搜档网
当前位置:搜档网 › 最优控制实验报告

最优控制实验报告

最优控制实验报告
最优控制实验报告

实验报告

课程名称:现代控制工程与理论实验课题:最优控制

学号:12014001070

姓名:陈龙

授课老师:施心陵

最优控制

一、最优控制理论中心问题:

给定一个控制系统(已建立的被控对象的数学模型),选择一个容许的控制律,使被控对象按预定要求运行,并使给定的某一性能指标达到极小值(或极大值)

二、最优控制动态规划法

对离散型控制系统更为有效,而且得出的是综合控制函数。这种方法来源于多决策过程,并由贝尔曼首先提出,故称贝尔曼动态规划。

最优性原理:在一个多级决策问题中的最优决策具有这样的性质,不管初始级、初始状态和初始决策是什么,当把其中任何一级和状态做为初始级和初始状态时,余下的决策对此仍是最优决策

三、线性二次型性能指标的最优控制

用最大值原理求最优控制,求出的最优控制通常是时间的函数,这样的控制为开环控制当用开环控制时,在控制过程中不允许有任何干扰,这样才能使系统以最优状态运行。在实际问题中,干扰不可能没有,因此工程上总希望应用闭环控制,即控制函数表示成时间和状态的函数。

求解这样的问题一般来说是很困难的。但对一类线性的且指标是二次型的动态系统,却得了完全的解决。不但理论比较完善,数学处理简单,而且在工际中又容易实现,因而在工程中有着广泛的应用。

一.实验目的

1.熟悉Matlab的仿真及运行环境;

2.掌握系统最优控制的设计方法;

3.验证最优控制的效果。

二.实验原理

对于一个给定的系统,实现系统的稳定有很多途径,所以我们需要一个评价的指标,使系统在该指标下达到最优。如果给定指标为线性二次型,那么我们就可以利用MATLAB快速的计算卡尔曼增益。

三.实验器材

PC机一台,Matlab仿真平台。

四.实验步骤

例题1 (P269)考虑液压激振系统简化后的传递函数方框图如下,其中K a为系统前馈增益,K f为系统反馈增益,w h为阻尼固有频率。(如图5-5所示)

将系统传递函数变为状态方程的形式如下:

,

确定二次型指标为: . 求最优控制使性能指标J最小。

首先将(t)代入二次型指标,得到

进行系统辨识后可以得到:ζ=0.2,w h=88, K a=2, 所以

A=,

B=,

C=

设计线性二次型最优控制器的关键是选择加权矩阵Q。一般来说,Q 越大,系统达到的稳态时间越短,当然,要实际的系统允许。

首先选取M=5,R=0.01,则,在MATLAB 中运用care语句,求出卡尔曼增益K。

执行optimumcontron1.m程序,代码如下:

A=[0 1 0;0 0 1;0 -7744 -35.2];

B=[0;0;15488];

C=[1 0 0];

Q=[5 0 0;0 0 0; 0 0 0]

R=0.01;

[P,L,K]=care(A,B,Q,R)

得到结果

K = 22.3607 0.2100 0.0034

为了看到控制效果,我们进行simulink仿真,搭建平台如下图

图1.1

仿真结果如下:

图1.2 最优控制曲线(M=5)

图1.3 阶跃响应曲线(M=5)

由图看出,系统达到稳定所用时间要0.14秒,如果我们想更快使系统稳定可以增大M的值,我们另M=100,可以算出K=100.0000 1.1530 0.0101

图1.4 最优控制曲线(M=100)

图1.5 阶跃响应曲线(M=100)

从图1.4,可以观察看到系统到0.1秒稳定,明显快于图1.2。但从图1.5又可以发现,系统的稳态定在0.01,显然稳态误差并没有得到改善。

可以通过增大参考输入的方法解决稳态误差的问题,MATLAB 提供函数rscale可以求出参考输入倍数Nbar。

添加代码Nbar=rscale(A,B,C,D,K),当M=100时求出

Nbar=100,在信号输入端添加放大器,得到实验结果如下:

我们发现系统稳定到了1.00,稳态误差问题得到了解决。

状态反馈设计

练习:极点配置法状态控制器和最优控制设计状态控制器效果分析假设某系统的传递函数为=10/(+5+6s).希望该系统极点在s1=-0.5+j,s2=-0.5-j,s3=-3.

极点配置法设计过程

1.搭建原系统的simulink模型并观察其单位阶跃响应

图2.0 原系统simulink模型

图2.1 原系统单位阶跃响应

由原系统单位阶跃响应图可知原系统不稳定。

2.利用matlab计算系统的状态空间模型的标准型

>> a=[10];

>> b=[1 5 6 0];

>> [A B C D]=tf2ss(a,b)

A =

-5 -6 0

1 0 0

0 1 0

B =

1

C =

0 0 10

D =

3.系统能控性矩阵

>> uc=ctrb(A,B)

uc =

1 -5 19

0 1 -5

0 0 1

>> rank(uc)

ans =

3

所以系统完全能控。

4.系统能观性矩阵

>> vo=obsv(A,C)

vo =

0 0 10

0 10 0

10 0 0

>> rank(vo)

ans =

3

所以系统完全能观。所以可以用极点配置法设计状态反馈控制器。

5.求系统反馈矩阵

>> p=[-3 -0.5+j -0.5-j];

>> k=acker(A,B,p)

k =

-1.0000 -1.7500 3.7500

6. 搭建加入反馈控制器系统后的simulink模型

图2.2 加入反馈控制器后系统的simulink模型

图2.3加入反馈控制器后系统的单位阶跃响应

综上可知,希望极点在S平面的左半平面,所以由此求出的反馈矩阵K能够使不稳定的系统变得稳定,达到了实验前的预期效果。最优控制法设计过程

1.将系统传递函数变为状态方程的形式如下:

