搜档网
当前位置:搜档网 › AVR单片机延时程序

AVR单片机延时程序

AVR单片机延时程序

AVR 单片机延时程序

AVR 单片机延时程序:

1.毫秒级的延时

延时1ms;

void delay_1ms(void)

{

unsigned int i;

for(i=1;i;

}

在上式中,xtal 为晶振频率,单位为MHz. AVR 延时程序

当晶振频率为8M 时,延时函数软件仿真的结果为1000.25μs.当晶振频率为4M 时,延时函数软件仿真结果为999.5μs. AVR 延时程序

如果需要准确的1ms 延时时间,则本计算公式只供参考,应通过软件仿真

STC12系列单片机C语言的延时程序

STC12系列单片机C语言的延时程序 本举例所用CPU 为STC12C5412 系列12 倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。共有三条延时函数说明如下:函数调用 分两级:一级是小于10US 的延时,二级是大于10US 的延时 //====================小于10US 的【用1US 级延时】 ====================//----------微秒级延时---------for(i=X;i>X;i--) 延时时间 =(3+5*X)/12 提示(单位us, X 不能大于255)//================大于10US0;Ms--)for(i=26;i>0;i--);}i=[(延时值-1.75)*12/Ms-15]/4 如想延时60US 则 i=[(60-1.75)*12/6-15]/4=25.375≈26; 修改i 的值=26,再调用上面的【10US 级延时函数】Delay10us(6); 则就精确延时60US;如果想延时64US 可以用这二种函数组合来用: Delay10us(6); for(i=9;i>X;i--) 共延时64US//============== 对于大于20Ms 的可用中断来实现程序运行比较好===============中断用定 时器0, 1Ms 中断:void timer0(void) interrupt 1{ TL0=(0xffff-1000+2)% 0x100;TH0=(0xffff-1000+2)/0x100; //每毫秒执行一次if(DelayMs_1>0) DelayMs_1--;//大于20Ms 延时程序}函数调用void DelayMs(uint a)//延时 a 乘以1(ms)的时间。{ DelayMs_1=a; while(DelayMs_1);}如果延时50Ms 则函数值为DelayMs(50)tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

AVR单片机下载线

像我们这样搞电子的人,要的就是动手的乐趣。下面我们来介绍近期在网络上非常流行的USBasp下载线,因为现在的笔记本包括台式机都渐渐地舍弃了并口、串口;所以之前的并口或串口下载线已经不能再使用了,应该说是做个USBasp下载线是势在必行的,下面我们来介绍其制作的全过程。本 下载线与《51单片机C语言快速上手》完全同步,有兴趣的朋友可以从网上以关键字的形式搜索下载。 图(1) 图1为原作者设计的原理图,为了便于制作我修改过某部分电路如图2,其功能一样。

图(2) 在制作之前首先要搞清楚几点: 第一、这个USB下载线本身就是一块AVR单片机,在制作过程中也必需对其进行程序下载才能运行。 第二、先得大概了解一下这个AVR单机机ATmega8的基本资料。这样才能对电路有个了解,从而便于调试。 第三﹑COM1是PC机与USB相接的端口,我们在焊接时一定要区分GND、VCC、D+、D-,下面图(3)是对应本次制作的USB端口的引脚功能。在焊接的之前务必搞清楚,否则会造成PC机端口的USB或下载给的ATmega8烧毁。

图(3)USB端口引脚功能 第四﹑最后我们来了解一下电路的结构。对应图2,其中JP1是选择下载时的速度是快速或慢速,当JP1接地时选择低速,否则为高速。对于选择快速还是慢是相对于被下载的单片机晶振时钟而言的。一般来讲,目标单片机与USBasp的ATmega8的时钟不能相差太远。而JP2是电源的选择,当短接时被下载的单片机选择USBasp供电,则否选择独立供电。切记:两者只能任选其一。LED2为ATmega8程序运行的指示灯,当其点亮时就证明USBasp运行正常。LED1为下载程序时的工作指示灯,当接收到上位机信号时,此灯就会闪动。

