搜档网
当前位置:搜档网 › 复合材料简介

复合材料简介

复合材料简介

复合材料简介

复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。

复合材料使用的历史可以追溯到古代。从古至今沿用的稻草或麦秸增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。

木塑复合材料

***公司 年产1万吨木塑复合材料技改项目资金申请报告

编制时间:2011年11月 第一章项目单位基本情况及财务状况 1.1项目单位基本情况 ***公司是***人民政府2007年重点招商引资的一家以发展红椿木种植及林产品精加工的涉林企业。企业于2009年入住***工业园区,注册资金1000 万元。主要从事林地流转,发展红椿木种植基地和林产品精加工。公司于2009年被增补授予“***林业产业化龙头企业”称号。 企业现在拥有木材加工厂两座,一座是位于***的木材粗加工厂,一座是位于***木材精加工厂。厂区占地面积总计21938.4平方米。至2010年底公司已投入资金2000余万元,建设宿舍楼及钢结构厂房9446.71平方米,引进先进的木材精加工设备35台套。 企业现阶段主要产品是出口包装箱的围板,连接板及托盘,通过采取销售联盟合作方式产品远销欧美市场,公司已与***木业包装、江苏***木业、江苏***木业签订10年的产业基地、技术、销售三联盟合作协议。通过不断的技术革新,公司已形成年加工2万方的木材加工能力。公司2010年完成销售2561万元。 企业现有职工136人;其中工程技术人员19人。公司领导班子共7人,其中总经理1人,副总经理3人,经理助理1人,工会主席1人,监事会人员1人,公司管理层平均年龄35岁,全部具有大专及以上学历。 企业通过现代社会先进的管理模式与经验,企业管理正步入科学化、人性化。企业有严谨的人、财、物、生产、技术、经营、管理制度,产品生产成本核算可以量化、细化到每一道细小环节,为独成本核算提供科学、切实可行的依据。 ***公司拟在现在现有厂区设备基础上,进行年产1万吨木塑复合材料项目技改,截止2011年11月,已初步完成地坪整理及钢结构厂房建造,项目进度完成40%。 1.2项目单位财务状况 ***公司经过不断的连续投入与飞速发展,截止2010年底公司总资产已达到3946万元。各类财务数据详见下表:

木塑复合材料

木塑复合材料 一,木塑复合材料定义 以木材为主要原料,经过适当的处理使其与各种塑料通过不同的复合方法生成的高性能、高附加值的新型复合材料。又称WPC. 木塑复合材料的基础为高密度聚乙烯和木质纤维,决定了其自身具有塑料和木材的某些特性。 如下图所示

二,木塑复合材料的主要特点 1)良好的加工性能。木塑复合材料内含塑料和纤维,因此,具有同木材相类似的加工性能,可锯、可钉、可刨,使用木工器具即可完成,且握钉力明显优于其他合成材料。机械性能优于木质材料。握钉力一般是木材的3倍,是刨花板的5倍。 2)良好的强度性能。木塑复合材料内含塑料,因而具有较好的弹性模量。此外,由于内含纤维并经与塑料充分混合,因而具有与硬木相当的抗压、抗弯曲等物理机械性能,并且其耐用性明显优于普通木质材料。表面硬度高,一般是木材的2——5倍。 3)具有耐水、耐腐性能,使用寿命长,木塑材料及其产品与木材相比,可抗强酸碱、耐水、耐腐蚀,并且不繁殖细菌,不易被虫蛀、不长真菌。使用寿命长,可达50年以上。 4)优良的可调整性能,通过助剂,塑料可以发生聚合、发泡、固化、改性等改变,从而改变木塑材料的密度、强度等特性,还可以达到抗老化、防静电、阻燃等特殊要求。 5)具有紫外线光稳定性、着色性良好。6)其最大优点就是变废为宝,并可100%回收再生产。可以分解,不会造成“白色污染”,是真正的绿色环保产品。 7)原料来源广泛。生产木塑复合材料的塑料原料主要是高密度聚乙烯或聚丙烯,木质纤维可以是木粉、谷糠或木纤维,另外还需要少量添加剂和其他加工助剂。

8)可以根据需要,制成任意形状和尺寸大小。随着对木塑复合材料的研发,生产木塑复合材料的塑料原料,除了有高密度聚乙烯或聚丙烯以外,还有聚氯乙烯和PS。工艺也由最早的单螺杆挤出机发展成第二代锥形双螺杆挤出机,再到由平行双螺杆挤出机初步造粒,再由锥形螺杆挤出成型,可以弥补难以塑化,抗老化性差、抗蠕变性差、色彩的一致性和持久性差和拉伸强度低的特点,徐州汉永塑料新材料有限公司在这方面取得了显著的成果。所制造的WPC材料完全可以达到GB/T24137和ASTM D7031;ASTM D7032;BS DD CEN/TS15534-3的要求 三,木塑复合材料适用范围 木塑复合材料的最主要用途之一是替代实体木材在各领域中的应用,其中运用最广泛的是在建筑产品方面,占木塑复合用品总量的75%。 塑木板材产品具有广阔的应用前景和市场前景,其应用场合非常广泛。根据材料性能的应用范围和国内外的有关报道,目前已经开发的用途及使用场合如下:公园、球场、街道等场合,特别适合露天桌椅;建筑材料、吊板、屋顶、高速公路噪音隔板等;市政交通方面标记牌、广告板,格栅板,汽车装饰板材等;包装材料、搬运垫板、托盘和底盘;家庭围墙、花箱、篱笆、走道、地板、防潮隔板;各种体育馆装饰板材、地板;铁路枕木、矿井坑木;军事用具、武器附属品;计算机、电视机、洗衣机、冰箱等家电物品的外壳;汽车配件等。将来使用最大市场是逐步替代塑钢、铝合金建材市场