,

确定二次型指标为: . 求最优控制使性能指标J最小。

首先将(t)代入二次型指标,得到

计算后可以得到:

A=,

B=,

C=,

D=0

2.选取M=100,R=1,则,在MATLAB中运用care语句,求出卡尔曼增益K和参考输入放大倍数Nbar 执行optimumcontron1.m程序,代码如下:

A=[0 1 0;0 0 1;-1 -5 -6];

B=[0;0;1];

C=[1 0 0]

Q=[100 0 0;0 0 0; 0 0 0]

R=1

N=rscale(A,B,C,0,K)

[P,L,K]=care(A,B,Q,R)

得到结果:K=9.0499 7.5131 1.1433 Nbar =101.0000 simulink仿真结果如下:

图2.4 当M=5时,两种控制器响应曲线(红色为最优控制)改变M的值我们可以得到更多信息

图2.5 当M=50时,两种控制器响应曲线(红色为最优控制)

图2.7 当M=100时,两种控制器响应曲线(红色为最优控制)改

图2.6当M=200时两种控制器效果比较

图2.7 当M=500时,两种控制器效果比较

图2.8 当M=10000时,两种控制效果比较

总结:

五.实验总结

通过这次任务,基本了解了matlab的使用方法,对最优控制有了更加深刻的认识,并得出一下结论:

1.最优控制器只是给定指标下的最优,实际效果不一定好于极点配置法设计的控制器。

2.比较图2.4-2.8我们可以发现加权矩阵Q的选取会直接影响到最优控制器的稳定时间,一般来说,Q越大,系统达到的稳态时间越短,然而,Q过大会产生严重振铃现象。因而设计线性二次型最优控制器时加权矩阵Q的选取非常重要,必须根据实际情况确定。

最优控制读书报告

最优控制读书报告 学院 专业 班级 姓名 学号

最优控制理论是现在控制理论的一个重要组成部分。控制理论发展到今天,经历了古典控制理论和现代控制理论两个重要发展阶段,现已进入了以大系统理论和智能控制理论为核心的第三个阶段。对于确定性系统的最优控制理论,实际是从20世纪50年代才开始真正发展起来的,它以1956年原苏联数学家庞特里亚金(Pontryagin)提出的极大值原理和1957年贝尔曼提出的动态规划法为标志。这些理论一开始被应用于航空航天领域,这是由于导弹、卫星等都是复杂的MIMO非线性系统,而且在性能上有极其严格的要求。时至今日,随着数字技术和电子计算机的快速发展,最优控制的应用已不仅仅局限于高端的航空航天领域,而更加渗入到生产过程、军事行动、经济活动以及人类的其他有目的的活动中。最优控制的发展成果主要包括分布式参数的最优控制、随机最优控制、自适应控制、大系统最优控制、微分对策等,可以这样讲,最有控制理论对于国民经济和国防事业起着非常重要的作用。 这个学期开设的最优控制课程,主要介绍的是静态优化,经典变分法以及极小值原理。对于静态优化的方法,解决的主要是如何求解函数的极值问题;变分法则被用来求解泛函的极值问题;极小值原理的方法,适用于类似最短时间控制、最少燃料控制的问题。另外,在这些的基础上,我们还学习研究了线性系统二次型指标的最优控制,即线性二次型问题(LQR)。 类似其他的控制理论与控制工程的专业课程,最优控制的基础不但是有关自动化、控制方面的内容,很大一部分可以说是高等数学,以及更加深刻的数学知识和理论。就这门课程而言,遇到的第一个比较重要的数学命题,就是关于泛函的问题。在学习泛函之前,我们都对于函数的定义非常清楚,简而言之,泛函就是“函数的函数”。在动态系统最优控制问题中,其性能指标就是一个泛函,而性能指标最优即泛函达到极值。

课程设计报告【模板】

模拟电子技术课程设计报告设计题目:直流稳压电源设计 专业电子信息科学与技术 班级电信092 学号 200916022230 学生姓名夏惜 指导教师王瑞 设计时间2010-2011学年上学期 教师评分 2010年月日

昆明理工大学津桥学院模拟电子技术课程设计 目录 1.概述 (2) 1.1直流稳压电源设计目的 (2) 1.2课程设计的组成部分 (2) 2.直流稳压电源设计的内容 (4) 2.1变压电路设计 (4) 2.2整流电路设计 (4) 2.3滤波电路设计 (8) 2.4稳压电路设计 (9) 2.5总电路设计 (10) 3.总结 (12) 3.1所遇到的问题,你是怎样解决这些问题的12 3.3体会收获及建议 (12) 3.4参考资料(书、论文、网络资料) (13) 4.教师评语 (13) 5.成绩 (13)

昆明理工大学津桥学院模拟电子技术课程设计 1.概述 电源是各种电子、电器设备工作的动力,是自动化不可或缺的组成部分,直流稳压电源是应用极为广泛的一种电源。直流稳压电源是常用的电子设备,它能保证在电网电压波动或负载发生变化时,输出稳定的电压。一个低纹波、高精度的稳压源在仪器仪表、工业控制及测量领域中有着重要的实际应用价值。 直流稳压电源通常由变压器、整流电路、滤波电路、稳压控制电路所组成,具有体积小,重量轻,性能稳定可等优点,电压从零起连续可调,可串联或关联使用,直流输出纹波小,稳定度高,稳压稳流自动转换、限流式过短路保护和自动恢复功能,是大专院校、工业企业、科研单位及电子维修人员理想的直流稳压电源。适用于电子仪器设备、电器维修、实验室、电解电镀、测试、测量设备、工厂电器设备配套使用。几乎所有的电子设备都需要有稳压的电压供给,才能使其处于良好的工作状态。家用电器中的电视机、音响、电脑尤其是这样。电网电压时高时低,电子设备本身耗供电造成不稳定因家。解决这个不稳定因素的办法是在电子设备的前端进行稳压。 直流稳压电源广泛应用于国防、科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等的直流供电。 1.1直流稳压电源设计目的 (1)、学习直流稳压电源的设计方法; (2)、研究直流稳压电源的设计方案; (3)、掌握直流稳压电源的稳压系数和内阻测试方法。 1.2课程设计的组成部分 1.2.1 设计原理

