搜档网
当前位置:搜档网 › 集成运放放大器的应用设计报告

集成运放放大器的应用设计报告

集成运放放大器的应用设计报告
集成运放放大器的应用设计报告

集成运算放大器的应用

--2011年全国电子大学生电子设计竞赛综合测评题

7 黄荣

一、设计要求:

使用一片通用四运放芯片LM324组成电路框图见图1(a),实现下述功能:

使用低频信号源产生ui1=0.1*sin(2*π*fo*t) (V),fo=500Hz的正弦信号,加至加法器的输入端,加法器的另一输入端加入资质振荡器产生的正弦波信号,uo1的峰峰值为4V,波形上下对称,T1=0.5ms,允许T1有±5%的误差。

要求加法器的输出电压ui2=10ui1+uo1。ui2经选频滤波器滤除uo1频率分量,选出fo 信号为uo2,uo2为峰峰值等于9V的正弦信号,用示波器观察无明显失真。Uo2信号再经比较器后在1kΩ负载上得到峰峰值为2V的输出电压uo3。

电源只能选用+12V和+5V两种单电源,由稳压电源供给。不得使用额外电源和其它型号运算放大器。

要求预留ui1、ui2、uo1、uo2、uo3的测试端子。

二、设计原理multisim

1、设计原理

2.电路原理与参数计算:

1. 三角波产生器

通常三角波发生器需要运用2只运放,加法器、滤波放大器、比较器各一只,而题目要求4只运放,可以考虑一只运放产生方波信号,然后利用无源积分器电路实现三角波信号。由电容充放电,在电容两脚之间即可得到三角波,由两个电位器调节输出电压和输出三角波频率的大小。

2. 加法器电路

使用低频信号源产生ui1=0.1*sin(2*π*fo*t) (V),fo=500Hz的正弦信号,加至加法器的输入端,加法器的输出电压ui2=10ui1+uo1。uo1为三角波产生器产生的频率为2kHZ,峰峰值为4V的对称波形信号。

3.滤波放大电路电路采用二阶压控电压源低通滤波器电路。由上面的原理图可见,它是由两节RC滤波电路和同向比例放大电路组成,其中同向比例放大电路实际上就是所谓的压控电压源。此电路可以很好的滤除合成波中2KHz的三角波分量,留下500Hz 的正弦波信号,放大信号4倍,得倒9V输出电压。

4.比较器电路

电压比较器时对两个模拟电压比较器大小,比判断出其中哪一个电压高,比较器输入有一个同向输入端和一个反向输入端,一般设置其中一个端的输入电压为参考电压,V+>V-,输出高电平;V+

三、仿真波形

1、三角波产生电路

2.加法器电路

3.滤波放大电路

4.比较器电路

四、实验现象和结果

五、实验心得

焊接时,将运放取下来,防止烧坏。连通电路前,检查电源正负极是否接反,防止运放被烧坏。通过这次课程设计,我学到了很多的东西,不仅巩固了所学的知识,而且学到了很多在书本上学不到的东西,更加熟悉了multisim这个平台的使用方法。通过这次课程设计使我懂得了理论与实际相结合的重要性,只有理论知识是远远不够的,只有把所学的理论知识与实际相结合起来,从理论中得出结论,才是真正的知识,才能提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到了各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学的知识理解不够深刻,掌握的不够牢固,通过这次课程设计,把以前所学过的知识重新温故,巩固了所学的知识。!单独测试每个模块,每个模块的输入输出端用插针接出来,每个模块作为一个单独的模块,要联调两个模块或多个模块时用跳线接起来,建议不要从板子上走线,因为后一级电路可能对前一级电路有影响,所以对于单个模块测试使测试结果不准确。先焊电源模块,焊好后检测电源模块。每焊好一个模块单独检测,最后再联调。

单独测试、调试每个模块(实物图)

(一)三角波产生电路(产生u01)

