搜档网
当前位置:搜档网 › Fenton氧化池的设计计算

Fenton氧化池的设计计算

Fenton氧化池的设计计算
Fenton氧化池的设计计算

Fenton氧化池的设计计算

2.11.1 机械混合槽

2.11.3 pH值调整混合槽

①Fenton试剂为氧化反应结束后,pH值通常可升至5左右,仍为酸性,不利于后续生化反应的顺利进行,因此需投入一定碱剂进行中和反应,是污水的pH值达到6.5;本设计

2.11.4 产泥量计算

本构筑物的进水COD 为760mg/L,COD 去除率为50%,按每去除1kgCOD 产生0.4kg 干污泥进行估算,可知:每天去除COD 量为:

d kg /3810%507601003=???-

干污泥重:W 1=38×0.4=15.2kg

根据污泥含水率为98%,则

湿污泥重:kg W 7602.152==

污水处理厂氧化沟设计计算

给水排水工程技术 毕业课程设计 乌鲁木齐市某地区排水工程 施工图预算 学年学期 班级 指导教师 姓名 学号 新疆学院 设备工程系

目录内容摘要 一、设计题目 二、设计任务书 三、污水处理厂的设计规模 四、污水处理程度的要求 五、设计内容 六、氧化沟的工艺流程图 七、设计计算 八、污水处理厂平面布置 九、污水处理厂高程计算 十、参考文献 十一、附图

内容摘要 本设计为策勒县污水处理厂工程工艺设计,污水处理厂规模为30240 m3,污水主要来源为生活污水和工业污水,主要采用氧化塘处理方法。污水处理厂处理后的出水达到污水综合排放标准(8978-96) 一、设计题目 新疆策勒县污水处理厂工艺设计 二、设计任务书 1、设计的任务和目的 毕业设计是一项重要的实践性教学环节,是培养学生应用所学专业理论知识解决工程实际问题、提高设计制图水平及使用各种技能资料能力的重要手段,通过毕业设计,使学生了解和熟悉排水工程设计的一般原则、步骤和方法;掌握污水处理厂的设计计算方法及设计说明、计算书的编制方法、施工图的绘制方法。 2、设计简介 本设计为给水排水工程技术专业专科毕业设计,是大学三年教学计划规定的最后一个实践性环节。本设计题目为策勒县污水处理厂工艺设计。在指导老师的指导下,在规定的时间内进行城市污水处理厂的设计。 3、设计内容 (1)、处理工艺流程选择 (2)、污水处理构筑物的设计 (3)、污水处理工艺施工图初步设计的绘制 4、设计依据 本设计根据给水排水工程技术专业毕业设计任务指导书、《给水排水设计手册》(第五册)、《水处理手册》《水处理设计手册》《给水排水设计手册(第二版)第1册》《给水排水常用数据手册(第二版)》《水处理工程技术》《给水排水设计手册》(第11册)《排水工程(第二版)》(下册)等进行设计。 设计原始资料

接触氧化池设计计算

3. 5生物接触氧化池 设计参数 进水 COD 浓度 La =650mg/L (300) 出水 COD 浓度 Le =250mg/L (120) 取一级生物接触氧化池的COD 容积负荷必为1. 5kgC0D/ (m 3 d) 3. 5. 1生物接触氧化池填料容积 Q La Le 6000 650 250 M 1. 5 1000 式中W ——填料的总有效容积,m 3; Q ----- 日平均污水量,m 3; La ——进水 COD 浓度,mg/L ; Le ------ 出水COD 浓度,mg/L; M —— COD 容积负荷率,gCOD/ (m 3 d)。 3. 5. 2生物接触氧化池总面积 A W 1600 2 A 533. 3m (60) H 3 式中A ——接触氧化池总面积,m 2; H ——填料层高度,m,取3m 3.5.3设一座接触氧化池,分3格,每格接触氧化池面积 3 每格池的尺寸LXB 二30X6二180 m 2 每格接触氧化池在其端部与邻接触氧化池的隔墙上设 lmXlni 的溢流孔洞 3.5.4污水与填料接触时间 6. 5h 6000 式中t ------- 污水在填料层内的接触时间,h 1600 m 3( 180) 533. 3 178m 2

3. 5. 5接触氧化池总高度 Ho=H+hi+h2+ (m-1) h3+h4 =3. 0+0. 5+0. 5+(1-1) 0. 2+0. 5=4. 5m

式中Ho ——接触氧化池的总高度,m ; H —-填料层高度,m,取3. Om ; hi ----- 池体超高,m,取0. 5m ; h2——填料上部的稳定水层深,m,取0. 5m ; h3——填料层间隙高度,m,取0. 2m ; m ----- 填料层数,取为1层; h4 ---- 配水区高度,m,取0. 5m o 生物接触氧化池选用组合纤维填料,其主要技术参数见表 7 表7组合纤维填料主要技 术参数 3.5.6需气量 按每去除IkgCOD 消耗lkg 氧气计算,生物接触氧化池的需氧量Q 】为: Qi =6000 ><650-250)/1000 二 2400 kgQ/d (270) 池每天所需的空气量Gs 为: 53280m 3/d 0. 62 m 3/s 21% 1.43 0. 15 (5994/0. 07) 式中Gs —- 需气量,m 空气/d ; E A — 氧转移效率,%; 匚%_ 氧在空气中所占百分 l-k- 1. 43-- 氧的谷重,kg/m 3o 表8微孔曝气器的主要性能参数 生物接触氧化池采用微孔曝气器曝气,其充氧效率 E A 取15%,则接触氧化 Qi 21% 1.43 E 曝气装置选用HWB- 1型微孔曝气器, 其主要性能参数见表8