复合材料界面与设计

先进聚合物复合材料界面设计与表征进展 姓名:卢刚班级:材研1005 学号:104972100244 摘要:本文简述了界面的形成与作用机理,着重介绍了聚合物基复合材料界面改进的几种方法。 关键词:聚合物;复合材料;界面 Abstract:This paper briefly describes the formation of the interface and the mechanism of action,mainly introduces some methods about the UI improvement of the polymer-based composites. 1引言 聚合物基复合材料是由纤维和基体结合为一个整体,使复合材料具备了原组成材料所没有的性能,并且由于界面的存在,纤维和基体所发挥的作用,是各自独立而又相互存在的。 界面是复合材料组成的重要组成成分,它的结构与性能,以及粘合强度等因素,直接关系到复合材料的性能。所以,复合材料界面问题的研究有着十分重要的意义。 现代科学的发展为复合材料界面的分析表征提供了强有力的手段。扫描电镜、红外光谱、紫外光谱、光电子能谱、动态力学分析、原子粒显微镜等,在复合材料界面分析表征中得到充分利用,为揭示界面的本质、丰富界面的理论做出了重要贡献。 2界面的形成与作用机理 2.1界面的形成 复合材料体系对界面要求各不相同,它们的成形加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为两个阶段:第一阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程。在复合材料的制备过程中,要求组份间能牢固的结合,并有足够的强度。要实现这一点,必须要使材料在界面上形成能量最低结合,通常都存在一个液态对固体的相互浸润。所谓浸润,即把不同的液滴放到不同的液态表面上,有时液滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。

木塑复合材料概述汇总

木塑复合材料 摘要:木塑复合材料具有比单独的木质材料和塑料产品更优异的品质,是实木的理想替代品,它的出现可以减少废弃木料和塑料对环境的污染,也适应现代材料复合化发展的规律。本文介绍了木塑复合材料的定义、特点、加工工艺、分类和应用以及未来发展的趋势,并对木塑复合材料的优缺点进行了分析,充分肯定了发展木塑复合材料的必要性和可行性。 关键词:木塑;性能;加工工艺;分类;应用;发展趋势 随着森林资源的减少,木材供应量逐渐下降,已不能满足人们的生产生活需要。同时,塑料制品废旧物的处理也日益成为一个急待解决的环境问题。一种新型材料——木塑复合材料成为木材的理想代用品。木塑复合材料系使用木粉或植物纤维超高份额填充热塑性塑料树脂或热塑性塑料再生料,添加部分相关改性剂,经挤出成型为板材、型材、管材而成。此类产品可替代相应木制品,人们由此可节约大量的森林资源,处理掉大量的废旧塑料及木材加工中产生的废弃木粉,故可大大有利于保护并改善生态环境,是符合2l世纪发展方向的环保型化工新材料。 1 木塑复合材料定义及特点 1.1 木塑复合材料的定义 木塑复合材料是以锯末、木屑、竹屑、稻壳、麦秸、谷糠、大豆皮、花生壳、甘蔗渣、棉秸杆等初级生物质材料为主原料,利用高分子界面化学原理和塑料填充改性的特点,配混一定比例的塑料基料,经特殊工艺处理后加工成型的一种可逆性循环利用、涵盖面广、产品种类多、形态结构多样的基础性材料,目前国内外对此称谓不一,也有将其称之为:塑木、环保木、科技木、再生木、聚合木、聚保木、塑美木或保利木,英文名称:Wood-Plastic Composites,缩写为WPC。一般说来,以生物质材料为基添加一定比例的塑料原料制成的材料,或以塑料原料为基添加一定比例的生物质材料制成的材料,均可称为木塑复合材料。 1.2 木塑复合材料的特点: (1)原料资源化,其生物质材料部分基本分为废弃物利用,来源广泛,价值低廉;塑料组分要求不高,新、旧料或混合料均可,充分体现了资源的综合利用和有效利用; (2)产品可塑化,木塑产品为人工整体合成制品,可根据使用要求随机调整产品工艺和配方,从而生产出不同性能和形状的材料,其型材利用率接近100%; (3)应用环保化,木塑材料的木/塑基料及其常用助剂均环保安全,无毒无害,其生产加工过程中也不会产生副作用,故对人体和环境均不构成任何危害; (4)成本经济化,即木塑制品实现了低价值材料向高附加值产品的转移,不仅维护费用极低,而且产品寿命数倍于普通天然木材,综合比较具有明显的经济优势; (5)回收再生化,即木塑材料的报废产品及回收废品均可100%的再生利用,且不会影响产品使用性能,能够真正实现“减量化、再生化、资源化”的循环经济模式。