1.在反相端接一个隔直电容1nF(104),使负半轴的三角波的峰值等于上半周的峰值。

2.调节R9改变三角波的峰峰值,使其峰峰值达到4.0V,然后调节R11改变三角波的频率,使其达到2.0KHz,尽量接近2.0KHz。

(二)加法器电路(输入ui1,uo1,输出ui2)

将第二步产生的三角波u01接到加法器电路的电阻上,将500Hz、500mv低频信号

接到R1(1k)电阻上(千万不要接反了),观察输出波形,然后按暂停,观察波形,看是不是如下所示:

(三)滤波放大电路。(输入ui2,输出u02)

用函数信号发生器产生500Hz、峰峰值为200mV的正弦信号,调节R1,使输出波形的峰峰值达到900mV,则说明放大倍数可以达到4.5倍,然后调节函数信号发生器输出信号的电压,使其峰峰值为2V,观察滤波电路输出信号的峰峰值,看是否达到了9V,若达到了,则说明放大部分完成。

(四)、单独测试比较器(输入uo2,输出uo3)

uo2接同向输入端,uo1接反向输入端。uo2:频率500.0Hz、峰峰值9V正弦波,建议先用5V测试,防止电压过大,然后再慢慢将电压升到9V。uo1:频率2.0K、峰峰值4V的三角波。调节R6时输出信号uo3的峰峰值为2.0V,(原理上频率是500Hz)观察输出波形uo3,看是不是如下所示:

六、参考文献

[1] 康华光.模拟电子技术基础.4版.北京:高等教育出版社,1998. 附录1.原件清单

原件个数原件名称和参数原件标号

集成运放的线性应用实验报告

、实验目的 1、掌握运放的线性工作区特点; 2、理解运放主要参数的意义; 3、掌握运放电路线性区分析测试方法; 4、掌握运算放大电路设计方法; 5、掌握半波整流电路分析设计方法; 二、实验仪器 1. 多功能函数发生器1 台 2. 数字示波器1 台 3. 数字万用表1 台 4. 模拟电子技术实验训练箱1 台 三、实验电路 反向电压放大器电路 电压跟随器电路

加法器电路积分器电路 半波整流器电路 四、工作原理 集成运放是高增益的直流放大器。若在它的输出端和输入端之间加上反馈网络,则可以实现不同的电路功能。例如,施加线性负反馈,可以实现放大功能以及加、减、微分、积分等模拟运算功能,施加非线性负反馈,可以实现对数、乘、除等模拟运算功能以及非线性变换功能;施加线性或非线性反馈,或将正、负两反馈结合,可以实现产生

加法器电路积分器电路各种模拟信号

的功能。在使用集成运放时,要特别注意下列两个共性问题。首先,在输出信号中含有直流分量的应用场合下,必须考虑“调零”问题。第二,是相位补偿问题,不能让运算放大器产生自激现象,保证运放的稳定正常工作。此外, 为了见效 输入级偏置电流引起的误差,一般要求同相端和反相端到地直流电阻相等——保持输入端直流平衡。 五、实验内容与步骤 1、电压跟随器按图电路接线,输入信号由同相端引入,测取Vi ,Vo,探究 其关系。 2、反向电压放大器 按图电路接线,输入信号由反向端引入,测取Vi 、Vo,探究其有什么关系。

3、加法器 按如图电路接线。加入输入信号。然后分别给Vi1 、Vi2 两个电压值,并测Vi1 、Vi2 、Vo,分析其关系。 4、积分器 按电路接线输入方波信号,f=100-1000Hz ,用示波器观察Vo,并记录之。 5、半波整流电路 按图接线。输入信号为正弦波,f=100-1000Hz, 用示波器观察 Vo 的波形,并记录之