Fenton法在水处理中的应用

Fenton法在水处理中的应用 什么是Fenton法? 更新时间:10-11-19 12:00 近年来,高级氧化技术用于处理难降解有机废水的研究,已获得显著的进展。高级氧化技术又称深度氧化技术,汇集了现代光、电、声、磁、材料等各相近学科的最新研究成果,有望成为有机废物尤其是难降解有机废物处理的一把“杀手锏”。目前,高级氧化技术主要包括化学氧化、光催化氧化、湿式氧化、超临界水氧化等,其中传统的Fenton氧化法,与其他高级氧化工艺相比,因其操作简单、反应快速、可产生絮凝等优点而倍受青睐。Fenton法在处理难降解有机污染物时具有独特的优势,是一种很有应用前景的废水处理技术。 1894年,英国人H.J.H.Fenton发现采用Fe2+/H2O2体系能氧化多种有机物。后人为纪念他将亚铁盐和过氧化氢的组合称为Fenton试剂,它能有效氧化去除传统废水处理技术无法去除的难降解有机物,其实质是H2O2在Fe2+的催化作用下生成具有高反应活性的羟基自由基(·OH),·OH 可与大多数有机物作用使其降解。随着研究的深入,又把紫外光(UV)、草酸盐(C2O2-4)等引入Fenton试剂中,使其氧化能力大大增强。从广义上说,Fenton法是利用催化剂、或光辐射、或电化学作用,通过H2O2产生羟基自由基(·OH)处理有机物的技术。从发展历程来看,Fenton法基本上是沿着光化学和电化学两条路线向前发展的。 Fenton法的类型及特点 更新时间:10-11-19 12:03 1 普通Fenton法 H2O2在Fe2+的催化作用下分解产生·OH,其氧化电位达到2.8V,是除元素氟外最强的无机氧化剂,它通过电子转移等途径将有机物氧化分解成小分子。同时,Fe2+被氧化成Fe3+产生混凝沉淀,去除大量有机物。可见,Fenton试剂在水处理中具有氧化和混凝两种作用。Fenton 试剂在黑暗中就能降解有机物,节省了设备投资,缺点是H2O2的利用率不高,不能充分矿化有机物。研究表明,利用Fe3+、Mn2+等均相催化剂和铁粉、石墨、铁、锰的氧化矿物等非均相催化剂同样可使H2O2分解产生·OH,因其反应基本过程与Fenton 试剂类似而称之为类Fenton体系。如用Fe3+代替Fe2+,由于Fe2+是即时产生的,减少了·OH被Fe2+还原的机会,可提高·OH的利用效率。若在Fenton体系中加入某些络合剂(如C2O2-4、EDTA等),可增加对有机物的去除率。

氧化沟工艺设计计算及说明

氧化沟工艺设计计算书 1.项目概况 处理水量Q=5万m 3/d ;进水水质BOD 为150mg/L ;COD 为300 mg/L ;SS 为250mg/L ; L mg TN L mg N NH /30,/304==-+ 。处理要求出水达到国家一级(B)排放标准即 COD ≤60 mg/L ,BOD 5≤20 mg/L ,SS ≤20mg/L ,L mg TN L mg N NH /20,/84≤≤-+ 。 2. 方案对比 三种方案优缺点比较如下表: 本方案设计采用氧化沟,氧化沟分两座,每座处理水量Q=2.5万m3/d 。下面是氧化沟 工艺流程图。 氧化沟工艺流程图 3. 设计计算

3.1设计参数 总污泥龄:20d MLSS=4000mg/L MLVSS/MLSS=0.7 MLVSS=2800mg/L 污泥产率系数(VSS/BOD 5)Y=0.6kg /(kg.d ) 3.2 工艺计算 (1)好氧区容积计算 出水中VSS=0.7SS=0.7×20=14mg/L VSS 所需BOD=1.42×14(排放污泥中VSS 所需得BOD 通常为VSS 的1.42倍) 出水悬浮固体BOD 5=0.7×20×1.42×(1-e -0.23× 5)=13.6 mg/ L 出水中溶解性Se=BOD 5=20-13.6 mg/ L=6.4mg/L %.795%100150 .4 61505=?-= 去除率BOD 好氧区容积:内源代谢系数Kd=0.05 35.77467 .04000)2005.01() 4.6150(25000206.0)1()(m X c Kd c Se So YQ V V =???+-???=+-= θθ好氧 停留时间 h h Q V t 7.442425000 7746.5 =?==好氧 校核: )/(17.05 .77467.0400025000)4.6150()(5d kgMLVSS kgBOD V X Se So Q M F V ?=???--=好氧 满足脱氮除磷的要求。 硝化校核:硝化菌比增长速率 105.020 1 1 -== = d c n θμ n f 为硝化菌在活性污泥中所占比例,原污水中BOD 5/TKN=150/30=5,此时对应n f =0.054 N kgNH kgVSS Y n -=+ 4/1.0(硝化菌产率系数) n q 为单位质量的硝化菌降解N NH -+ 4 的速率:5.01 .005 .0== =n n n Y q μ 实际硝化速率1 027.05.0054.0-=?=?=d q f r n n n