单片机C延时时间怎样计算

C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时 应该使用unsigned char作为延时变量。以某晶振为12MHz的单片 机为例,晶振为12M H z即一个机器周期为1u s。一. 500ms延时子程序 程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0;j--) for(k=81;k>0;k--); } 计算分析: 程序共有三层循环 一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值 1us = 3us

循环外: 5us 子程序调用 2us + 子程序返回2us + R7赋值 1us = 5us 延时总时间 = 三层循环 + 循环外 = 499995+5 = 500000us =500ms 计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序 程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--) for(k=150;k>0;k--); } 三. 10ms延时子程序 程序: void delay10ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=4;j>0;j--) for(k=248;k>0;k--);

AVR单片机程序

* 文件名:闪烁灯.c * 杜邦线接法:用单条杜邦线把PD.0和J38的1端相连接。 ***********************************************************************/ #include #define F_CPU 8000000 //这里的值是单片机工作的相关晶振频率 #include #define LED1 PORTD|=~0XFE //LED=1 LED不亮 #define LED0 PORTD&=0XFE //LED=0 LED发光 int main(void) { DDRD = 0x01; //PD0定义为输出,PD的其他端口为输入。 while(1) { LED1; _delay_ms(500); LED0; _delay_ms(500); } }

* 文件名:闪烁灯2.c * 创建人:东流,2012年2月10日 * 版本号:1.0 * 杜邦线接法:用8针杜邦线把PD和J38的1--8连接(PD0对应J38的1端)。 用杜邦线把PB0对应J38的9端。 用杜邦线把PB1对应J38的10端。 用杜邦线把PB2对应J38的11端。 用杜邦线把PB3对应J38的12端。 ***********************************************************************/ #include #define F_CPU 8000000 //这里的值是单片机工作的相关晶振频率 #include int main(void) { DDRD = 0xff; DDRB = 0x0f; while(1) { /*北面的三个LED亮*/ PORTD = 0xf8; PORTB = 0xff; _delay_ms(300); /*东面的三个LED亮*/ PORTD = 0xc7; PORTB = 0xff; _delay_ms(300); /*南面的三个LED亮*/ PORTD = 0x3f; PORTB = 0xfe; _delay_ms(300); /*西面的三个LED亮*/ PORTD = 0xff; PORTB = 0xf1; _delay_ms(300); /*北面的两个LED亮,中间一个不亮*/ PORTD = 0xfa; PORTB = 0xff; _delay_ms(300); /*东面的两个LED亮,中间一个不亮*/ PORTD = 0xd7; PORTB = 0xff;

用单片机实现延时(自己经验及网上搜集).

标准的C语言中没有空语句。但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。这在汇编语言中很容易实现,写几个nop就行了。 在keil C51中,直接调用库函数: #include // 声明了void _nop_(void; _nop_(; // 产生一条NOP指令 作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。 在选择C51中循环语句时,要注意以下几个问题 第一、定义的C51中循环变量,尽量采用无符号字符型变量。 第二、在FOR循环语句中,尽量采用变量减减来做循环。 第三、在do…while,while语句中,循环体内变量也采用减减方法。 这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。 下面举例说明: unsigned char i; for(i=0;i<255;i++; unsigned char i; for(i=255;i>0;i--;

其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令: MOV 09H,#0FFH LOOP: DJNZ 09H,LOOP 指令相当简洁,也很好计算精确的延时时间。 同样对do…while,while循环语句中,也是如此 例: unsigned char n; n=255; do{n--} while(n; 或 n=255; while(n {n--}; 这两个循环语句经过C51编译之后,形成DJNZ来完成的方法, 故其精确时间的计算也很方便。 其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。 unsigned char i,j for(i=255;i>0;i--