集成运放组成的基本运算电路 实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2.掌握基本运算电路的调试方法。 3.学习集成运算放大器的实际应用。 二、实验内容和原理 1.实现反相加法运算电路 2.实现反相减法运算电路 3.用积分电路将方波转换为三角波 4.同相比例运算电路的电压传输特性(选做) 5.查看积分电路的输出轨迹(选做) 三、主要仪器设备 HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块 四、操作方法和实验步骤 1.两个信号的反相加法运算 1) 按设计的运算电路进行连接。 2) 静态测试:将输入接地,测试直流输出电压。保证零输入时电路为零输出。 3) 调出0.2V 三角波和0.5V 方波,送示波器验证。 4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。记录示波器波形(坐标对齐,注明幅值)。 2. 减法器(差分放大电路) 减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

1) 按设计的运算电路进行连接。 2) 静态测试:输入接地,保证零输入时为零输出。 3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。 4) 用示波器测量输入和输出信号幅值,记到表格中。 3.用积分电路转换方波为三角波 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若V S为常数,则V O与t将近似成线性关系。因此,当V S为方波信号并满足T P<<τ2时(T P为方波半个周期时间),则V O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 1) 连接积分电路,加入方波信号(幅度?)。 2) 选择频率,使T P <<τ2,用示波器观察输出和输入波形,记录线性情况和幅度。 3) 改变方波频率,使T P ≈τ2,观察并记录输出波形的线性情况和幅度的变化。 4) 改变方波频率,使T P >>τ2,观察并记录输出波形的线性情况和幅度的变化。 4.同相比例运算电压传输特性 同相比例运算电路同反相加法运算电路,其特点是输入电阻比较大,电阻R’的接入同样是为了消除平均偏置电流的影响,故要求R’=R1//R F。 1) 连接同相比例运算电路。 2) 静态测试:输入接地,保证零输入时为零输出。 3) 加入正弦波,用示波器观察输入和输出波形,验证电路功能。 4) 用示波器测出电压传输特性:示波器选择XY显示模式,选择适合的按钮设置。 5) 适当增大输入信号,使示波器显示整个电压传输特性曲线(即包含线性放大区和饱和区)。

集成运放电路的设计

一设计目的 1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反 馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入 不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。二设计工具:计算机,Mulitisim,Protel软件 三设计任务及步骤要求 1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与 幅度的波形信号,测量输出波形信号对电路进行验证。输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较; 2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电 路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上; 输入输出信号需预留接口; 3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至 少为双层PCB板; 四设计内容 1集成运算放大器放大电路概述

集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2集成运放芯片的选取和介绍 由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图。 3运放电路基本原理及其Mulitisim仿真 3.1.同相比例运放电路

运算放大器应用设计的技巧总结

运算放大器应用设计的几个技巧 一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA?级,选择输入电流pA?级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。 二、运算放大器的偏置设置 在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。 三、如何解决运算放大器的零漂问题? 有网友指出,一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象发生,如何解决这个问题? 对此,网友“Frank”分析道,有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。 网友“camel”和“windman”还从数学分析的角度对造成零漂的原因进行了详细分析,认为除了使干扰源漂移小以外还必须使传感器、缆线电阻要大,运放的开环输入阻抗要高、运放的反馈电阻要小,即反馈电阻的作用是为了防止漂移,稳定直流工作点。但是反馈电阻太小的话,也会影响到放大器的频率下限。所以必须综合考虑! 而嘉宾张世龙则建议,对于电荷放大器输出电压不归零的现象,一般采用如下办法来解决: 1)采用开关电容电路的技巧,使用CDS采样方式可以有效消除offset电压;2)采用同步检测电路结构,可以有效消除offset电压。

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

集成运算放大器应用实验

《电路与电子学基础》实验报告 实验名称集成运算放大器应用 班级2013211XXX 学号2013211XXX 姓名XXX

实验7.1 反相比例放大器 一、实验目的 1.测量反相比例运算放大器的电压增益,并比较测量值与计算值。 2.测定反响比例放大器输出与输入电压波形之间的相位差。 3.根据运放的输入失调电压计算直流输出失调电压,并比较测量值与计算值。 4.测定不同电平的输入信号对直流输出失调电压的影响。 二、实验器材 LM 741 运算放大器 1个 信号发生器 1台 示波器 1台 电阻:1kΩ 2个,10kΩ 1个,100kΩ 2个 三、实验步骤 1.在EWB平台上建立如图7-1所示的实验电路,仪器按图设置。 单击仿真开关运行动态分析,记录输入峰值电压 V和输出峰值电压 ip V,并记录直流输出失调电压of V及输出与输入正弦电压波形之间的op 相位差。