自动控制系统复习提纲-2017知识点总结

自动控制系统复习提纲 考试范围:绪论、ch1、ch2、ch3、ch6、ch7; 题型:问答题、分析作图题、计算题; 绪论 1自动控制系统的组成及各环节的主要作用; 控制对象 控制器 驱动结构 核心是控制理论 2为何要调速; (1)为了节电交流不调速-交流调速 (2)为了减少维护为目的直流调速-交流调速 (3)大功率场合:直流调速达不到要求 3直流调速的三种方法及特点; (1)调节电枢供电电压U (2)减弱励磁磁通 (3)改变电枢回路电阻R ch1 1调速性能指标的三个方面;(分为静态指标和动态指标) (1)调速 (2)稳速 (3)加减速 2静态调速指标:调速范围、静差率、额定速降的概念和计算以及三者之间的关系;

3开环调速系统和单闭环调速系统的速度降落、调速范围及静差率的计算;

4转速单环调速系统原理图中各部件的作用;5开环机械特性和闭环静特性的区别和联系;6速度单环系统的静特性方程;

7反馈控制规律: P调节器是有静差系统,I和PI均为无静差系统; 8电流截止负反馈的目的及电路接法、下垂特性;目的: (1)反应主回路电流信号大小的检测部分 (2)比较电压部分

下垂特性: 9积分器的电路和特性,比例积分调节器的电路及物理意义; 积分器三个特性:(1)延缓性 (2)积累性 (3)记忆性 比例积分调节器电路: 比例部分能迅速响应进行控制,积分部分则最终消除稳态偏差。 属于串联校正,使系统稳态无静差,动态时保持稳定性。 10带PI调节器的单环调速系统原理图(图1-34)分析,及负载扰动或电网

电压u2扰动下的调节过程(n\id\ud\IL的变化波形),对带P调节器的单环调速系统也有同样的要求。带PI调节器的单环调速系统的静特性。 ch2 1双闭环直流调速系统的原理图、电路图和稳态结构图;

城市轨道交通课程设计报告很齐全很完整的课程设计

城市轨道交通课程设计报告很齐全很完整的课 程设计 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

轨道交通课程设计报告指导老师:江苏大学武晓辉老师 一、项目背景及镇江市轨道交通建设必要性 镇江市位于北纬31°37′~32°19′,东经118°58′~119°58′,地处长江三角洲地区的东端,江苏省的西南部,北临长江,与扬州市、泰州市隔江相望;东、南与常州市相接;西邻南京市。镇江市域总面积3847平方公里,总体规划定位城市性质为国家历史文化名城,长江三角洲重要的港口、风景旅游城市和区域中心城市之一。 2005年,镇江城市总体规划进入实施阶段,城市空间布局将极大突破现有形态,“扩充两翼、向南延伸”成为城市新的发展方向。伴随城市化进程加快、镇江跨入特大城市行列,城市空间的拓展对城市交通体系提出了新的要求。镇江市为江苏省辖地级市,现辖京口、润州、丹徒三区,代管句容、丹阳、扬中三市。另有国家级经济技术开发区-镇江新区行使市辖区经济、社会管理权限。镇江全市总面积3848平方公里,人口311万人,市区户籍人口万人市,市区常住人口万人,人民政府驻润州区南徐大道68号。 内部城市空间结构调整:2005年,镇江城市总体规划进入实施阶段,城市空间布局将极大突破现有形态,“扩充两翼、向南延伸”成为城市新的发展方向。伴随城市化进程加快、镇江跨入特大城市行列,城市空间的拓展对城市交通体系提出了新的要求,建设轨道交通是未来城市规划的必然结果。 城市化发展水平规划: 近期(2000-2010):城市化水平达到:55% 城镇人口162万

中期(2010-2020):城市化水平达到:60% 城镇人口184万 远期(2020-2050):城市化水平达到:70% 城镇人口231万 城市等级规模规划: 中期:形成1个大城市,1个中等城市,2个小城市和38个小城镇的等级结构。 远期:形成1个特大城市,2个中等城市,1个小城市和27个小城镇的等级结构。 镇江位于南京都市圈核心层,是一座新兴工业城。镇江拥有2个国家级开发区、6个省级开发区、5个国家级高新技术产业基地,镇江市的经济发展水平居江苏省中等偏上水平。2013年实现国内生产总值亿元,完成公共财政预算收入亿元,城镇居民人均可支配收入32977元,农民人均纯收入16258元,增长%,;人均GDP73947元,居江苏省第5名。“三次产业”分别实现增加值亿元、亿元、亿元,同比分别增长%、%和%。 镇江高新区位于我市主城区的西部,晋升为国家级高新区后,就与东部的镇江国家级经济技术开发区(镇江新区)形成“两翼”,在提升经济体量的基础上,进一步提升经济质量,形成主城区“一体两翼”格局。同时,与苏南现代化示范区建设、国家自主创新示范区创建等重大机遇形成叠加优势。 经济发展规划: 近期:人均GDP达到万元,产业结构为∶∶41,财政总收入完成80亿元以上 中期:人均GDP达到6万元,产业结构为∶∶44,财政总收入150亿元以上。