51单片机的几种精确延时

51单片机的几种精确延时实现延时 51单片机的几种精确延时实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC 语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); } Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 μs。主函数调用Delay10us( )时,先执行一个LCALL指令(2 μs),然后执行6个_NOP_( )语句(6 μs),最后执行了一个RET指令(2 μs),所以执行上述函数时共需要10 μs。可以把这一函数

基于51单片机的精确延时(微秒级)

声明: *此文章是基于51单片机的微秒级延时函数,采用12MHz晶振。 *此文章共包含4个方面,分别是延时1us,5us,10us和任意微秒。前三个方面是作者学习过程中从书本或网络上面总结的,并非本人所作。但是延时任意微秒函数乃作者原创且亲测无误。欢迎转载。 *此篇文章是作者为方便初学者使用而写的,水平有限,有误之处还望大家多多指正。 *作者:Qtel *2012.4.14 *QQ:97642651 ----------------------------------------------------------------------------------------------------------------------序: 对于某些对时间精度要求较高的程序,用c写延时显得有些力不从心,故需用到汇编程序。本人通过测试,总结了51的精确延时函数(在c语言中嵌入汇编)分享给大家。至于如何在c 中嵌入汇编大家可以去网上查查,这方面的资料很多,且很简单。以12MHz晶振为例,12MHz 晶振的机器周期为1us,所以,执行一条单周期指令所用时间就是1us,如NOP指令。下面具体阐述一下。 ----------------------------------------------------------------------------------------------------------------------1.若要延时1us,则可以调用_nop_();函数,此函数是一个c函数,其相当于一个NOP指令,使用时必须包含头文件“intrins.h”。例如: #include #include void main(void){ P1=0x0; _nop_();//延时1us P1=0xff; } ----------------------------------------------------------------------------------------------------------------------2.延时5us,则可以写一个delay_5us()函数: delay_5us(){ #pragma asm nop #pragma endasm } 这就是一个延时5us的函数,只需要在需要延时5us时调用此函数即可。或许有人会问,只有一个NOP指令,怎么是延时5us呢? 答案是:在调用此函数时,需要一个调用指令,此指令消耗2个周期(即2us);函数执行完毕时要返回主调函数,需要一个返回指令,此指令消耗2个周期(2us)。调用和返回消耗了2us+2us=4us。然后再加上一个NOP指令消耗1us,不就是5us吗。

51单片机精确延时源程序

51单片机精确延时源程序 一、晶振为 11.0592MHz,12T 1、延时 1ms: (1)汇编语言: 代码如下: DELAY1MS: ;误差 -0.651041666667us MOV R6,#04H DL0: MOV R5,#71H DJNZ R5,$ DJNZ R6,DL0 RET (2)C语言: void delay1ms(void) //误差 -0.651041666667us { unsigned char a,b; for(b=4;b>0;b--) for(a=113;a>0;a--); } 2、延时 10MS: (1)汇编语言: DELAY10MS: ;误差 -0.000000000002us MOV R6,#97H DL0: MOV R5,#1DH DJNZ R5,$ DJNZ R6,DL0

RET (2)C语言: void delay10ms(void) //误差 -0.000000000002us { unsigned char a,b; for(b=151;b>0;b--) for(a=29;a>0;a--); } 3、延时 100MS: (1)汇编语言: DELAY100MS: ;误差 -0.000000000021us MOV R7,#23H DL1: MOV R6,#0AH I

棋影淘宝店:https://www.sodocs.net/doc/e511328206.html,QQ:149034219 DL0: MOV R5,#82H DJNZ R5,$ DJNZ R6,DL0 DJNZ R7,DL1 RET (2)C语言: void delay100ms(void) //误差 -0.000000000021us { unsigned char a,b,c; for(c=35;c>0;c--) for(b=10;b>0;b--) for(a=130;a>0;a--); } 4、延时 1S: (1)汇编语言: DELAY1S: ;误差 -0.00000000024us MOV R7,#5FH DL1: MOV R6,#1AH DL0: MOV R5,#0B9H DJNZ R5,$ DJNZ R6,DL0 DJNZ R7,DL1 RET (2)C语言: void delay1s(void) //误差 -0.00000000024us { unsigned char a,b,c; for(c=95;c>0;c--) for(b=26;b>0;b--)