Vip=4.9791mV Vop=498.9686mV Vof=99.37mV 相位差π 2.根据步骤1的电压测量值,计算放大器的闭环电压增益Av。 Av=-100.2 3.根据电路元件值,计算反相比例运算放大器的闭环电压增益。 Av=-100 4.根据运放的输入失调电压 V和电压增益Av,计算反相比例运放 if 的直流输出失调电压 V。 of Vof=100mV 四、思考与分析 1.步骤3中电压增益的计算值与步骤1,2中的测量值比较,情况如何? 计算值为-100,测量值为-100.2,基本相等,略有误差

2.输出与输入正弦电压波形之间的相位差怎样? 相位差为π 3.步骤1中直流输出失调电压的测量值与步骤4中的计算值比较,情况如何? 测量值为99.37mV,计算值为100mV,基本相等,略有误差 4.步骤1中峰值输出电压占直流输出失调电压的百分之几? 500% 5.反馈电阻 R的变化对放大器的闭环电压增益有何影响? f 在R1一定的条件下,Rf越大,闭环电压增益越大 实验7.2 加法电路 一、实验目的 1.学习运放加法电路的工作原理。 2.分析直流输入加法器。 3.分析交直流输入加法器。 4.分析交流输入加法器。 二、实验器材 LM741 运算放大器 1个直流电源 2个 0~2mA毫安表 4个万用表 1个 信号发生器 1台

集成运算放大器实验报告

集成运算放大器实验报告 2.4.1 比例、加减运算电路设计与实验 由运放构成的比例、求和电路,实际是利用运放在线性应用时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。 一、实验目的 1.掌握常用集成运放组成的比例放大电路的基本设计方法; 2.掌握各种求和电路的设计方法; 3.熟悉比例放大电路、求和电路的调试及测量方法。 二、实验仪器及备用元器件 (1)实验仪器 (2)实验备用器件 三、电路原理 集成运算放大器,配备很小的几个外接电阻,可以构成各种比例运算电路和求和电路。 图2.4.3(a )示出了典型的反相比例运算电路。依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输入电压之间的关系为 1 f o i i R A R υυυυ==- 2.4.1 式中的“-”号说明电路具有倒相的功能,即输出输入的相位相反。当1f R R =时,o i υυ=-,电路成为反相器。合理选择1f R R 、的比值,可以获得不同比例的放大功能。反相比例运算电路的共模输入电压很小,带负载能力很强,不足之处是它的输入电阻为1i R R =,其值不够高。为了保证电路的运算精度,除了设计时要选择高精度运放外,还要选择稳定性好的电阻器,而且电阻的取值既不能太大、也不能太小,一般在几十千欧到几百千欧。为了使 电路的结构对称,运放的反相等效输入电阻应等于同相等效输入电阻,R R +-=,图2.4.3(a )中,应为1//P f R R R =, 电阻称之为平衡电阻。

(a) 反相比例运算电路 (b) 同相比例运算电路 图2.4.3 典型的比例运算电路 图2.4.3(b )示出了典型的同相比例运算电路。其输出输入电压之间的关系为 1 (1)f o i i R A R υυυυ==+ 2.4.2 由该式知,当0f R =时,o i υυ=,电路构成了同相电压跟随器。同相比例运算电路的最大特点是输入电阻很大、输出电阻很小,常被作为系统电路的缓冲级或隔离级。同样,为了保证电路的运算精度,要选择高精度运放和稳定性好的电阻器,而且电阻的取值一般在几十千欧到几百千欧。为了使电路的结构对称,同样应满足1//P f R R R =。 图2.4.4(a )为典型的反相求和电路,利用叠加原理和线性运放电路“虚短”、“虚断”的概念可以求得 121 2 ( )f f o i i R R R R υυυ=-+ 2.4.3 当满足12R R R ==时,输出电压为 12()f o i i R R υυυ=- + 2.4.4 实现比例求和功能。当满足12f R R R ==时,,输出电压为 12()o i i υυυ=-+ 2.4.5 实现了两个信号的相加运算。电路同样要求12////P f R R R R =。该电路的性能特点与反相运算电路相同。 (a) 反相求和运算电路 (b) 同相求和运算电路 图2.4.4 典型的求和运算电路 同理,对于图2.4.4(b )所示的同相求和电路,当电路满足12////f R R R R =的条件下,可以得到输出电压为 121 2 f f o i i R R R R υυυ= + 2.4.6