生物接触氧化工艺设计方案及计算

1 前言 随着我国社会和经济的高速发展环境问题日益突出,尤其是城市水环境的恶化加剧了水资源的短缺,影响着人民群众的身心健康已经成为城市可持续发展的严重制约因素。近年来国家和地方政府非常重视污水处理事业工程的建设,而决定城市污水处理厂投资和运行成本的很重要因素是污水处理工艺的选择。一座城市污水厂处理工艺的选择虽然应由污水水质、水量、排放标准来确定但是忽略污水处理厂投资和运行成本过分强调污水处理工艺的先进是不足取的。生物膜法是与活性污泥法并列的一种污水生物处理技术,而生物接触氧化工艺便是其中一种。 通过生物接触氧化工艺的课程设计,来巩固水污染学习成果,加深对《水污染控制工程》的认识与理解,规范、手册与文献资料的使用,进一步掌握设计原则、方法等。锻炼独立工作能力,对污水厂的主体构筑物、辅助设施、计量设备及污水厂总体规划、管道系统做到一般的技术设计深度,培养和提高计算能力、设计和CAD绘图水平,锻炼和提高分析及解决工程问题的能力。 2生物接触氧化法在水处理中的作用 生物接触氧化工艺(Biological Contact Oxidation)又称“淹没式生物滤池”、“接触曝气法”、“固着式活性污泥法”,是一种于20世纪70年代初开创的污水处理技术,其技术实质是在生物反应池内充填填料,已经充氧的污水浸没全部填料,并以一定的流速流经填料。在填料上布满生物膜,污水与生物膜广泛接触,在生物膜上微生物的新陈代谢的作用下,污水中有机污染物得到去除,污水得到净化。 生物接触氧化法是一种浸没生物膜法,是生物滤池和曝气池的综合体,兼有活性污泥法和生物膜法的特点,在水处理过程中有很好的效果。其特点有如下几点:第一,由于填料的比表面积大,池内的充氧条件良好。生物接触氧化池内单位容积的生物固体含量高于活性污泥法曝气池及生物滤池,所以生物接触氧化法 有较高的容积负荷,对冲击负荷有较强的适应能力;第二,生物接触氧化法不需要污泥回流,不存在污泥膨胀问题,污泥生成量少,且污泥颗粒较大,易于沉淀,运行管理简便,操作简单,易于维护管理,设备一体化程度高,耗电少。第三,由于生物固体量多,水流又属于完全混合型,因此生物接触氧化池对水质水量的骤变有较强的适应能力。第四,生物接触氧化池有机容积负荷较高时,其F/M 保持在较低水平,污泥产率较低。第五,具有活性污泥法的优点,并且机械设备供氧,生物活性高,泥龄短,净化效果好,处理效率高,处理时间短,出水水质好而稳定,池容小,占地面积少。第六,能分解其它生物处理难分解的物质,具有脱氧除磷的作用,可作为三级处理技术。因此,生物接触氧化污水处理技术是一种适应范围广、处理效率高、运行操作简单的水处理技术。而工业污废水水量

生物接触氧化设备设计

生物接触氧化设备设计集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第1章设计任务书 一、设计题目 150m3/h某小区生活污水中生物接触氧化设备的设计 二、原始资料 =300mg/L,CODcr=500mg/L,出水 Q=150m3/h,进水 BOD 5 BOD =20mg/L,CODcr=60mg/L,容积负荷3.0kg/m3.d。 5 三、设计内容 1.方案确定与工艺说明 按照原始资料数据进行处理方案的确定,拟定处理工艺流程,选择设备和构筑物,说明选择理由,工艺说明包括原理、结构特点、设计原则等,论述其优缺点,编写设计说明书。 2.设计计算 (1)计算需氧量、空气量, (2)计算生物接触氧化池有效容积、尺寸 (3)计算穿孔布气空气管道 (4)计算剩余污泥量 3.制图 (1). 生物接触氧化池曝气及空气管道平面、剖面图(A2) (2)进水布水器平面、剖面布置图。(A2) (3)填料支架及填料安装图(A2) (4)生物接触氧化池平面、剖面布置图(A2) 4.编写设计说明书、计算书

四、设计成果 (1). 生物接触氧化池曝气及空气管道平面、剖面图(A2) (2)进水布水器平面、剖面布置图。(A2) (3)填料支架及填料安装图(A2) (4)生物接触氧化池平面、剖面布置图(A2) (5)设计说明书、计算书 五、时间分配表(第19周) 七、成绩考核办法 根据设计说明书、设计图纸的质量及平常考核情况由指导教师按优、良、中、及格、不及格评定成绩。 指导教师:CCC、AAAA

化学与生物工程学院环境工程教研室 2011年11月 第2章方案确定与工艺说明 2.1确定方案 污水处理中对小区的概念外延加以拓宽,泛指居民住宅区、疗养院、商业中心、机关学校等由一种或多种功能构成的相对独立的区域,而该区域的排水系统通常不在城市市政管网的覆盖范围内。根据环境要求,需建造独立的污水处理系统。小区污水水量较小,水质水量变化较大,由于土地昂贵等原因对环境质量提出的要求较高(如气味、噪声、建筑风格等)。因此污水处理工艺力求简单实用,管理方便,操作可靠,维护工作量小,并尽可能地采用高效、节能的污水处理技术。 小区污水的处理工艺依据其尾水排放水体的功能不同而异,常用处理方法有化粪池、一级处理(初次沉淀池)、生物二级处理及二级处理后再经消毒回用等。在国外,小区污水的处理基本上采用二级生化、人工湿地或土地处理系统以及亚表层砂滤床处理等方法。其中二级生化处理大多数都采用氧化沟法、生物滤池法(包括滴滤池)。人工湿地、地表漫流和亚表层砂滤床法近20 a来发展较快。一些经济发达国家为了防止水体的富营养化,在传统二级处理的基础上,增加了三级处理单元,使污水得到深度净化,达到回用水水质标准,但基建投资和运行成本都比较高 J。小区污水处理工艺的选择在满足小区污水处理特点的前提下,应