单片机一些常用的延时与中断问题及解决方法

单片机一些常用的延时与中断问题及解决方法 延时与中断出错,是单片机新手在单片机开发应用过程中,经常会遇到的问题,本文汇总整理了包含了MCS-51系列单片机、MSP430单片机、C51单片机、8051F的单片机、avr单片机、STC89C52、PIC单片机…..在内的各种单片机常见的延时与中断问题及解决方法,希望对单片机新手们,有所帮助! 一、单片机延时问题20问 1、单片机延时程序的延时时间怎么算的? 答:如果用循环语句实现的循环,没法计算,但是可以通过软件仿真看到具体时间,但是一般精精确延时是没法用循环语句实现的。 如果想精确延时,一般需要用到定时器,延时时间与晶振有关系,单片机系统一般常选用 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 2、求个单片机89S51 12M晶振用定时器延时10分钟,控制1个灯就可以 答:可以设50ms中断一次,定时初值,TH0=0x3c、TL0=0xb0。中断20次为1S,10分钟的话,需中断12000次。计12000次后,给一IO口一个低电平(如功率不够,可再加扩展),就可控制灯了。 而且还要看你用什么语言计算了,汇编延时准确,知道单片机工作周期和循环次数即可算出,但不具有可移植性,在不同种类单片机中,汇编不通用。用c的话,由于各种软件执行效率不一样,不会太准,通常用定时器做延时或做一个不准确的延时,延时短的话,在c中使用汇编的nop做延时 3、51单片机C语言for循环延时程序时间计算,设晶振12MHz,即一个机器周期是1us。for(i=0,i<100;i++) for(j=0,j<100;j++) 我觉得时间是100*100*1us=10ms,怎么会是100ms 答: 不可能的,是不是你的编译有错的啊

个人总结的AVR的ATMEGA16L单片机程序

ATMAGE 16 的C语言程序

ATMAGE 16 的C语言程序 (1) 一、PB0 口的PB0.1 LED 发光管闪烁的程序: (3) 二、PA0、PB0、PC0口的LED 发光管闪烁的程序: (5) 三、I/O口的输入与输出 (6) 四、跑马灯 (8) 五、数码管计数显示设计 (10) 六、控制直流电机正反转 (16) 七、单片机的定时器(T/C0)应用 (20) AVR原理图 (24)

一、PB0 口的PB0.1 LED 发光管闪烁的程序: #include int main( void ) { unsigned char i, j, k,led=0; DDRB=0xFF; /* all outputs */ while (1) { if(led) PORTB|=0X01; /* |使最后一位为1 */

else PORTB&=0XFE; /*&最后一位为0 */ led=!led; //延时 for (i=0; i<255; i++) for(j=0; j<255;j++) k++; } } /////////////////////////////////////////////////////////////// #include int main( void ) { unsigned char i, j, k,led=0; DDRB=0xFF; /* all outputs */ while (1) { if(led) PORTB=0Xfe; else PORTB=0Xff; led=!led; for (i=0; i<255; i++) //延时 for(j=0; j<255;j++) k++; } }