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告一、实验目的 1.了解运算放大器的特性和基本运算电路的组成; 2.掌握运算电路的参数计算和性能测试方法。 二、实验仪器及器件 1.数字示波器; 2.直流稳压电源; 3.函数信号发生器; 4.数字电路实验箱或实验电路板; 5.数字万用表; 6.集成电路芯片uA741 2块、电容0.01uF2个,各个阻值的电阻若干个。 三、实验内容 1、在面包板上搭接μA741的电路。首先将+12V和-12V直流电压正确接入μA741的Vcc+(7脚)和Vcc-(4脚)。 2、用μA741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。 3、用μA741组成积分电路,用示波器观察输入和输出波形,并做好记录。 四、实验原理 (1)集成运放简介 集成电路运算放大器(简称集成运放或运放)是一个集成的高增益直接耦合放大器,通过外接反馈网络可构成各种运算放大电路和其它应用电 路。集成运放uA741

uA741电路符号及引脚图 任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。 (a )电源端:通常由正、负双电源供电,典型电源电压为±15V 、 ±12V 等。如:uA741的7脚和4脚。 (b )输出端:只有一个输出端。在输出端和地(正、负电源公共端)之间获得输出电压。如:uA741的6脚。最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1~2V ;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。这表明集成运放的输出电阻很小,带负载能力较强。 (c )输入端:分别为同相输入端和反相输入端。如:uA741的3脚和2脚。输入端有两个参数需要注意:最大差模输入电压V id max 和最大共模输入电压 V ic max 。 两输入端电位差称为“差模输入电压”V id :id V V V +-=- 。 两输入端电位的平均值,称为“共模输入电压”V ic : 任何一个集成运放,允许承受的V id max 和V ic max 都有一定限制。 两输入端的输入电流 i + 和 i - 很小,通常小于1?A ,所以集成运放的 输入电阻很大。 (2)集成运放的主要参数 集成运放的主要参数有:输入失调电压、输入失调电流、开环差模电压放大倍数、共模抑制比、输入电阻、输出电阻、增益-带宽积、转换速率和最大共模输入电压。其中最重要的是增益-带宽积、转换速率和最大共模输入电压三个参数,在应用集成运放时应特别注意。

集成运算放大器

成绩评定表

课程设计任务书

摘要 本设计是根据要求进行的集成运算放大器的设计,用Protel软件设计实验电路,并绘制出PCB电路板,根据电路图对设计进行制作,最后进行调试测试。通过对Protel软件的学习与应用,加深对相关原理的理解,并对protel软件有初步的认识和一定的操作能力,为后续相关课程和相关软件的学习与应用打下坚实的基础。并根据通信电子线路所学的知识,掌握电路设计,熟悉电路的制作,运用所学理论和方法进行一次综合性设计训练,从而培养独立分析问题和解决问题的能力。根据相关课题的具体要求,按照指导老师的指导,进行具体项目的设计,提高自己的动手能力和综合水平。 本设计采用LM324芯片,它是一个四运算放大器的基本电路,在四运算放大器电路中起到了至关重要的作用。通过LM324芯片与其他相关电子元件的组合,画出调制与解调电路图,并完成PCB电路的绘制,完成课题的设计,可以算是对自我综合能力的一次有益尝试。 关键字:Protel、PCB、LM324、四运算放大器