氧化沟计算

3.3.3 carrousel 氧化沟 假设沉砂池出水BOD =200mg/L ,氧化沟出水BOD =20mg/L 。 图6 氧化沟计算图 (1)氧化沟所需容积V 设污泥负荷N S =0.06kgBOD 5/(kgMLSS·d) 污泥回流比R =100%,污泥回流浓度X R =6000mg/L (6kg/m 3) 混合液污泥浓度 ()2006000100%3100/11100%R ss X R X mg l R +?+?===++ 氧化沟所需容积 30()60000(20020)58065()0.063100e s Q L L V m N X -?-= ==? (2)氧化沟平面尺寸的确定 设池数为两个,则每个池子的容积V 0为: V=V/2=0.5×58065=29032(m 3) 设池宽w =13m ,池深h =4.5m ,超高h 1=0.5m (采用曝气转碟曝气),则池长为 220329032313 4.53313132()4413 4.5V w h l w m wh ππ--??=+=+?=?? 所以氧化沟的工艺尺寸为:132m (长)×52m (宽)×5m (高)×2(池数) (3)校核

氧化沟有效容积: ()'23643328926()V l w wh w h m π??=-+=?? BOD-SS 负荷: 05()600001800.06kgBOD /(kgMLSS 580653100e s Q L L N VX -?===? =0.06kgBOD 5/(kgMLSS·d)(在0.03~0.15范围之间) 容积负荷: 3 30560000200100.21/()58065V QL N kgBOD m d V -??=== (在0.2~0.4 范围之间) 水力停留时间: 24245806523.2()60000V T h Q ?===(在10~48小时之间) 污泥回流比: 3100200 1.060003100R X ss R X X --===--(在50%~100%之间) 污泥龄: 58065310015()20060000C VX t d ss Q ?===??(在10~20天去除BOD 并消化) (4)曝气设备必要需氧量(SOR ) 设去除1kgBOD 需氧2kg ,则每天实际需氧量 AOR=L r ×Q ×2=(200-20)×10-3×60000×2=21600kg/d 标准条件下必须的供氧量(SOR ) ()2076011.024()24sw t S A AOR C SOR C C p αβ-=??- 2020216008.8476011210(/)1.0240.93(0.978.84 1.5)76024kg h -?=??=???- C SW =8.84mg/L ,C S =8.84mg/L (假设水温为20℃),C A =1.5mg/L ; α、β—修正系数,利用延时曝气法α=0.93,β=0.97;

接触氧化池设计参数

各种工艺设计参数 一、接触氧化池 1、容积负荷 表1 各种处理方法的比较 2、生物膜重量 氧化池中生物膜重量一般为6200~14000 mg/l,呈悬浮状微生物的(活性污泥)一般只有200~300 mg/l,因此可以粗略的以生物膜重量表示生物接触氧化法的微生物数量。城市污水中生物膜重量为12000~14000 mg/l。 3、填料 (1)填料特性比较 表2 填料特性比较

(2)填料容积V有效 V有效=Q(C0-C1) /I·1000 式中Q——处理水量(m3/d) C0——进水BOD浓度(mg/L) C1——出水BOD浓度(mg/L) I——BOD容积负荷(m3)4、停留时间 (1)弗鲁因德利希吸附式 Q(C0-C1)/V=2.44C11.98 式中Q——处理水量(m3/d) C0——进水BOD浓度(mg/L)

C1——出水BOD浓度(mg/L) V——填料容积(m3) (2)停留时间 T=24V/Q=24 (C0-C1)/ 2.44C11.98 5、池体高度 一般的氧化池填料高度为3m,底部的布水布气层高度为0.6~0.7m,顶部的稳定水层高度为0.5~0.6m,所以总池高度一般为4.5~5.0m。 6、供气量 (1)需氧量(R):生物膜的需氧量(R)包括合成用氧量和内源呼吸用氧量两部分。即: R=a'·△BOD+ b'·P 式中R——生物膜的需氧量(kg/h) △BOD——单位时间内去除的BOD量(kg/h) P——活性生物膜数量(kg) a'、b'——系数 从等当量的化学反应来看,每去除1kg BOD需要1kg O2。但实际是随着负荷的变化而变化的。例如,在普通生物滤池法中,污泥负荷低,泥龄长,氧化反应进行的比较彻底,去除1kg BOD的需氧量可大于1kg,系数a'通常为1.46左右;在生物接触氧化法中,污泥负荷高,生物膜更新快,泥龄较短,有一部分BOD物质未被氧化就排出系统,因此去除1kg BOD的需氧量往往低于1kg,系数a'

生物接触氧化池设计实例.

环境工程专业 《污水处理课程设计》 说明书 姓名及学号: 班级: 指导教师: 设计时间:

前言 在我国,随着经济飞速发展,人民生活水平的提高,对生态环境的要求日益提高,要求越来越多的污水处理后达标排放。在全国乃至世界范围内,正在兴建及待建的污水厂也日益增多。在校期间,我们学习了水污染控制工程这门课程,为了检验学习的内容和自主设计能力,老师安排了此次课程设计。根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1-10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。本文是中型污水处理厂,处理流量20000m3/d,无论何种规模的处理厂,在确定污水处理工艺时,除了保证处理效果这一基本条件外,主要目的是降低基建投资,节省日常的运行费用,以求在保证达标排放的前提下,使经营成本最小。要做到这一点,首先应根据实际情况,选择合适的处理工艺。小型污水厂处理厂往往具有这样的特点:(1)由于负担的排水面积小,污水量较小,一天内水量水质变化较大,频率较高; (2)一般在城镇小区或企业内修建,由于所在地区一般不大,而且厂外污水输送管道也不会太长。所以,其占地往往受到限制,处理单元应当尽量布置紧凑。 (3)一般要求自动化程度较高,以减少工作人员配置,降低经营成本。 (4)污水厂往往位于小区或工业企业内,平面布置可能会受实际情况限制,有时可能靠近居民区或地面起伏不平等,平面布置应因地置宜,变蔽为利。 (5)由于规模较小,一般不设污泥消化,应采用低负荷,延时曝气工