复合材料结构分析总结

复合材料结构分析总结 说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀 目录 1# 复合材料结构分析总结(一)——概述篇 5# 复合材料结构分析总结(二)——建模篇 10# 复合材料结构分析总结(三)——分析篇 13# 复合材料结构分析总结(四)——优化篇 做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。 (一)概述篇 复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。 在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。 采用ANSYS程序对复合材料结构进行处理的主要问题如下: (1)选择单元类型 针对不同的结构和输出结果的要求,选用不同的单元类型。 Shell 99 ——线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10; Shell 91 ——非线性结构壳单元,这种单元支持材料的塑性和大应变行为; Shell 181——有限应变壳单元,这种单元支持几乎所有的包括大应变在内的材料 的非线性行为; Solid 46 ——三维实体结构单元,用于厚度较大的复合材料层合壳或实体结构;

最新版木塑复合材料(WPC)可行性研究报告

木塑复合材料(WP)C 项 目 建 议 书 二0 一一年九月

二、项日提出的背景和发展概况 三、项目研究的依据 四、项日建设的必要性和意义 五、项目建设的有利条件 六、产品市场预测和项目建设规模 七、工程技术方案 八、环境保护与劳动安全 九、项目进度安排 十、投资估算和资金筹措 H^一、经济效益和社会效益分析十二、财务与敏感性分析 十三、结论及建议

第一章项目概况 一、项目名称:木塑复合材料(WPC )项目 二、承办单位:** 木业有限公司 三、项目负责人:** 四、项目性质:新建 五、建设地址:** 六、建设规模: 项目占地8000 平方米。新建厂房4200 平方米,办公楼1600 平方米,宿舍900 平方米,仓库1800 平方米,购进先进设备。建设年产1.5 万吨木塑复合材料生产线。 七、项目总投资与资金筹措: 项目总投资人民币3600 万元,固定资产投资2800 万元,流动资金800 万元。资金为企业自筹。 项目分二期实施,计划第一期(2011 年12 月-2012 年 5 月)投资800 万元,在** 经济区内规划整理土地15 亩,进行基础设施的建设。第二期(2012 年6 月-2013 年5 月)投资1800 万元完善基础设施建设和购进设备进行试生产。 八、项目经济效益分析: 该项目顺利投产后预计年销售额5000 万元,生产成本投入2840 万元。销售税金及附加560 万元。年实现利润2040 万元。项目投资回收期为 2.45 年,投资利润率为40.8% 。 九、合作方式:独资或合资 第二章项目提出的背景和发展概况 一、项目建设背景和意义 随着人们环保意识的加强,要求保护森林资源,减少利用新木材的呼声日趋高涨,回收利用成本低的废旧木材和塑料成为工业界和科学界普遍关注的问题,促进和推动了对木塑复合材料WPC (Wood Plastic Composite)的研究和开发工作,并取得了实质性进展,其应用也呈加速发展态势。 众所周知,废木材和农业纤维以前都只能焚烧处理,产生的

