将传感器预热20s。

MQ3 标准回路如图

图2

3)数模转换器

实现A/D转换的基本方法很多,有计数法、逐次逼近法、双斜积分法和并行转换法。由于逐次逼近式A/D转换具有速度,分辨率高等优点,而且采用这种方法的ADC芯片成本低,所以我们采用逐次逼近式A/D转换器。逐次逼近型ADC包括1个比较器、一个模数转换器、1个逐次逼近寄存器(SAR)和1个逻辑控制单元[5]。逐次逼近型是将采样信号和已知电压不断进行比较,一个时钟周期完成1位转换,依次类推,转换完成后,输出二进制数。这类型ADC的分辨率和采样速率是相互牵制的。优点是分辨率低于12位时,价格较低,采样速率也很好。

ADC0832模数转换器具有8位分辨率、双通道A/D转换、输入输出电平与TTL/CMOS相兼容、5V电源供电时输入电压在0~5V之间、工作频率为250KHZ 、转换时间为32 微秒、一般功耗仅为15MW等优点,适合本系统的应用,所以我们采用ADC0832为模数转换器件。

ADC0832 具有以下特点:

? 8位分辨率;

?双通道A/D转换;

?输入输出电平与TTL/CMOS相兼容;

? 5V电源供电时输入电压在0~5V之间;

?工作频率为250KHZ,转换时间为32μS;

?一般功耗仅为15mW;

? 8P、14P—DIP(双列直插)、PICC 多种封装;

?商用级芯片温宽为0度 to +70度,工业级芯片温宽为?40度 to +85度;芯片接口说明:

? CS_ 片选使能,低电平芯片使能。

? CH0 模拟输入通道0,或作为IN+/-使用。

? CH1 模拟输入通道1,或作为IN+/-使用。

? GND 芯片参考0 电位(地)。

? DI 数据信号输入,选择通道控制。

? DO 数据信号输出,转换数据输出。

? CLK 芯片时钟输入。

? Vcc/REF 电源输入及参考电压输入(复用)。

4)LCD显示

液晶显示模块与计算机的接口电路有两种方式。它与单片机的接口方法分为直接访问方式和间接控制方式。

直接访问方式是把液晶模块作为存储器或I/O设备直接接在单片机的总线上,单片机以访问存储器或I/O设备的方式操作液晶显示模块的工作。间接控制方式则不使用单片机的数据系统,而是利用它的I/0口来实现与显示模块的联系。即将液晶显示模块的数据线与单片机的P0口连接作为数据总线,另外三根时序控制信号线通常利用单片机的P2口中未被使用的I/O口来控制。这种访问方式不占用存储器空间,它的接口电路与时序无关,其时序完全靠软件编程实现。

LCD1602字符型液晶显示模块是一种专门用于显示字母、数字、符号等点阵式LCD,目前常用16×1,16×2,20×2和40×2行等的液晶显示模块,模块组件部主要由LCD显示屏、控制器、列驱动器和偏压产生电路构成。

1602液晶显示屏采用标准的16脚接口,其中各接口的功能如下表所示:

表 1 2、系统方框图

图3 三、设计过程

相关主题