艺,尽量减少污泥量同时使污泥部分好氧稳定。 由此,本设计选择生物接触氧化工艺。生物接触氧化法是以附着在载体(俗称填料)上的生物膜为主,净化有机废水的一种高效水处理工艺。具有活性污泥法特点的生物膜法,兼有活性污泥法和生物膜法的优点。在可生化条件下,不论应用于工业废水还是养殖污水、生活污水的处理,都取得了良好的经济效益。该工艺因具有高效节能、占地面积小、耐冲击负荷、运行管理方便等特点而被广泛应用于各行各业的污水处理系统。 本设计包扩工艺处理流程、主要构筑物的剖面结构、污水厂初步平面布置和主要设备的说明。本工艺理论上运行可靠,操作简便,出水各项污染指标均达到了国家规定排放标准。

实验四 Fenton试剂氧化法处理废水(1)

实验七Fenton试剂氧化法处理废水 一、实验目的 1、理解Fenton试剂催化氧化的机理及运行因素 2、掌握运用正交方法进行多因素多水平实验的设计 3、对实验结果进行直观分析,确定因素的主次关系及各因素的最佳水平。 二、实验原理 过氧化氢与催化剂Fe2+构成的氧化体系通常称为fenton试剂。Fenton试剂法是一种均相催化氧化法。在含有亚铁离子的酸性溶液中投加过氧化氢时,在Fe2+催化剂作用下,H2O2能产生活泼的羟基自由基,从而引发和传播自由基链反应,加快有机物和还原性物质的氧化。其一般历程为: 所以羟基自由基可与废水中的有机物发生反应,使其分解或改变其电子云密度和结构,有利于凝聚和吸附过程的进行。 Fenton试剂的影响因素有:pH值、H2O2投加量、Fe2+投加量和反应温度。 pH值:Fenton试剂是在酸性条件下发生作用的,在中性和碱性的环境中Fe2+ 不能催化H 2O 2 产生羟基自由基,pH值在3-5附近时去除率最大。 H2O2投加量:H2O2的浓度较低时,H2O2的浓度增加产生羟基自由基量的增 加;H 2O 2 的浓度过高时,过量的H 2 O 2 不但不能通过分解产生更多的羟基自由基, 反而在反应一开始就把Fe2+迅速氧化成Fe3+,使氧化在Fe3+的催化下进行, 这样既消耗了H 2O 2 又抑制羟基自由基的产生。

Fe2+投加量:Fe2+浓度过低,反应速度极慢;Fe2+过量,它还原H2O2且自身氧化为Fe3+,消耗药剂的同时增加出水色度。 反应温度也会对其氧化效果有影响。根据反应动力学原理,随着温度的增加,反应速度加快。但是对于Fenton试剂这样复杂的反映体系,温度升高,不仅加速正反应的进行,也加速副反应。因此,温度对于Fenton试剂处理废水的影响复杂,适当的温度可以击活羟基自由基,温度过高会使双氧水分解成水和氧气,但在工业废水处理中,提高温度耗能较大,一般采用室温下操作,故本实验不考虑该因素的影响。 三、实验用品及装置 1.实验仪器: 搅拌器或振荡器 分析天平 烧杯、移液管、量筒等有关玻璃器皿 COD测定回流装置 2.实验试剂: 30%过氧化氢。 1 mol/L硫酸亚铁溶液:临用前配制,称取2.78g硫酸亚铁溶于10mL水中。 0.1 mol/L高锰酸钾溶液:称取1.58g高锰酸钾溶于100mL水中,存放于棕色瓶内。 0.5 mol/L硫酸。 1 mol/L氢氧化钠。 0.2500 mol/L重铬酸钾标准溶液。 试亚铁灵指示剂。 0.1 mol/L硫酸亚铁铵溶液。

氧化沟工艺设计计算

氧化沟工艺设计计算 Revised by Jack on December 14,2020

1 概述 设计任务和依据 设计题目 20万m3/d生活污水氧化沟处理工艺设计。 设计任务 本设计方案是对某地生活污水的处理工艺,处理能力为200000m3/d,内容包括处理工艺的确定、各构筑物的设计计算、设备选型、平面布置、高程计算。完成总平面布置图、主要构筑物的平面图和剖面图。 设计依据 (1)《中华人民共和国环境保护法》(2014) (2)《污水综合排放标准》(GB8978-2002) (3)《生活杂用水水质标准》(—89) (4)《给水排水设计手册1-10》 (5)《水污染防治法》 设计要求 (1)通过调查研究并收集相关资料经过技术与经济分析,做到技术可行、经济合理。必须考虑安全运行的条件,确保污水厂处理后达到排放要求。同时注意污水处理厂内的环境卫生,尽量美观。设计原则还包括:基础数据可靠;厂址选择合理;工艺先进实用;避免二次污染;运行管理方便。选择合理的设计方案。 (2)完成一套完整的设计计算说明书。说明书应包括:污水处理工程设计的主要原始资料;污水水量的计算、污泥处理程度计算;污水泵站设计;污水污泥处理单元构

筑物的详细设计计算;设计方案对比论证;厂区总平面布置说明等。设计说明书要求内容完整,计算正确文理通顺。 (3)毕业设计图纸应准确的表达设计意图,图面力求布置合理、正确清晰,符合工程制图要求。 设计参数 某地生活污水200000m3/d,其总变化系数为,排水采用分流制。 表1-1 设计要求 项目进水水质(mg/L) 出水水质(mg/L) BOD5 COD SS TN TP 260 400 380 50 8 30 100 30 25 3 2 设计计算 格栅 设计说明 格栅由一组平行的金属栅条或筛网组成,在污水处理系统(包括水泵)前,均须设置格栅,安装在污水管道、泵房、集水井的进口处或处理厂的端部,用以拦截较大的呈悬浮或漂浮状态的固体污染物,以便减轻后续处理构筑物的处理负荷。截留污物的清除方法有两种,即人工清除和机械清除。大型污水处理厂截污量大,为减轻劳动强度,一般应用机械清除截留物。 格栅按形状可分为平面格栅和曲面格栅两种,按格栅栅条间隙可分为粗格栅 (50~100mm),中格栅(10~40mm),细格栅(3~10mm)三种。