目录 1 Protel的简要介绍 (5) 1.1 Protel的发展历史 (5) 1.2 Protel99SE简介 (5) 2 设计任务及要求 (6) 2.1设计任务 (6) 2.2设计要求 (6) 3 电路原理介绍 (7) 3.1 反向运算放大器 (7) 3.2 反向加法器 (7) 3.3 差动运算放大器 (7) 3.4积分器电路 (8) 4 原理图设计 (10) 4.1电路元件明细表 (10) 4.2 绘制原理图 (10) 4.3 元件生成清单 (12) 5 印刷版图的绘制 (12) 5.1 准备电路原理图和网络表 (12) 5.2 创建PCB文件以及网络表的装入 (15) 5.3 元件的布局以及印刷板的布线 (15) 6收获和体会 (16) 7 主要参考文献 (17)

2016东南大学模电实验1运算放大器的基本应用

东南大学电工电子实验中心 实验报告 课程名称:模拟电子电路实验 第 1 次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化班 姓名:学号: 610142 实验室:实验组别: 同组人员:实验时间:2016年4月10日 评定成绩:审阅教师: 一、实验目的 1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法; 2.熟练掌握运算放大电路的故障检查和排除方法; 3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入 失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念; 4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;

5.掌握搭接放大器的方法及使用示波器测量输出波形。 二、预习思考 1.查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数 和极限参数,解释参数含义。

2.设计一个反相比例放大器,要求:|AV|=10,Ri>10K?,RF=100 k?,并用 multisim 仿真。 其中分压电路由100k?的电位器提供,与之串联的510?电阻起限流的作用。 3.设计一个同相比例放大器,要求:|AV|=11,Ri>10K?,RF=100 k?,并用 multisim 仿真。

三、 实验内容 1. 基本要求 内容一: 反相输入比例运算电路各项参数测量实验(预习时,查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。 图 1.1 反相输入比例运算电路 LM324 管脚图 1) 图 1.1 中电源电压±15V ,R1=10k Ω,RF=100 k Ω,RL =100 k Ω,RP =10k//100k Ω。按图连接电路,输入直流信号 Ui 分别为-2V 、-0.5V 、0.5V 、2V ,用万用表测量对应不同 Ui 时的 Uo 值,列表计算 Au 并和理论值相比较。其中 Ui 通过电阻分压电路产生。 Ui/V Uo/V Au 测量值 理论值 -2 13.365 -6.6825 \

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

实验 集成运算放大器的基本应用

实验集成运算放大器的基本应用(Ⅱ)——有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图9-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图9-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图9-2(a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,引入适量的正反馈,以改善幅频特性。 图9-2(b)为二阶低通滤波器幅频特性曲线。

(a)电路图 (b)频率特性 图9-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图9-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图9-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。 (a) 电路图 (b) 幅频特性 图9-3 二阶高通滤波器 电路性能参数A uP 、f O 、Q 各量的函义同二阶低通滤波器。 图9-3(b )为二阶高通滤波器的幅频特性曲线,可见,它与二阶低通滤波器的幅频特性曲线有“镜像”关系。 3、 带通滤波器(BPF )

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: 图4 同相比例电路电路图 i 1 f O U R R U -=

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告 一、实验目的 1. 了解运算放大器的特性和基本运算电路的组成; 2. 掌握运算电路的参数计算和性能测试方法。 二、实验仪器及器件 1 .数字示波器; 2. 直流稳压电源; 3. 函数信号发生器; 4. 数字电路实验箱或实验电路板; 5. 数字万用表; 6. 集成电路芯片UA741 2块、电容个,各个阻值的电阻若干个。 三、实验内容 1、在面包板上搭接卩A741的电路。首先将+12V和-12V直流电压正确接入卩A741的Vcc+(7脚)和Vcc- (4脚)。 2、用卩A741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。 3、用卩A741组成积分电路,用示波器观察输入和输出波形,并做好记录。 四、实验原理 (1)集成运放简介 集成电路运算放大器(简称集成运放或运放)是一个集成的高