倒立摆实验报告

倒立摆实验报告 机自82 组员:李宗泽 李航 刘凯 付荣

倒立摆与自动控制原理实验 一.实验目的: 1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、频率响应分析、PID 控制分析等内容. 2.运用现代控制理论中的线性最优控制LQR 方法实验控制倒立摆 3.学习运用模糊控制理论控制倒立摆系统 4.学习MATLAB工具软件在控制工程中的应用 5.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。 二. 实验设备 计算机及等相关软件 固高倒立摆系统的软件 固高一级直线倒立摆系统,包括运动卡和倒立摆实物 倒立摆相关安装工具 三.倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种

技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。 倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆环形倒立摆,平面倒立摆和复合倒立摆等,本次实验采用的是直线一级倒立摆。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性: 1) 非线性2) 不确定性3) 耦合性4) 开环不稳定性5) 约束限制 倒立摆控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,本小组采用的控制方法有:PID 控制、双PID 控制、LQR控制、模糊PID控制、纯模糊控制 四.直线一级倒立摆的物理模型: 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励

现代控制工程试题整理

现代控制理论试题整理 (By Alex from WHUT) 1、结合自己的实际经验例举一个自动控制实例,说明其控制原理。 2、什么是状态空间分析法,有什么特点? 定义:现代控制理论将微分方程表示成反映系统内部状态和外部信息关系的状态空间表达式,并以这表达式为基础建立了一套解析的分析设计方法。这种基于系统内部状态量的系统描述及其分析设计的方法,就是状态空间分析法。 特点: 状态空间分析法具有如下优点: 1、适用面广:适用于MIMO、时变、非线性、随机、采样等各种各样的系统,而经典法主要适用于线性定常的SISO系统。 2、简化描述,便于计算机处理:可将一阶微分方程组写成向量矩阵方程,因而简化数学符号,方便推导,并很适合于计算机的处理,而古典法是拉氏变换法,用计算机不太好处理。 3、内部描述:不仅清楚表明I-O关系,还精确揭示了系统内部有关变量及初始条件同输出的关系。因而有可能找出过去未被认识的系统的许多重要特性,其中能控性和能观测性尤其具有特别重要的意义。 4、有助于采用现代化的控制方法:如自适应控制、最优控制等。 上述优点便使现代控制理论获得了广泛应用,尤其在空间技术方面还有极大成功。 状态空间法的缺点: 1、不直观,几何、物理意义不明显:不像经典法那样,能用Bode图及根轨迹进行直观的描述。对于简单问题,显得有点烦琐。 2、对数学模型要求很高:而实际中往往难以获得高精度的模型,这妨碍了它的推广和应用。 3、说明李雅普诺夫稳定性的意义和判别主要方法及其特点。 意义:李雅普诺夫稳定性理论能同时适用于分析线性系统和非线性系统、定常系统和时变系统的稳定性,是更为一般的稳定性分析方法。在现代控制理论中,李雅普诺夫第二方法是研究稳定性的主要方法,既是研究控制系统理论问题的一种基本工具,又是分析具体控制系统稳定性的一种常用方法。 主要判别方法有两种。 ①李雅普诺夫第一判别法:线性定常系统 dX(t)/dt=AX(t) 渐近稳定的充要条件: 系统状态矩阵A的全部特征根λi都位于复平面虚轴的左边,即Re(λi)<0。 特点:李雅普诺夫第一方法是通过研究非线性系统的线性化状态方程的特征值的分布来判定系统稳定性的。 ②李雅普诺夫第二判别法:Lvapunov第二法仅给出判断稳定性的充分条件,即只要构建一个函数V(X(t),t),使得满足如下(1)、(2)两条件,则系统在平衡点就是稳定的。(1)V(X(t),t)>0(正定);(2)dV(X(t),t)/dt<0(负定),或dV(X(t),t)≤0(半负定),且在非零状态下不恒为零。 特点:李雅普诺夫第二方法可用于任意阶的系统,运用这一方法可以不必求解系统状态方程而直接判定稳定性。对非线性系统和时变系统,状态方程的求解常常是很困难的,因此

课程设计最终版

摘要 建模、控制与优化是控制理论要解决的主要问题。在这些问题中,广泛采用了现代数学方法,使得控制理论的研究不断深入,取得了丰硕的成果。建模是控制理论中所要解决的第一个问题。控制理论中的建模方法主要有两种,一是经验建模,二是根据物理规律建模。所研究的对象主要是动态模型,一般用微分方程或差分方程来描述。设计控制系统是控制理论的核心内容。在线性系统中,我们所用到的数学工具是拓扑、线性群。在非线性系统中,我们用到了微分几何。可以说微分几何是非线性控制理论的数学基础。优化是控制的一个基本目的,而最优控制则是现代控制理论的一个重要组成部分。例如庞特里亚金的极大值原理、贝尔曼的动态规划,都是关于优化和最优控制问题的。 本报告是对连续系统性能分析及闭环调节器设计,对系统的脉冲响应、能控性、能观测性、稳定性进行分析,然后通过状态反馈对系统进行极点配置,最后进行系统的仿真验证。复习、巩固和加深所学专业基础课和专业课的理论知识,综合运用经典控制理论与现代控制理论的知识,弄清楚其相互关系,使理论知识系统化、实用化;掌握基于状态空间分析法进行控制系统分析与综合的方法;训练利用计算机进行控制系统辅助分析与仿真的能力;掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力;培养分析问题、解决问题的独立工作能力,学习实验数据的分析与处理方法。最终达到增强我们的工程意识、联系实际问题设计、使理论与实践相结合的目的。 关键词:建模控制理论控制系统性能分析状态反馈仿真