Fenton氧化池的设计方案计算.doc

2.11.1机械混合槽 通过投加设备投入H2SO4调整污水的PH值至 3 左右,在线PH 值监控仪 2 套,型号PE-7ES; 酸投加设备 1 套;池体一套:设计处理能力100m 3/d ,池体结构:钢制 ( 加强级防腐、抗渗 ) ,反应时间取,则混合槽的有效容积为: V Qt 100 0.5 2.1m3 24 池体尺寸:L B H2m 1m 1.4m, 其中保护高为。 2.11.2 Fenton氧化池 ①池体结构:钢制( 加强级防腐、抗渗) ,设计处理能力100m 3 /d ,通过两套投加设备 依次投入硫酸亚铁和双氧水,水力停留时间4h,则 池体有效容积为: V Qt 100 4 16.7m3 24 则池体尺寸:L B H 5m 2m 2m, ,其中保护高为。 ②每日投加氧化剂的量的计算 F e SO4的投加率为0.1kg/m 3,则每天投加的 F e SO4量为: W1 0.1Q 0.1 100 10kg , 由于投加的 H 2 O2 / F e SO4 4 : 1,则每天投加的 H 2 O 2量为: W2 4W1 4 10 40kg , 双氧水的 H 2 O2浓度为25%,则每天需要的双氧水量为: W2 40 W3 160kg 。 25% 25% 2.11.3 pH值调整混合槽 ① Fenton 试剂为氧化反应结束后,pH 值通常可升至 5 左右,仍为酸性,不利于后续生

化反应的顺利进行,因此需投入一定碱剂进行中和反应,是污水的pH 值达到;本设计投加

的碱剂为 N a OH ,反应时间取,则混合槽的有效容积为: V Qt 100 0.5 2.1m3 24 池体尺寸:L B H2m 1m 1.4m, 其中保护高为。 ②每日投加的N a OH 量的计算 3 每 kg 污水的PH 值由 5 升至所需投加的N a OH 的量为0.08kg/m , 则每天所要投加的N a OH 的量为: W N a OH 0.08Q 0.08100 8kg / d 通过水力搅拌混合调整PH值,在 线PH值监控 仪 2 套,碱投加设备 1 套。 2.11.4产泥量计算 本构筑物的进水COD为 760mg/L,COD 去除率为50%,按每去除1kgCOD产生 0.4kg 干污泥进行估算,可知:每天去除COD量为: 100 760 50% 10 3 38kg / d 干污泥重: W=38×= 1 根据污泥含水率为98%,则 湿污泥重: W2 15.2 760kg 1 98% 取s 1000kg / m3,则产生的污泥体积为: V2 W2 760 0.76m 3 . 1000 S

氧化沟工艺设计计算

1 概述 1.1 设计任务和依据 1.1.1 设计题目 20 万m3/d 生活污水氧化沟处理工艺设计。 1.1.2 设计任务 本设计方案是对某地生活污水的处理工艺,处理能力为200000m3/d,内容包括处理工艺的确定、各构筑物的设计计算、设备选型、平面布置、高程计算。完成总平面布置图、主要构筑物的平面图和剖面图。 1.1.3 设计依据 (1)《中华人民共和国环境保护法》(2014) (2)《污水综合排放标准》(GB8978-2002) (3)《生活杂用水水质标准》(CJ25.1—89) (4)《给水排水设计手册1-10》 (5)《水污染防治法》 1.2 设计要求 (1)通过调查研究并收集相关资料经过技术与经济分析,做到技术可行、经济合理。必须考虑安全运行的条件,确保污水厂处理后达到排放要求。同时注意污水处理厂内的环境卫生,尽量美观。设计原则还包括:基础数据可靠;厂址选择合理;工艺先进实用;避免二次污染;运行管理方便。选择合理的设计方案。 (2)完成一套完整的设计计算说明书。说明书应包括:污水处理工程设计的主要原始资料;污水水量的计算、污泥处理程度计算;污水泵站设计;污水污泥处理单元构筑物的详细设计计算;设计方案对比论证;厂区总平面布置说明等。设计说明书要求内容完整,计算正确文理通顺。 (3)毕业设计图纸应准确的表达设计意图,图面力求布置合理、正确清晰,符合工程制图要求。

1.3 设计参数 某地生活污水200000m3/d,其总变化系数为1.4,排水采用分流制。 表1-1设计要求 项目进水水质(mg/L)出水水质(mg/L) B0D526030 COD400100 SS38030 TN5025 TP83 2设计计算 2.1格栅 2.1.1设计说明 格栅由一组平行的金属栅条或筛网组成,在污水处理系统(包括水泵)前,均须设置格栅,安装在污水管道、泵房、集水井的进口处或处理厂的端部,用以拦截较大的呈悬浮或漂浮状态的固体污染物,以便减轻后续处理构筑物的处理负荷。截留污物的清除方法有两种,即人工清除和机械清除。大型污水处理厂截污量大,为减轻劳动强度,一般应用机械清除截留物。 格栅按形状可分为平面格栅和曲面格栅两种,按格栅栅条间隙可分为粗格栅 (50~100mm),中格栅(10~40mm),细格栅(3~10mm)三种。 栅条的断面形状有圆形、锐边矩形、迎水面为半圆形的矩形、迎水面背水面均为半圆的矩形几种。而其中具有强度高,阻力损失小的优点⑹0本设计采用两道中格栅、两道细格栅,迎水面为半圆形的矩形的栅条,选用机械清渣