增益直接耦合放大器,通过外接反馈网络可构成 各种运算放大电路和 其它应用电路。集成运放uA741 的 引脚图下图所示 uA741电路符号及引脚图 任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。 (a)电源端:通常由正、负双电源供电,典型电源电压为土15V、±12V等。如:uA741的7脚和4脚。 (b)输出端:只有一个输出端。在输出端和地(正、负电源公共端) 之间获得输出电压。如:uA741的6脚。最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1?2V;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。这表明集成运放的输出电阻很小,带负载能力较强。 (c)输入端:分别为同相输入端和反相输入端。如:uA741的3脚和2脚。输入端有两个参数需要注意:最大差模输入电压V id max和最大共模输入电压V ic max 。 两输入端电位差称为“差模输入电压” V id :V id V V 。两输入端电 位的平均值,称为“共模输入电压”V ic : 任何一个集成运放,允许承受的V d max和V c max都有一定限制。两输入端的输入电流i + 和i - 很小,通常小于1?A ,所以集成运放的输入电阻很大。 (2)集成运放的主要参数

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案) 3.1 集成运算放大器认识与基本应用 在太阳能充放电保护电路中要利用集成运算放大器LM317 实现电路电压检测,并通过 三极管开关电路实现电路的控制。首先来看下集成运算放大器的工作原理。 【项目任务】 测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。 信息单】 集成运放的实物如图3.2 所示。 图3.2 集成运算放大 1. 集成运放的组成及其符号 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3 所示。输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3 集成运算放大电路的结构组成集成运放的图形和文字符号如图3.4 所示。 图3.4 集成运放的图形和文字符号 其中“ -”称为反相输入端,即当信号在该端进入时,输出相位与输入相位相反;而 “+”称为同相输入端,输出相位与输入信号相位相同。 2. 集成运放的基本技术指标集成运放的基本技术指标如下。 ⑴输入失调电压U OS 实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。规定在室温(25℃ )及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS,U OS 越小越好,一般约为0.5~5mV 。 ⑵开环差模电压放大倍数A od 集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od。它是决定运放运算精度的重要因素,常用分贝(dB) 表示,目前最高值可 达140dB(即开环电压放大倍数达107)。 ⑶共模抑制比K CMRR K CMRR 是差模电压放大倍数与共模电压放大倍数之比,即K CMRR = A A od,其含义与差 动放大器中所定义的K CMRR 相同,高质量的运放K CMRR 可达160dB 。 ⑷差模输入电阻r id r id 是集成运放在开环时输入电压变化量与由它引起的输入电流的变化量之比,即从输入端看进去的动态电阻,一般为M Ω数量级,以场效应晶体管为输入级的r id 可达104M Ω。分析集成运放应用电路时,把集成运放看成理想运算放大器可以使分析简化。实际集成运放绝大部分接近理想运放。对于理想运放,A od、K CMRR 、r id 均趋于无穷大。 ⑸开环输出电阻r o r o 是集成运放开环时从输出端向里看进去的等效电阻。其值越小,说明运放的带负载能 力越强。理想集成运放r o趋于零。 其他参数包括输入失调电流I OS、输入偏置电流I B、输入失调电压温漂d UOS/d T 和输入失 调电流温漂d IOS/ d T、最大共模输入电压U Icmax、最大差模输入电压U Idmax 等,可通过器件

实验四集成运算放大器的基本应用

实验四 集成运算放大器的基本应用 ――― 模拟运算电路 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 (2) 反相加法电路 电路如图7-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F (3) 同相比例运算电路 图7-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U += R 2=R 1 // R F i 1 F O U R R U -=