目录 1 课题分析 (1) 2 MATLAB应用与系统模型建立 (2) 2.1MATLAB应用 (2) 2.1.1MATLAB 环境及基本命令 (2) 2.1.2 M 文件的编写 (3) 2.1.3图形处理 (3) 2.2系统模型建立 (4) 3 系统定量、定性分析 (6) 3.1能控性、能观性分析 (6) 3.1.1能观性、能观测性概念 (6) 3.1.2系统的能控性、能观测性分析 (7) 3.2系统稳定性分析 (8) 3.2.1系统稳定性概念 (8) 3.2.2系统稳定性分析 (8) 4输出反馈分析 (10) 4.1 输出反馈 (10) 4.2通过u Fy 给予反馈分析 (11) 5状态反馈与极点配置 (13) 5.1状态反馈 (13) 5.2极点配置 (14) 5.3闭环系统的状态反馈设计与极点配置 (14) 5.4已知输出求给定 (18) 6设计总结 (20) 参考文献 (21)

WEB课程设计报告

Web开发技术课程设计题目:学生信息管理系统 院系:软件工程 班级学号:软件13 -1(21,19) 姓名:唐波 同组成员:史伟良 指导教师:王双利 2014 年12 月12 日

Web开发技术课程设计任务书 一、题目:学生信息管理系统 二、设计要求 (1)史伟良负责设计与实现管理系统登陆界面;唐波负责设计与实现管理系统增删改查界面。 (2)查阅相关资料,自学具体课题中涉及到的新知识。 (3)采用结构化、模块化程序设计方法,功能要完善,具有一定的创新。 (4)所设计的程序有输入、输出。 (5)按要求写出了课程设计报告,于设计结束后2天提交了。其主要内容包括:封皮、课程设计任务书,指导教师评语与成绩、目录、概述、软件总体设计、详细设计、软件的调试、总结、致谢、附录(带中文注释的程序清单)、参考文献。总体设计应配合软件总体模块结构图来说明软件应具有的功能;详细设计应用传统或N-S流程图和屏幕抓图说明;调试的叙述应配合出错场景的抓图来说明出现了哪些错误,如何解决的。 三、课程设计工作量 一般每人的程序量在200行有效程序行左右,不得抄袭。 四、课程设计工作计划 2014年12月8日,指导教师讲解布置题目,学生根据题目准备资料; 2014年12月8日,进行总体方案设计; 2014年12月8日~2014年12月10日,完成程序模块并通过独立编译; 2014年12月10日~2014年12月11日,将各模块集成为一完整的系统, 并录入足够数据进行调试运行; 2014年12月11日~2014年12月12日,验收、撰写课程设计报告。 指导教师签章: 专业主任签章:

Web开发技术课程设计指导教师评语与成绩

现代控制理论 实验报告

实验三典型非线性环节 一.实验要求 1.了解和掌握典型非线性环节的原理。 2.用相平面法观察和分析典型非线性环节的输出特性。 二.实验原理及说明 实验以运算放大器为基本元件,在输入端和反馈网络中设置相应元件(稳压管、二极管、电阻和电容)组成各种典型非线性的模拟电路。 三、实验内容 3.1测量继电特性 (1)将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。 (2)模拟电路产生的继电特性: 继电特性模拟电路见图 慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。 波形如下: 函数发生器产生的继电特性 ①函数发生器的波形选择为‘继电’,调节“设定电位器1”,使数码管右显示继电限幅值为3.7V。 慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。实验结果与理想继电特性相符 波形如下:

3.2测量饱和特性 将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。 (2)模拟电路产生的饱和特性:饱和特性模拟电路见图3-4-6。 慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。如下所示:

函数发生器产生的饱和特性 ①函数发生器的波形选择为‘饱和’特性;调节“设定电位器1”,使数码管左显示斜率为2;调节“设定电位器2”,使数码管右显示限幅值为3.7V。 慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。波形如下: 。 3.3测量死区特性 模拟电路产生的死区特性 死区特性模拟电路见图3-4-7。 慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。如下所示:

最优控制笔记整理

1.性能指标按其数学形式可分为如下三类: 1)积分型性能指标 L[x(),(),]f t t J t u t t dt =?拉格朗日问题。 2)终值型性能指标 [x(),]f f J t t ?= 这种性能指标只是对于系统在动态过程结束时的终端状态提出了要求,而对于整个动态过程中系统的状态和控制的演变未作要求。这样的最优控制问题为迈耶尔问题。 3)复合型性能指标 [x(),]L[x(),(),]f t f f t J t t t u t t dt ?=+? 这样的最优控制问题为波尔扎问题。通过适当变换,拉格朗日问题和迈耶尔问题可以相互转换。 2.按控制系统的用途不同,所选择的性能指标不同,常见的有: 1:最小时间控制 01f t f t J t t dt =-=?? 2:最小燃料消耗控制 |()|f t t J u t dt =?控制量u(t)与燃料消耗量成正比 3:最小能量控制 2()f t t J u t dt =?控制函数u 2(t)与所消耗的功率成正比 3. J(x)取极小值的充分条件 为正定(>=0) ,反之则极大 4. J(x)取极值的必要条件为: 欧拉方程0L d L x dt x ????-= 横截条件 5. t 0和t f 给定,x(t 0) 或x(t f )未给定时横截条件: (1)给定x(t 0) 或x(t f ) 222 222L L x x x L L x x x ??????????????????

横截条件为:x(t 0)=x 0或x(t f )=x f (2)自由x(t 0) 或x(t f ) 00L t x ??= 或 0f L t x ??= 那个自由(为给定),那个偏导为0. 6. 始端时刻t 0给定, x(t 0)固定或约束;而终端时刻t f 自由,终端状态x(t f )自由或约束,x(t)不受任何方程约束时的横截条件: 7.当x(t)受状态方程约束时,设系统状态方程:(,,)x f x u t = 性能指标:0 [(),](,,)f t f f t J x t t F x u t dt ?=+?