木塑复合材料及其材料配方

木塑复合材料及其材料配方 木塑复合材料是采用热熔塑胶,包括聚乙烯、聚丙烯、聚氯乙烯以及它们的共聚物作为胶粘剂,用木质粉料如木材、农植物秸杆、农植物壳类物粉料为填充料,经挤压法成型或压制法、注塑法成型所形成的复合材料。其中的热熔塑胶原料可采用工业或生活的废弃料,木粉也可以采用木材加工的下脚料、小径材等低品质木材。从生产原料的角度而言,木质塑料制品减缓和免除了塑料废弃物的公害污染,也免除了农植物焚烧给环境带来的污染。复合过程中材料配方的选择涉及到如下几个方面: 1.聚合物 用于木塑复合材料加工中的塑料可以是热固性塑料和热塑性塑料,热固性塑料如环氧树脂,热塑性塑料如聚乙烯(PE)、聚丙烯(PP)及聚氧乙烯(PVC)。由于木纤维热稳定较差,只有加工温度在200℃以下的热塑性塑料才被广泛使用,尤其是聚乙烯。塑料聚合物的选择主要依据有:聚合物的固有特性、产品需要、原料可得性、成本及对其熟知的程度。如:聚丙烯主要用于汽车制品和日用生活品等,聚氯乙烯主要用于建筑门窗、铺盖板等。此外,塑料的熔体流动速率(MFI)对复合材料性能也有一定影响,在相同加工工艺条件下,树脂的MFI较高,木粉的总体浸润性较好,木粉的的分布也越均匀,而木粉的浸润性和分布影响复合材料的机械性能,尤其是冲击强度。 2.添加剂 由于木粉具有较强的吸水性,且极性很强,而热塑性塑料多数为非极性的,具有疏水性,所以两者之间的相容性较差,界面的粘结力很小,常需使用适当的添加剂来改性聚合物和木粉的表面,以提高木粉与树脂之间的界面亲和能力。而且,高填充量木粉在熔融的热塑性塑料中分散效果差,常以某种聚集状态的形式存在,使得熔体流动性差,挤出成型加工困难,需加入表面处理剂来改善流动性以利于挤出成型。同时,塑料基体也需要加入各种助剂来改善其加工性能及其成品的使用性能,提高木粉和聚合物之间的结合力和复合材料的机械性能。常用的添加剂包括如下几类: a)偶联剂能使塑料与木粉表面之间产生强的界面结合;同时能降低木粉的吸水性,提高木粉与塑料的相容性及分散性,所以复合材料的力学性能明显提高。常用的偶联剂主要有:异氰酸盐、过氧化异丙苯、铝酸酯、酞酸酯类、硅烷偶联剂、马来酸酐改性聚丙剂(MAN-g-PP)、乙烯-丙烯酸酯(EAA)。一般偶联剂的添加量为木粉添加量的1wt%~8wt%,如硅烷偶联剂可以提高塑料与木粉的粘结力,改善木粉的分散性,减少吸水性,而用碱性处理木粉只能改善木粉的分散性,不能改善木粉的吸水性及其与塑料的粘结性。需注意的是马来酸盐偶联剂与硬脂酸盐润滑剂会发生相斥的反应,一起使用时导致产品质量和产量降低。 b)增塑剂对于一些玻璃化温度和熔融流动粘度较高的树脂如硬度PVC,与木粉进行复合时加工困难,常常需要添加增塑剂来改善其加工性能。增塑剂分子结构中含有极性和非极性两种基因,在高温剪切作用下,它能进入聚合物分子链中,通过极性基因互相吸引形成均匀稳定体系,而它较长的非极性分子的插入减弱了聚合物分子的相互吸引,从而使加工容易进行。在木塑复合材料中常要加入的增

热塑性木塑复合材料

热塑性木塑复合材料 木塑复合材料( WoodPlast ic Composite, WPC)是指采用木纤维或植物纤维填充、增强的改性热塑性材料。与木材相比, WPC 能够连续挤出, 能够获得任意横截面; 尺寸稳定性和精确性良好, 几乎不产生废料; WPC 可以采用与木材一样的方法进行加工, 因此其户外维修的费用非常低; 为了更美观, 可以给WPC 上漆, 这一点比绝大部分塑料都要容易; 另外WPC 的户外耐久比软木要好, 使用时间预期为25~ 30 年。 热塑性塑料基体主要为PE、PP、PS 等聚烯烃和聚氯乙烯, 包括新料、回收料以及二者的混合料; 木纤维有废木粉、刨花、锯木; 其他植物纤维有粉碎处理过的稻秆、花生壳、椰子壳、甘蔗、亚麻、泽麻、黄麻、大麻等。废木可以从倒塌或坏死的树木获得, 也可以从传统木材加工过程中回收。木纤维和植物纤维对成型设备磨损小, 尺寸稳定性良好,电绝缘性优, 无毒, 可反复加工, 能生物降解。可见, 进行WPC 制备、加工的研究有巨大的环保意义和经济效益, 其应用有广阔的前景。 虽然木塑复合材料力学性能比木材要好,但目前TWPC大都作为非结构材料。对施工和建筑应用来说,能否在各种环境下保持所需力学性能非常重要。有人对在海水环境中腐蚀2年的TRIMAX木塑材料(HDPE类)做性能测试,没有发现翘曲等变形或开裂,尺寸变化也在生产厂商标明的允许范围内,材料的模量和强度只有很小的变化。疲劳测试中,由于木成分会升温,而塑料对温度敏感,所以木塑材料的疲劳性能难以测试。木塑材料的螺钉联结强度随温度的降低而增加。 木材是极性亲水性物质, 大多热塑性聚合物为非极性憎水性物质, 因此必须采取各种措施来提高木- 塑界面相容性。前目采用的方法主要有: 对木材进行乙酰化或硬脂酸化处理、聚甲基丙烯酸甲酯处理、马来酸酐处理等。另外由于绝大多数木材是以粉末或短纤维态与热塑性塑料复合的, 它们不易混合而易生成毛团状, 同时极性纤维与非极性塑料难以相容胶合, 造成复合体力学性能低劣。因此, 木塑复合材料在生产中的最大问题除了相容性之外还有分散性问题。相容剂可以改善木纤维在聚烯烃树脂中的分散性, 而偶联剂可以改善木纤维与树脂之间的粘结, 因而可以提高木纤维塑料复合材料的拉伸强度、弯曲强度和冲击强度; 降低木纤维塑料复合材料的吸水率; 提高热塑性木纤维复合材料在湿态条件下的力学性能的保 留率以及热变形温度。用于WPC 的偶联剂有硅烷偶联剂、钛酸酯偶联剂等。 通常认为乙酰化处理原理是纤维组分的羟基与乙酸酐的酰基反应。由于木纤维中排列紧密, 有强交联键的结晶区的羟基完全不可接触到, 因此参与反应的羟基只是纤维组分( 木质素、半纤维和无定形纤维) 的小部分。乙酰化作用能降低木材在水中的膨胀, 大大减少天然纤维的吸水, 提高界面剪切强度, 增加纤维表面自由能。纤维含量80~ 90w t%时, 乙酰化可提高尺寸稳定性。硬脂酸作为胶粘剂可对纤维表面改性。利用羧基COOH 与纤维的羟基发生酯化反应, 从而减少与水键合的羟基数量。此外, 硬脂酸的长烃链是憎水基团, 能为纤维提供特别保护。 用硅烷偶联剂对木纤维处理后, 再接枝甲基丙烯酸甲酯单体, 同时使MMA 适当聚合, 也是一种木纤维改性的方法。通常认为, 将MMA 单体在常温真空浸渍木纤维要比在非真空条件下的浸渍效果好。但若采用甲醇作为MMA 的膨胀溶解剂, 能极大提高接枝率、拉伸强度、弯曲强度和压缩强度, 并可以获得与真空条件相似效果。 马来酸酐处理后制得的WPC 硬度大大提高, 并且可以限制样品膨胀, 阻止水及蒸汽的吸收, 这方面对硬木的效果最为明显。