当R 1→∞时,U O =U i ,即得到如图7-3(b)所示的电压跟随器。图中R 2 =R F ,用以 减小漂移和起保护作用。一般R F 取10KΩ, R F 太小起不到保护作用,太大则影响跟随性 (4) 差动放大电路(减法器) 对于图7-4所示的减法运算电路,当R 1=R 2 ,R 3 =R F 时,有如下关系式 (1 (2 U 和 2、同相比例运算电路 (1)按图7-3(a)连接实验电路。实验步骤同内容1,将结果记入表7-2。 (2) 输入f=100Hz,U i =0.5V的正弦交流信号,测量相应的U O ,并用示波器观察 U。和U i的相位关系,记入表7-2。 3、反相加法运算电路 (1)按图7-2连接实验电路。调零和消振。 (2)从2个-5v~+5v的直流电源分别输入自拟的电压作为U i1和U i2 输入信号,测量输 出电压U ,分别填入表7-3中。 4、减法运算电路

最新运算放大器设计总结

运算放大器的基本参数 1. 开环电压增益A OL 不带负反馈的状态下,运算放大器对直流信号的放大倍数。电压反馈运算放大器采用电 压输入/电压输出方式工作,其开环增益为无量纲比,所以不需要单位。但是,数值较小时,为方便起见,数据手册会以V/mV或V/ yV代替V/V表示增益,电压增益也可以dB形式表示,换算关系为dB = 20 xiogAVOL。因此,1V/ ^V的开环增益相当于120 dB,以此类推。该参数与频率密切相关,随着频率的增加而减小,相位也会发生偏移。 对于反向比例放大电路,只有当AOL >> R+Rf时,Vo=-Rf/RVi才能够成立。 Frequency (Hz) 2. 单位增益带宽B1 (Gain-Bandwidth Product) 开环电压增益大于等于 1 (OdB )时的那个频率范围,以Hz为单位。它将告诉你将小 信号(?土100mV )送入运放并且不失真的最高频率。在滤波器设计电路中,假定运放滤波器增益为 1V/V,则单位增益带宽大于等于滤波器截止频率f cut-off x 100。 3.共模抑制比CMRR 差分电压放大倍数与共模电压放大倍数之比,CMRR=|Ad/Ac|。共模输入电压会影响到 输入差分对的偏置点。由于输入电路内部固有的不匹配,偏置点的改变会引起失调电压改变, 进而引起输出电压改变。其实际的计算方法是失调电压变化量比共模电压变化量,一般来说CMRR= △ Vos/ △ Vcom , TI及越来越多的公司将其定义为CMRR= △ Vcom/ △ Vos。在datasheet中该参数一般为直流参数,随着频率的增加而降低。

CCMMDN-MODE REJECTION RATIO vt. FREQUENCY 4. 输入偏置电流Ibias 输入偏置电流被定义为:运放的输入为规定电位时,流入两个输入端的电流平均值。记为IB。为了运放能正常的工作,运放都需要一定的偏置电流。IB=(IN+IP)/2。 当信号源阻抗很高时,就必须关注输入偏流,因为如果运放有很大的输入偏流,就会对信号源构成负载,因而会看到一个比预想要低的信号源输出电压,如果信号源阻抗很高,那 么最好使用一个以CMOS或者JFET作为输入级的运放,也可以采用降低信号源输出阻抗的方法,就是使用一个缓冲器,然后用缓冲器来驱动具有很大输入偏流的运放。 在双级输入级的情况下,可以使用对失调电流进行调零的方法,就是使从两个输入端看到的阻抗相互匹配。在CMOS和JFET输入电路的情况下,一般来说,失调电流不是问题,也没有必要进行阻抗匹配了。 5. 输入失调电流Ios 当运放的输出端置于规定电位时,流入运放两个输入端的电流之差的绝对值。 I OS=|IN-IP| 6. 电源抑制比PSRR 电源电压的改变量与由此引起的输入失调电压改变量之比的绝对值,单位是dB。对于双电源运放,PSSR= △ V cc士/ △ V os士。PSSR随着频率的增加而下降。开关电源产生的噪声频率从50kHz到500kHz或更高,在这些高频下,PSSR的值几乎为零,所以,电源上的 噪声会引起运放输出端上的噪声,对此必须使用恰当的旁路技术。

相关主题