生物接触氧化池的设计计算资料

生物接触氧化池的一般规定 ● 生物接触氧化池由池体、填料、及支架、布水系统和曝气装置等部分组成; ● 通常,氧化池填料高度为3.0~3.5m ,底部布气厚度为0.6~0.7m ,顶部稳定 水层为0.5~0.6m ,池的总高约为4.5~5.0m ,排泥所需的静水头不应小于1.2米; ● 生物接触氧化池的个数或分格数应不小于2个,并按同时工作设计; ● 池长一般不大于10m ,长宽比为1:2~1:1; ● 构造层为0.6~1.2m ,填料层为2.5~3.5m ,稳水层为0.4~0.5m ,超高不小于 0.5m ,有效水深3~5m ; ● 进水导流槽宽度不小于0.8m ,用导流墙分隔,其下缘至填料底部距离 0.3~0.5m ,至池底距离不小于0.4m ; ● 进水BOD 浓度应控制在150~300mg/L ,当进水BOD 为120~150mg/L 时,总气 水比为5:1~6:1; ● 通过填料后,出水中溶解氧浓度为2~3mg/L ; ● 可生化性较低的废水,BOD 负荷为0.8~1.2kgBOD5/m3·d ; ● 为保证布水布气均匀,接触氧化池的单格面积一般不大于25m 4.2设计参数 进水BOD 浓度L a =180.5mg/L 出水BOD 浓度L e =90mg/L 取一级生物接触氧化池的BOD 容积负荷M 为2kgCOD/(m 3·d) 4.3.1生物接触氧化池填料容积 5432 1000)905.180(12000)(=?-?=-=M L L Q W e a 式中 W ——填料的总有效容积,m 3; Q ——日平均污水量,m 3; L a ——进水BOD 浓度,mg/L ; L e ——出水BOD 浓度,mg/L ; M ——BOD 容积负荷率,gCOD/(m 3 ·d)。 4.3.2生物接触氧化池总面积 1813 543===H W A 式中 A ——接触氧化池总面积,m 2;

Fenton试剂法的氧化机理和影响因素

Fenton试剂法的氧化机理和影响因素 简介: Fenton试剂法是目前应用较多的一种催化氧化法。能氧化许 多有机分子且系统不需要高温高压,对大数醇类、酮类、酯类等有较 好的氧化效果,苯酚、氯酚、氯苯等也能被氧化。 1894年,化学家Fenton首次发现有机物在(H202)与Fe2+组成的混 合溶液中能被迅速氧化,并把这种体系称为标准Fenton试剂。在催 化剂作用下,过氧化氢能产生两种活泼的氢氧自由基,从而引发和传 播自由基链反应,加快有机物和还原性物质的氧化。可以将当时很多 已知的有机化合物如羧酸、醇、酯类氧化为无机态,氧化效果十分明 显。接下来我们将从Fenton试剂法的氧化机理和影响因素两个方面 做具体阐述,以便于更好的运用到今后的学习和工作当中去。 1.Fenton试剂法的氧化的机理为: Fe2+ + H2O2→Fe3+ + OH- + ?OH (1) Fe2+ + ?OH→Fe3+ + OH- (2) Fe3+ + H2O2→Fe2+ +HO2?+ H+ (3) HO2?+ H2O2→O2 + H2O + ?OH (4) RH + ?OH→R?+ H2O (5) R?+ Fe3+→R+ + Fe2+ (6) R?+ O2→ROO+??→CO2 + H2O (7) Fe2+与H2O2反应很快,生成?OH,其氧化能力仅次于氟,另外·OH 自由基具有很高的电负性或亲电性,其电子亲和能力具有很强的加成 反应特性。在反应过程中同时有Fe3+生成,Fe3+可以与H2O2反应生成

Fe2+,生成的Fe2+再与H2O2反应生成?OH,可见在反应过程中Fe2+是很好的催化剂。生成的?OH 可以进一步与有机物RH 反应生成有机自由基R?,R?进一步氧化,使有机物结构发生碳链断裂,最终氧化成为CO2和H2O。 2.Fenton试剂法的影响因素: 根据Fenton试剂反应的机理可知,OH·是氧化有机物的有效因子,而[Fe2+]、[H2O2]、[OH-]决定了OH·的产量,因而决定了与有机物反应的程度。影响该系统的因素包括溶液pH值、Fenton试剂的配比、反应温度、H2O2投加量及投加方式、催化剂种类、催化剂与H2O2投加量之比等。 (1)溶液的pH值 Fe2+在溶液中的存在形式受制于溶液的pH值,在中性和碱性环境中,Fe2+不能催化H2O2产生·OH 。普遍认为,当pH值在2一4时,处理效果较好。 (2)Fenton试剂的配比(Fe2+:H202) 在 Fenton反应中,Fe2+起到催化H202产生自由基的作用,在无Fe2+条件下,H2O2难于分解产生自由基,当Fe2+浓度很低时,反应速度很慢,自由基的产生量小,使整个过程受到限制;当Fe2+浓度过高时,会被氧化成Fe3+,造成色度增加。 (3)反应温度 温度对Fenton试剂处理废水的影响较为复杂。适当的温度可以激活·OH自由基,温度升高·OH自由基的活性增大,COD去除率提高,