木塑复合材料

物流管理1班 木塑复合材料 木塑复合材料是以废旧塑料、木粉为原料,按一定比例混合,并添加特制的助剂,经高温、挤压、成型等工艺制成的一种新型复合材料。其性能优良、用途广泛、利于环保,并有广阔的发展远景,值得大力研发推广。 木塑复合材料的加工工艺:木塑材料的技术特点是把两大类差异较大的不同材料相互混合在一起,即将木材塑料合二为一成复合材料。 木粉作为塑料的一种有机填料,具有来历广泛、价格低廉、密度低、绝缘性好等许多其他无机填料所无法相比的优良性能。但它并没有像无机填料那样得到广泛应用,主要原因在于:一是与基体树脂的相容性较差;二是在熔隔的热塑性塑猜中分离效果差,造成活动性差和挤出成型加工困难。由于木粉中主要成份是纤维素,含有大量的羟基,这些羟基形成分子间氢键或分子内氢键,使木粉具有吸水性,且极性很强。而热塑性塑料多数为非极性,具有流水性,所以二者之间的相容性较差,界面的粘接力很小,需要通过使用添加剂改性塑料和木粉的表面,进步它们之间界面的亲和力。改性的木粉具有加强性质,能够很好地传递填料与塑料之间的应力,从而到达加强复合材料强度的作用。 挤出成型、热压成型、注射成型是加工木塑复合材料的主要成型方法。由于挤出成型加工周期短、效率高,因此挤出成型方法是一种较为常用的工艺线路。 从木塑复合材料工艺技术特点来看,主要有以下几类:从原料使用方面来看,一类使用的塑料原料为纯塑料或贸易级塑料;另一类是使用具有一定特性的单组分废旧塑料。从加工工艺方法来看,一类是二步成型法,即塑料与木粉造粒后再进行成型加工;另一类是一步成型法,即塑料与木粉混合后直接进行成型加工。 从成型机理方面来看,一类是物理成型,即使用热隔性粘合剂,在成型过程中将塑料与木粉粘合在一起;另一类是物理化学成型,即通过加入添加剂,在压力和温度的控制下,使原料混合物同相对低分子的添加剂一起转变为高分子状态的网状纤维材料。采用这种工艺制成的材料,内部结构完全是融合后重生的网状分子结构,比其他工艺生产出的木塑产品的抗弯、抗压、抗冲击强度要好。木塑复合材料的性能特点与应用: 木塑复合材料具有如下优点:易于加工。木塑材料内含聚酯和纤维,因此具有同木材相类似的加工性能,可锯、可钉、可刨,使用木匠工具便可完成,且握钉力明显优于其他合成材料;强度高、耐用性好。木塑复合材料具有较好的弹性模量。另外,由于内含木质纤维并经树脂固化,因而具有与硬木相当的抗压、抗冲击等物理机械性能,并且其耐用性明显优于普通木质材料;耐水、耐腐蚀。木塑材料及其产品可抗强酸碱,耐水、耐腐蚀,并且不繁殖细菌,不容易被虫蛀,不长真菌;可调整性强。通过加入不同的助剂,聚酯可以发生聚合、发泡、固化、改性等变化,从而改变木塑材料的密度、强度等特性,符合抗老化、防静电、阻燃等特殊要求;原料来历广泛。木塑材料除了使用一定数目的助剂以外,95%以上的原料均为聚酯和木质纤维,其来历广,价格低廉。 木塑复合材料应用于包装行业主要是托盘、包装箱、集装用具等。仅以托盘为例,目前,北美地区托盘用量每一年高达 2 亿多个;日本托盘用量每一年约 600 万个;据预测,往后几年内我国木托盘的年均匀使用量可能会突破 2000 万个。因而在国内外有很大的市场需求。 木塑材料因具有耐潮、防虫蛀等特点,适用于仓储行业使用的货架铺板、枕木、铺梁、地板等。在我国,仓储行业应用木塑材料虽刚开始,但需求量却在迅速增加。