自动控制原理课程设计讲课讲稿

自动控制原理课程设 计

课程设计报告 ( 2012—2013 年度第 1 学期) 名称:《自动控制理论》课程设计 题目:基于自动控制理论的性能分析与校正院系:自动化系 班级: 1001班 学号: 201002020122 学生姓名:吴国昊 指导教师:刘鑫屏老师 设计周数: 1周 成绩: 日期: 2012年 12 月 31 日

一、课程设计的目的与要求 一、设计题目 基于自动控制理论的性能分析与校正 二、目的与要求 本课程为《自动控制理论A》的课程设计,是课堂的深化。设置《自动控制理论A》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。作为自动化专业的学生很有必要学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。 通过此次计算机辅助设计,学生应达到以下的基本要求: 1.能用MATLAB软件分析复杂和实际的控制系统。 2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。 3.能灵活应用MATLAB的CONTROL SYSTEM 工具箱和SIMULINK仿真软件,分析系统的性能。 三、主要内容 1.前期基础知识,主要包括MATLAB系统要素,MATLAB语言的变量与语句,MATLAB的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MATLAB的在线帮助功能等。 2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。

城市轨道交通课程设计报告很齐全很完整的课程设计

城市轨道交通课程设计报告很齐全很完整的课程设计

轨道交通课程设计报告 指导老师:江苏大学武晓辉老师 一、项目背景及镇江市轨道交通建设必要性 镇江市位于北纬31°37′~32°19′,东经118°58′~119°58′,地处长江三角洲地区的东端,江苏省的西南部,北临长江,与扬州市、泰州市隔江相望;东、南与常州市相接;西邻南京市。镇江市域总面积3847平方公里,总体规划定位城市性质为国家历史文化名城,长江三角洲重要的港口、风景旅游城市和区域中心城市之一。 ,镇江城市总体规划进入实施阶段,城市空间布局将极大突破现有形态,“扩充两翼、向南延伸”成为城市新的发展方向。伴随城市化进程加快、镇江跨入特大城市行列,城市空间的拓展对城市交通体系提出了新的要求。镇江市为江苏省辖地级市,现辖京口、润州、丹徒三区,代管句容、丹阳、扬中三市。另有国家级经济技术开发区-镇江新区行使市辖区经济、社会管理权限。镇江全市总面积3848平方公里,人口311万人, 市区户籍人口103.3万人市, 市区常住人口122.37万人,人民政府驻润州区南徐大道68号。

内部城市空间结构调整:,镇江城市总体规划进入实施阶段,城市空间布局将极大突破现有形态,“扩充两翼、向南延伸”成为城市新的发展方向。伴随城市化进程加快、镇江跨入特大城市行列,城市空间的拓展对城市交通体系提出了新的要求,建设轨道交通是未来城市规划的必然结果。 城市化发展水平规划: 近期( - ):城市化水平达到:55% 城镇人口162万 中期( -2020):城市化水平达到:60% 城镇人口184万 远期(2020-2050):城市化水平达到:70% 城镇人口231万 城市等级规模规划: 中期:形成1个大城市,1个中等城市,2个小城市和38个小城镇的等级结构。 远期:形成1个特大城市,2个中等城市,1个小城市和27个小城镇的等级结构。 镇江位于南京都市圈核心层,是一座新兴工业城。镇江拥有2个国家级开发区、6个省级开发区、5个国家级高新技术产业基地,镇江市的经济发展水平居江苏省中等偏上水平。实现国内生产总值2927.09亿元,完成公共财政预算收入245.52亿元,城镇居民人均可支配收入32977元,农民人均纯收入16258元,增长18.1%,;人均GDP73947元,居江苏省第5名。“三次产业”分

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图) 2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。 第1章可控直流电源-电动机系统内容提要 相控整流器-电动机调速系统 直流PWM变换器-电动机系统 调速系统性能指标 1相控整流器-电动机调速系统原理 2.晶闸管可控整流器的特点 (1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。 晶闸管可控整流器的不足之处 晶闸管是单向导电的,给电机的可逆运行带来困难。 晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。 在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。 3.V-M系统机械特 4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。 5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类 (2)简单的不可逆PWM变换器-直流电动机系统 (3)有制动电流通路的不可 逆PWM-直流电动机系统 (4)桥式可逆PWM变换器 (5)双极式控制的桥式可逆PWM变换器的优点 双极式控制方式的不足之处 (6)直流PWM变换器-电动机系统的能量回馈问题 ”。(7)直流PWM调速系统的机械特性 6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式) 当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。 D与s的相互约束关系 对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。 当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统 内容提要 ?转速单闭环直流调速系统 ?转速、电流双闭环直流调速系统 调节器的设计方法 1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

自动控制原理课程设计

课程设计报告 (2014--2015年度第一学期) 名称:《自动控制理论》课程设计 题目:基于自动控制理论的性能分析与校正院系:自动化 班级:自动化 学号: 学生姓名: 指导教师: 设计周数:1周 成绩: 日期:2015年1月9日

目录 第一部分、总体步骤 (3) 一、课程设计的目的与要求 (3) 二、主要内容 (3) 三、进度计划 (4) 四、设计成果要求 (4) 五、考核方式 (4) 第二部分、设计正文 (5) 一控制系统的数学模型 (5) 二控制系统的时域分析 (9) 三控制系统的根轨迹分析 (15) 四控制系统的频域分析 (19) 五控制系统的校正 (22) 六非线性系统分析 (38) 第三部分、课程设计总结 (40)