DE氧化沟设计计算

第五节 DE 氧化沟 一、设计参数 1.污泥浓度:X=2500-4500mg/L ; 2.污泥负荷:; 3.污泥龄:15-30d 。 4.每千克BOD 需氧量:。 5.设计流量Q=100000m 3/d ,设四组,单组设计流量Q 单=s 。 二、设计计算 1.出水中溶解性BOD 5( 设为) mg/L 76.668.0107.042.1)1()()( 42.1523.01=???=-???=?-e T T V S ss ss ss mg/L 24.376.610=-=S 式中: S ——出水溶解性5BOD 浓度,mg/L 。 e S ——出水5BOD 浓度,mg/L 。 1S ——出水中SS 产生的5BOD ,mg/L 。 ss T ——剩余SS 浓度,mg/L 。 2.好氧区容积 v X = ss ss T V ×X=×3500=2450mg/L 3 01m 45.33384)2005.01(45.2100000100024.31852045.0) 1()(=?+????? ??-??= +-= c d v e c k X Q S S Y V θθ 式中: Y ——污泥产率系数,取。 c θ——污泥龄,取20d 。 ss ss T V 1 S S S e -=

S0——进水BOD 浓度。 v X ——挥发性污泥浓度。 d k ——内源代谢系数,取。 X ——污泥浓度,取3500mg/L 。 3.好氧区停留时间 h 92.71 1== Q V t 4.剩余污泥量 kg/d 5.7082100041405.393701.0100000) 77.018.018.0(100000)20 05.0145 .0)(01.0185.0(100000)1(1=-+=?-?-?+?+-?=-++?=?e c d QX QX k Y S Q x θ 5.湿污泥量:设污泥含水率为99.3%P = /d m 5.56210000 %)3.991(5 .37371000)1(3=?-=?-?= p x Q s 每降解51kgBOD 所产生的干泥量 5s 0/kgBOD kgD 42.0)100010185(1000005 .7082)(=-?=-?e S S Q x 6.脱氮 (1)需要氧化的N NH -3量N 1 氧化沟产生的剩余污泥中含氮率为%,则用于生物合成的氮 N 0=%×用于生物合成的剩余污泥量 =%××1000001000 =L 031N N NH TN N 生物合成的氮出水进水---= =40-5-4.88 =L (2)需要脱氮量

生物接触氧化池设计、剩余污泥量计算

生物接触氧化池设计、剩余污泥量计算 接触氧化池主要由池体、填料床、曝气装置及进出水装置等构成,具体结构如图所示。 图3-3 生物接触氧化池的构造示意图 生物接触氧化池设计要点: (1)生物接触氧化池一般不应少于2 座; (2)设计时采用的BOD5负荷最好通过实际确定。也可以采用经验数据,一般处理城市污水可用1.0~1.8kgBOD5/(m3·d),处理BOD5≤500mg/L的污水时可用1.0~3.0 kgBOD5/(m3·d); (3)污水在池中的停留时间不应小于1~2h(按有效容积计); (4)进水BOD5浓度过高时,应考虑设出水回流系统; (5)填料层高度一般大于3.0 m,当采用蜂窝填料时,应分层装填,每层高度为1 m,蜂窝孔径不小于25 mm;当采用小孔径填料时,应加大曝气强度,增加生物膜脱落速度; (6)每单元接触氧化池面积不宜大于25m2,以保证布水、布气均匀; (7)气水比控制在(10~15):1。 因废水的有机物浓度较高,本次设计采用二段式接触氧化法。设计一氧 池填料高取3.5m,二氧池填料高取3m 。 3.5.1 填料容积负荷 Nv=0.2881Se0.7246=0.2881*200.7246=1.443[ kgBOD5/(m3*d)]

式中 N v —接触氧化的容积负荷, kgBOD 5/(m3*d); S e —出水BOD 5值,mg/l 3.5.2 污水与填料总接触时间 t=24*S 0/(1000* Nv)=24*231/(1000*1.443)=3.842(h) 式中S 0 ——进水BOD 5值,mg/L 。 设计一氧池接触氧化时间占总接触时间的60%: t 1=0.6t=0.6*3.842=2.305(h) 设计二氧池接触氧化时间占总接触时间的40%: t 2=0.4t=0.4*3.842=1.537(h) 3.5.3接触氧化池尺寸设计 一氧池填料体积V 1 V 1=Q t 1=1500*2.305/24=144m 3 一氧池总面积A 1-总: A 1-总=V 1/h 1-3=144/3.5=41.2(m 2)>25 m 2 一氧池格数n 取2格, 设计一氧池宽B 1取4米,则池长L 1: L 1=144/(3.5*4)=10.3m 剩余污泥量:在《生物接触氧化池设计规程》中推荐该工艺系统污泥产率为0.3~0.4 kgDS/kgBOD 5,含水率96%~98%。 本设计中,污泥产率以Y =0.4kgDS/kgBOD 5,含水率97%。则干污泥量 用下式计算: W DS =YQ(S 0-S e )+(X 0-X h -X e )Q 式中 W DS ——污泥干重,kg/d ; Y ——活性污泥产率,kgDS/kgBOD 5; Q ——污水量,m 3/d ; S 0 ——进水BOD 5值,kg/m 3; S e ——出水BOD 5值,kg/m 3; X 0——进水总SS 浓度值,kg/m 3; X h ——进水中SS 活性部分量,kg/m 3; X e ——出水SS 浓度值,kg/m 3;。 设该污水SS 中60%可为生物降解活性物质,泥龄SRT 取5d , 则一氧池污泥干重: W DS =0.4*1500*5*(0.231-0.0462)+(0.126-0.126*0.6-0.027)*1500×5 =648.9(kg/5d ) 污泥体积: Q S = W DS /(1-97%)=648.9/(1000*0.03)=21.62m 3 泥斗容积计算公式 Vs=(1/3)*h(A ’+A ’’+sqr(A ’*A ’’) 式中 Vs ——泥斗容积,m 3; h ——泥斗高,m ; A ’——泥斗上口面积,m 2; A ’’——泥斗下口面积,m 2;

相关主题