基于ANSYS的大型复合材料风力机叶片结构分析

国 防 科 技 大 学 学 报 第32卷第2期 JOURNA L OF NA TIONA L UNIVERSITY OF DEFE NSE TECHNO LOGY V ol.32N o.22010文章编号:1001-2486(2010)02-0046-05 基于ANSYS的大型复合材料风力机叶片结构分析Ξ 周鹏展1,2,3,肖加余1,曾竟成1,王 进2,杨 军2 (1.国防科技大学航天与材料工程学院,湖南长沙 410073; 2.株洲时代新材料科技股份有限公司,湖南株洲 412007; 3.长沙理工大学能源与动力工程学院,湖南长沙 410076) 摘 要:基于ANSY S软件,对某款应用于G L3A风场的1500kW大型复合材料风力机叶片进行了结构分析。分析结果表明:该叶片的振型以一阶挥舞和一阶摆振为主,其频率分别为0186H z和1159H z;在极限挥舞 载荷作用下,该叶片有限元模型计算得到的叶尖挠度为81445m,而该叶片全尺寸静力试验得到的极限挥舞载 荷作用下的叶尖挠度为8112m,计算值与试验值的误差只有318%;另外,该叶片的最大计算拉应力和压应力 分别为228MPa和201MPa,而该叶片玻纤Π环氧复合材料实测拉伸强度和实测压缩失稳强度分别为720MPa和 380MPa,其计算最大应力只有对应实测极限强度的3117%和5219%。 关键词:复合材料;风力机叶片;结构分析;极限挥舞载荷 中图分类号:TK8 文献标识码:A Structural Analysis of Large2scale Composite Wind Turbine B lade B ased on ANSYS ZH OU Peng2zhan1,2,3,XI AO Jia2yu1,ZE NGJing2cheng1,W ANGJin2,Y ANGJun2 (1.C ollege of Aerospace and M aterial Engineering,National Univ.of Defense T echnology,Changsha410073,China; 2.Zhuzhou T imes New M aterial T echnology C o.Ltd.,Zhuzhou412007,China; 3.C ollege of Energy and P ower Engineering,Changsha Univ.of Science&T echnology,Changsha410076,China) Abstract:Based on the ANSY S s oftware,the structural analysis of a kind of1500kW large2scale com posite wind turbine blade which applied in G L3A wind farm was carried out.The analysis results show that the vibration m odes of this blade are mainly presented as first flapwise m ode and first edgewise m ode,the frequencies of the vibration are respectively0.86H z and1.59H z.At the action of ultimate flapwise loads,the FE M analysis results show that the blade tip deformation is8.445m,while the blade tip deformation of the full scale blade under static test is8.12m,s o the deviation between the calculated and tested value of the blade tip deformation is only 3.8%.M oreover,the calculated maximum tensile stress and the com pressive stress are228MPa and201MPa,while the tested tensile strength and com pressive buckling strength of the glass2fiberΠepoxy com posite are720MPa and380MPa,respectively.C onsequently,the percentages of the calculated maximum stress and the tested ultimate strength are respectively31.7%and52.9%. K ey w ords:com posite;wind turbine blade;structural analysis;ultimate flapwise load 风力机叶片是风力发电机组的关键部件之一,随着世界风力发电机组向大功率方向发展,风力机叶片的长度越来越长,目前世界最长的复合材料风力机叶片是丹麦LM公司生产的,其长度已达6115m,单片重约18t,从而对叶片结构的强度、刚度、重量等的设计提出了更高的要求[1-3]。复合材料具有比强度高、比刚度高、重量轻、可设计性强、承力性能好等特点[4-5],因而在大型风力机叶片中获得了广泛应用。风力机叶片的结构分析作为风力机叶片结构设计的技术基础之一,开始在大功率风力机叶片结构的校核与优化设计中发挥着日益重要的作用。 由于大型复合材料风力机叶片的外形结构和铺层结构都非常复杂,其外形由不同翼型构建而成,属Ξ收稿日期:2009-09-22 基金项目:国家863计划资助项目(2007AA03Z563);中国博士后科学基金资助项目(20070420832);湖南省科技资助项目(2008RS4033) 作者简介:周鹏展(1973—),男,博士后。