第一部分、总体步骤 一、课程设计的目的与要求 本课程为《自动控制理论A》的课程设计,是课堂的深化。设置《自动控制理论A》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。作为自动化专业的学生很有必要学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。 通过此次计算机辅助设计,学生应达到以下的基本要求: 1.能用MATLAB软件分析复杂和实际的控制系统。 2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。 3.能灵活应用MATLAB的CONTROL SYSTEM工具箱和SIMULINK仿真软件,分析系统的性能。 二、主要内容 1.前期基础知识,主要包括MATLAB系统要素,MATLAB语言的变量与语句,MATLAB的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MATLAB的在线帮助功能等。 2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。 3.控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。 4.控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。 5.控制系统的频域分析,主要包括系统Bode图、Nyquist图、稳定性判据和系统的频域响应。 6.控制系统的校正,主要包括根轨迹法超前校正、频域法超前校正、频域法滞后校正以及校正前后的性能分析。 三、进度计划

CAD课程设计报告

XXX课程标准 盐城工学院 《电子线路CAD》课程设计报告 设计题号:第五题 姓名:邓钟鸣 学院:信息工程学院 专业:电科 班级:141 页脚内容1

学号:33 日期2016年12月26日——2017年1月13日指导教师:曹瑞、朱明 页脚内容2

目录 一、摘要 (1) 二、设计的任务与要求 (1) 三、软件介绍 (1) 四、画图的步骤 (3) 五、设计总结 (20) 六、参考文献 (21) 附录: 附录1.原理图 附录2.PCB图 页脚内容1

页脚内容2

一、摘要 电子线路CAD是从实用角度出发,详细介绍了Altium Designer的实用功能,可以引导读者轻松入门,快速提高。全面介绍了Altium Designer的界面、基本组成及使用环境等,并详细讲解了电路原理图的绘制、元件设计、印制电路板图的基本知识、印制电路板图设计方法及操作步骤等,详细讲解了电路从电路原理图设计到印制电路板图输出的整个过程。 关键词:Altium Designer软件;电路原理图设计;电路板; 二、设计的任务与要求 1.锻炼学生将理论用于实际和动手的能力以及更熟练的使用Altium Designer软件 2.使学生学会绘制电路原理图、电路查错、仿真、PCB(Printed Circuit Board,印刷电路板)设计 3、掌握元件封装的方法 意义:通过这次Altium Designer期末考试以及报告的设计,提高思考能力和实践能力。同时通过本课题设计,巩固已学的理论知识,建立逻辑数字电路的理论和实践的结合,了解各单元电路之间的关系及相互影响,从而能正确设计、计算各个单元电路。而且更加掌握的Altium Designer该软件的使用,对原理图的绘制和PCB的布局以及电路的仿真都有了进一步的理解。 三、软件介绍 页脚内容1

南昌大学现代控制理论实验报告

现代控制理论实验报告 课程名称: 姓名: 学号: 专业班级: 2016年6月

目录 实验一系统能控性与能观性分析 (1) 实验二典型非线性环节 (3) 实验三二阶非线性控制系统的相平面分析法 (10) 实验四线性系统的状态反馈及极点配置 (20) 实验五控制系统极点的任意配置 (24) 实验六具有内部模型的状态反馈控制系统 (31) 实验七状态观测器的设计及应用 (35)

实验一系统的能控性与能观性分析 一、实验设备 计算机,MATLAB软件。 二、实验目的 ①学习系统状态能控性、能观测性的定义及判别方法; ②通过用MATLAB编程、上机调试,掌握系统能控性、能观测性的判别方法,掌握将一般形式的状态空间描述变换成能控标准形、能观标准形。 三、实验原理说明 参考教材利用MATLAB判定系统能控性,利用MATLAB判定系统能观测性。 四、实验步骤 ①根据系统的系数阵A和输入阵B,依据能控性判别式,对所给系统采用MATLAB编程;在MATLAB界面 下调试程序,并检查是否运行正确。 ②根据系统的系数阵A和输出阵C,依据能观性判别式,对所给系统采用MATLAB编程;在MATLAB界面 下调试程序,并检查是否运行正确。 ③构造变换阵,将一般形式的状态空间描述变换成能控标准形、能观标准形。 五.实验例题验证 1、已知系数阵A和输入阵B分别如下,判断系统的状态能控性与能观性

,,

2. 已知系统状态空间描述如下 (1)判断系统的状态能控性;(2)判断系统的状态能观测性; (3)构造变换阵,将其变换成能控标准形;(4)构造变换阵,将其变换成能观测标准形; 六、实验心得

单纯形法求最优解问题及一些知识点整理

单纯形法求最优解问题 题目(老师布置的那道作业题):2153m ax x x f +=,其中 ??? ??? ?=≥=++=+=+5,4,3,2,1,0182312245214 231j x x x x x x x x j ,求2153m ax x x f +=的最大值。 这张表是根据题目画的,Cj (行向量)为5432100053m ax x x x x x f ++++=中各个变量的系数,Ci (列向量)为与X B (列向量)相对应的各项的系数,X B 称为基变量(3列,由题目中的方程个数决定),起初的基变量由构造的变量x3、x4、x5组成,b 为对应三个方程等式右边的常数,z j 为Ci 各列与xj 各列乘积的和,如z1=0*1+0*0+0*3=0。i θ为判别将哪个基变量换出的依据,根据c j -z j 为正,要先将x2换入XB 中,关键是判断x3、x4、x5哪个跟x2换,这就要根据各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,如上表可知x2跟x4换,换完之后注意原来x4所对应的列向量为[0 1 0]T ,故要将x2所对应的列向量变换为为[0 1 0]T ,注意b 也要跟着变化,于是得下表.