Ansys复合材料结构分析操作指导书

Ansys10.0 复合材料结构分析操作指导书

第一章概述 复合材料是两种或两种以上物理或化学性质不同的材料复合在一起而形成的一种多相固体材料,具有很高的比刚度和比强度(刚度和强度与密度的比值),因而应用相当广泛,其应用即涉及航空、航天等高科技领域,也包括游艇、风电叶片等诸多民用领域。由于复合材料结构复杂,材料性质特殊,对其结构进行分析需要借助数值模拟的方法,众多数值模拟软件中Ansys是个不错的选择。 Ansys软件由美国ANSYS公司开发,是目前世界上唯一一款通过ISO9001质量体系认证的分析设计软件,有着近40年的发展历史,经过多次升级和收购其它CAE(Computer Aided Engineering )软件,目前已经发展成集结构力学、流体力学、电磁学、声学和热学分析于一体的大型通用有限元分析软件,是一款不可多得的工程分析软件。Ansys在做复合材料结构分析方面也有不俗的表现,此书将介绍如何使用该款软件进行复合材料结构分析。在开始之前有以下几点需要说明,希望大家能对有限元法有大体的认识,以及Ansys软件有哪些改进,最后给出一些学习Ansys软件的建议。 1、有限元分析方法应用简介 有限元法(Finite Element Method,简称FEM)是建立在严格数学分析理论上的一种数值分析方法。该方法的基本思想是离散化模型,将求解目标离散成有限个单元(Element),并在每个单元上指定有限个节点(Node),单元通过节点相 连构成整个有限元模型,用该模型代替实际结构进行结构分析。在对结构离散后,要求解的基本未知量就转变为各个节点位移(Ansys中称之为DOF(Degree Of Freedom),试想一下,节点的位移包括沿x,y,z轴的平动和转动,也就是节点的自由度),节点位移通过求解一系列代数方程组得到,在求得节点位移后,利用节点位移和应力、应变之间的关系矩阵就可以求出各个节点上的应力、应变,应用线性插值便可以获得单元内任意位置的位移、应力、应变等信息。 2、Ansys软件的发展近况 Ansys软件目前已发展到Ansys V12版本,从V10开始Ansys加入了一个新的工作环境Workbench,原先的Ansys被称为Ansys (classic),虽然操作界面不同,但两者的求解器是一样的。Ansys (classic)的前处理功能相对较弱(主要是建模方面),因而往往需要借助第三方软件,如CAD软件。也许是迫于另一个有限元分析软件ABQUS的竞争压力,Ansys推出了新的Workbench工作环境,Workbench在建模、划分网格、求解和后处理上都作了改进,尤其在建模和划分

木塑复合材料的分类及改性

木塑复合材料的分类及改性木塑复合材料(Wood-plastic composites,简称WPC)是采用木材加工剩余物、森林抚育剩余物、废旧木材、农作物秸秆等木质纤维材料和废旧热塑性塑料为主要原料,通过挤出、压制等成型方式形成的复合材料[1]。木塑复合材料既具有木质纤维材料的高强度和高弹性,又具有塑料的高韧性和耐疲劳等优点,是一种既似木材又优于木材的新型代木材料[2]。 2010 年中国国内木材需求总量约为3.6亿m3,供需缺口达到1.2亿m3。随着需求的增加,供需缺口逐年增大,预计2015年达1.5 亿m3,2020年达2亿m3,到2050年接近6亿m3[3]。木材资源供应愈发严重不足的形势将在一定程度上影响我国整个国民经济的发展。速生丰产木材因其生长周期短、成材率高、经济效益好等显著特点而受到越来越多厂商和研究者的青睐。我国人工速生林主要品种有杨木、柳木、桦木、泡桐和桉木等。然而,速生木材与天然针叶木、阔叶木相比,存在着材质差、纤维短、易变形、易腐朽虫蛀等缺点,无法满足高档次木材加工业的要求,缺乏应用价值与经济价值。因此,研究者以基于物理、化学原理的新技术对速生木材进行改性,使其性能得到大幅度提升甚至达到优质天然木材的性能[4],早在20 世纪30 年代,改性后的压缩木就曾用于欧美军用飞机以防雷达探测,目前速生木材改性技术是世界发达国家重点研究的技术领域之一。木塑复合材料(WPC) 就是木材改性的一种。 木屑是木塑复合材料的主要原料之一。目前纳入国家和地方生产计划的林区和大中城市制材加工厂,每年要产生大约250 万吨木屑,其中只有一小部分得到利用,大部分被丢弃,造成一定程度的环境污染和原料浪费。废旧塑料是木塑复合材料的另一主要原料,据我国轻工部门统计,2000年全国塑料制品总产量

-复合材料结构分析与成形原理

树脂基复合材料缠绕成型工艺的研究与应用 姓名:刘伟萍 (西北工业大学机电学院, 陕西西安710072) 摘要:随着我国航空事业的发展,先进材料方面的需求越来越急迫,复合材料各方面的 优秀性能使得它在飞机上的应用越来越广泛。现阶段我国在复合材料方面虽然取得了一 定进展,但在成型工艺方面与欧美等国家还存在一定差距。复合材料的成型工艺方法很 多,本文主要介绍了树脂复合材料缠绕成型工艺的特点、工艺流程、及现阶段还存在的 一些问题和相应的解决办法。 关键字:树脂基复合材料缠绕成型工艺流程 The Research and Application of Winding And Forming Process of Polymer Composites Abstract:With the development of Chinese aviation industry,the demand in the spects of advanced materials become more urgent.Because of the excellent properties of composites,it is applied more and more widely in the aircraft.Nowadays,China has made some progress in terms of composite materials ,But in terms of composites forming process,there is still a gap between China and westen developed countries like America and UN.There is A lot of methods in c omposites and winding forming process,this paper describes the characteristics、forming process of polimer composites,it also introduces some problems and corresponding solutions. Keyword:Polymer Composites Winding And Forming Process technological process 1 绪论 1.1复合材料的应用与研究 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料具有质量轻、比强度、比模量高,较好的延展性、抗腐蚀、隔热、隔音、耐高温、性能可设计性等特点,因此被大量用于航空航天等军事领域和民用领域,是制造飞机、火箭、航天飞行器等的理想材料。 在航空工业中,复合材料的应用越来越广泛,而且成为衡量飞机性能的重要参数。复合材料成型技术在应用过程中不断积累应用经验,提高技术水平, 完善

木塑复合材料综述

木塑复合材料发展与研究 朱东锋 (浙江工商大学环境学院,浙江杭州310012) 摘要:本文着重阐述了木塑复合材料的发展历史及与研究现状,通过结构特性和影响因素的分析,最后对我国未来发展的趋势,提出了一些针对性的建议。 关键词:木塑复合材料;因素;发展趋势;建议 Abstract: This paper focuses on the development history and the status of wood-plastic composite through analysis of the structural characteristics and. Influencing factors, the last of China’s future developments trends, made a number of specific recommendations Keywords: Wood-plastic composite materials; Factors; Developments trends; Recommendations 1 前言 1.1 木塑复合材料的背景 木塑复合材料(Wood plastic composites,简称WPC)是采用木质纤维或植物纤维填充、增强,经热压复合、熔融挤出等不同加工方式制成的改性热塑性材料。近年来,木塑复合材料引起了科技界和工业界的极大关注,是当今世界上许多国家逐步研究推广应用的新型材料。其原因是:现代生活中人们对塑料的依赖性越来越强,从简单的生活器具到昂贵的家用电器,从办公日用品到尖端的科学仪器,无处不昭示着塑料的存在。然而,人们在享受便利生活、感叹科技发达的同时,又被挥之不去的白色污染所困扰。 为此,目前世界各国都投入人力、物力,开发各种废旧塑料回收利用的技术,致力于降低塑料回收利用的成本和开发其合适的应用领域。此外,目前全球森林资源日渐枯竭,人们已经认识到森林在保护环境,维持生态平衡中的重要作用,限伐、禁伐森林的法令不断颁布,对于木材的利用提出高的要求。一方面尽量减少木材的采伐量,推进寻找木材的替代品,另一方面要提高木材的利用率。传统木材的使用中有25%~30%属于“废料”,如何将这些边角料加以利用,提高木材工业利用效率。WPC产品恰好为废旧塑料的循环利用提供了良好的出路、它的代木作用又对节省木材资源起到了不容忽视的作用[1]。

纳米复合材料

纳米复合材料 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。我们制备的纳米蒙脱土/PA6复合材料中,纳米蒙脱土的层间距为1.96nm,处于国内同类材料的领先水平(中国科学院为1.5~1.7nm),蒙脱土复合到尼龙基体中后完全剥离成为厚度1~1.5nm的纳米微粒,其复合材料的耐温性能、阻隔性能、抗吸水性能均非常优秀,此材料已经实现了产业化;正在开发的纳米TiO2/聚丙烯复合材料具有优良的抗菌效果,纳米TiO2粉体在聚丙烯中分散达到60nm以下,此项技术正在申报发明专利。由于纳米聚合物复合材料的成型工艺不同于普通的聚合物,本方向还积极开展新的成型方法研究,以促进纳米复合材料产业化的进行。碳纳米管是上个世纪九十年代初发现的一种新型的碳团簇类纤维材料,具有许多特别优秀的性能。我们在碳纳米管取得的研究成果主要包括:1)大规模生产多壁碳纳米管的技术,生产出的碳纳米管的质量处于世界先进水平,生产成本也很低,为碳纳米管的工业应用创造了条件。2)开发了制造碳纳米管为电极材料的双电层大容量电容器的技术。3)开发了制造具有软基底定向碳纳米管膜的技术。钨铜复合材料具有良好的导电导热性、低的热膨胀系数而被广泛地用作电接触材料、电子封装和热沉材料。采用纳米粉末制备的纳米钨铜复合材料具有非常优越的物理力学性能,我们采用国际前沿的金属复合盐溶液雾化干燥还原技术成功制备了纳米钨铜复合粉体和纳米氮化钨-铜复合粉体,目前正在加紧其产业化应用研究。 功能复合材料 功能复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。统称为功能复合材料。功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。多元功能体的复合材料可以具有多种功能。同时,还有可能由于复合效应而产生新的功能。多功能复合材料是功能复合材料的发展方向。 塑木复合材料 塑木是以锯末、木屑、竹屑、稻壳、麦秸、大豆皮、花生壳、甘蔗渣、棉秸秆等低值生物质纤维为主原料,与塑料合成的一种复合材料。它

相关主题