由上表知c 1-z 1=3>0,故仍需将x1换入XB 中,用各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,结合i θ可知,x1跟x5换,于是得下表。 由上表可知c j -z j 均非正,故5432100053m ax x x x x x f ++++=取最大值时,????? ?? ?????????=00662x , 对应的最大值36max =f . 系统工程导论知识点整理: 系统是由相互作用和相互依赖的若干组成部分(要素)结合的具有特定功能的有机整体。 系统的特征:整体性、相关性、目的性、环境适应性。 系统的功能是指系统与外部环境相互作用所反映的能力。 结构是功能的内在根据,功能是结构的外在表现。 系统功能的特性:易变性、相关性。 系统工程就是用科学的方法规划和组织人力、物力、财力,通过最优途径的选择,使人们的工作在一定期限内收到最合理、最经济、最有效的效果。 科学的方法:从整体观念出发,通盘筹划,合理安排整体中的每一个局部,以求得整体的最优规划、最优管理和最优控制,使每个局部都服从一个整体目标,力求避免资源的损失和浪费。

过控课程设计报告

课程设计报告 课程名称:过程控制工程 设计题目:阶跃曲线确定无滞后 一阶对象传递函数 专业:自动化 班级:一班学号: 20100220118 学生姓名:苏星 时间: 2013 年6月1日~6月16日 ―――――――以下指导教师填写―――――分项成绩:出勤成品答辩及考核 总成绩:总分成绩 指导教师:

前言 过程控制通常是指石油、化工、电力、冶金、轻工、纺织、建材、 原子能等工业部门生产过程的自动化,是连续生产过程的自动控制, 其被控量需定量地控制,而且应是连续可调的。若控制动作在时间上 是离散的,但是其被控量需定量控制,也是过程控制。 过程控制系统的品质是由组成系统的各个环节的结构及其特性所 决定的。过程的数学模型是设计过程控制系统,确定控制方案,分析 质量指标,整定调节器参数等等的重要依据。前馈控制,最优控制, 多变量解耦控制等更需要有精确的过程数学模型,所以过程数学模型 是过程控制系统设计分析和应用的重要资料。研究过程建模对于实现 生产过程自动化具有十分重要的意义。 被控过程的数学建模,是指过程在各输入量作用下,其相应输出量 变化函数关系的数学表达式。过程的数学建模有两种:一是非参数模型,例如阶跃响应曲线、脉冲响应曲线和频率特性曲线,是用曲线表 示的。二是参数模型,例如微分方程、传递函数、脉冲响应函数、状 态方程和差分方程等,是用数学方程式或函数表示。本次课程设计采 用的是第一种。 目录 一 .设计原理及思路 2 二. 实验数据(组1和组2) 3 三. maltab数据分析及校验(组1和组2)及matlab仿真4 4 四. 参考资料及心得体会 12

一、设计原理及思路 无滞后一阶对象(单容)传递函数 1.计算法 000 )0()(,x y y k T k ?-∞= ?如何确定 000 T x k dt dy t = =)(0000 00 ∞===y x k t T x k T t ; )(632.0)1)(()(010T y e y T y →∞=-∞=-

课程设计报告完整电子版模板

武汉东湖学院计算机科学学院课程设计报告 课程名称:数据库原理课程设计 题目: 专业班级: 学号: 学生姓名: 指导教师:谭玲丽 2016 年 5 月 12 日

课程设计任务书 (由指导教师填写) 课程名称:数据库原理课程设计 设计题目: 专业:计算机科学班级: 完成时间:2016.5.12-2016.6.14 指导教师:谭玲丽专业负责人:

课程设计成绩评价表 指导教师:年月日

数据库原理课程设计 目录 1 需求分析............................................................................................................... n 1.1 需求概述 ................................................................................................... n 1.2 功能简介 ................................................................................................... n 2 数据库概念结构设计 .......................................................................................... n 2.1 确定联系集.......................................................................................................... n 2.2 局部E-R图 .......................................................................................................... n 2.3总E-R图 ............................................................................................................... n 3 数据库逻辑结构设计阶段 ......................................................................................... n 3.1关系模式的转换................................................................................................... n 3.2模式求精(规范化过程)................................................................................... n 4 数据库物理设计........................................................................................................... n 4.1数据库物理结构................................................................................................... n 4.2数据表存放位置、系统配置............................................................................... n 5 数据库的实施和维护 .................................................................................................. n 5.1 定义...................................................................................................................... n 5.1.1 数据库的定义 ........................................................................................... n 5.1.2 表的定义 ................................................................................................... n 5.2 数据操作.............................................................................................................. n 5.2.1 单表查询 ................................................................................................... n 5.2.2 连接查询 ................................................................................................... n 5.2.3 操作结果集查询 ....................................................................................... n 5.2.4 嵌套查询 ................................................................................................... n 5.3 数据库更新操作.................................................................................................. n 5.3.1 插入数据 ................................................................................................... n 5.3.2 修改数据 ................................................................................................... n 5.3.3 删除数据 ................................................................................................... n 5.4 为数据库建立索引.............................................................................................. n 5.4.1 索引的建立 ............................................................................................... n 5.4.2 索引的删除 ............................................................................................... n 5.5 数据库的安全性(自主存取控制)........................................................................ n 5.5.1 登录帐户管理 ........................................................................................... n 5.5.2 用户权限管理 ........................................................................................... n 5.6 数据库的完整性.................................................................................................. n 5.6.1 实体完整性定义 ....................................................................................... n 5.6.2 参照完整性定义 ....................................................................................... n 5.6.2 用户自定义完整性定义 ........................................................................... n 5.6.3 触发器定义 .............................................................................................. n 5.7自定义函数.......................................................................................................... n 5.8存储过程的定义.................................................................................................. n 5.9事务的定义.......................................................................................................... n 6 总结................................................................................................................................. n 参考文献 ............................................................................................................................ n

相关主题