51单片机延时模块程序

51单片机独立模块 一、延时模块 1、for循环延时 void delayms(UINT8 ms) { UINT8 x,y; for(x=ms;x>0;x--) for(y=112;y>0;y--); } 2、while循环延时 void delayms(UINT8 ms) { UINT8 x; while(ms--) for(x=112;x>0;x--); } 3、精确的单片机常用延时函数:(c代码误差0us 12M)(1)、延时0.5ms void delay0.5ms(void) //误差 0us { unsigned char a,b; for(b=71;b>0;b--) for(a=2;a>0;a--); } (2)、延时1ms void delay1ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=142;b>0;b--) for(a=2;a>0;a--); } (3)、延时2ms void delay2ms(void) //误差 0us { unsigned char a,b; for(b=4;b>0;b--) for(a=248;a>0;a--); _nop_; //if Keil,require use intrins.h } (4)、延时3ms void delay3ms(void) //误差 0us

{ unsigned char a,b; for(b=111;b>0;b--) for(a=12;a>0;a--); } (5)、延时4ms void delay4ms(void) //误差 0us { unsigned char a,b,c; for(c=7;c>0;c--) for(b=8;b>0;b--) for(a=34;a>0;a--); } (6)、延时5ms void delay5ms(void) //误差 0us { unsigned char a,b; for(b=19;b>0;b--) for(a=130;a>0;a--); } (7)、延时10ms void delay10ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=38;b>0;b--) for(a=130;a>0;a--); } (8)、延时15ms void delay15ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=238;b>0;b--) for(a=30;a>0;a--); } (9)、延时20ms void delay20ms(void) //误差 0us { unsigned char a,b; for(b=215;b>0;b--) for(a=45;a>0;a--); _nop_; //if Keil,require use intrins.h

C51精确延时

C51中精确延时 C语言最大的缺点就是实时性差,我在网上到看了一些关于延时的讨论,其中有篇文章51单片机Keil C 延时程序的简单研究,作者:InfiniteSpace Studio/isjfk,写得不错,他是用while(--i);产生DJNZ 来实现精确延时,后来有人说如果while里面不能放其它语句,否则也不行,用do-while就可以,具体怎样我没有去试.所有这些都没有给出具体的实例程序来.还看到一些延时的例子多多少少总有点延时差.为此我用for循环写了几个延时的子程序贴上来,希望能对初学者有所帮助.(晶振12MHz,一个机器周期1us.) 在精确延时的计算当中,最容易让人忽略的是计算循环外的那部分延时,在对时间要求不高的场合,这部分对程序不会造成影响. 一. 500ms延时子程序 程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0;j--) for(k=81;k>0;k--); } 产生的汇编: C:0x0800 7F0F MOV R7,#0x0F C:0x0802 7ECA MOV R6,#0xCA C:0x0804 7D51 MOV R5,#0x51 C:0x0806 DDFE DJNZ R5,C:0806 C:0x0808 DEFA DJNZ R6,C:0804 C:0x080A DFF6 DJNZ R7,C:0802 C:0x080C 22 RET 计算分析: 程序共有三层循环 一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us 循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us 延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms 计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序 程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--)

avr单片机全系列选型指南

AVR Microcontrollers ATMEL? CORPORATION A VR? Microcontrollers: Product Line Reference January 2006 Customer Edition Table of Contents 1AVR Product Family (2) 1.1P RODUCT S ELECTION G UIDE - TINY AVR? (2) 1.2P RODUCT S ELECTION G UIDE - MEGA AVR? (3) 1.3P RODUCT S ELECTION G UIDE – PICO P OWER?AVR (4) 1.4P RODUCT S ELECTION G UIDE –AVR32 (4) 1.5P RODUCT S ELECTION G UIDE – MEGA AVR LCD AND ASSP AVR (5) 1.6P RODUCT S ELECTION G UIDE –AVR Z-L INK? (5) 1.7P RODUCT S ELECTION G UIDE –A UTOMOTIVE AVR (6) 2Application Area in Focus: Comparing power consumption (7) 2.1.1AVR BOD vs. TI BOR (7) 2.1.2Protection in sleep modes (8) 2.2O VERALL POWER CONSUMPTION (8) 3AVR Development Tools (9) 3.1T OOLS R EFERENCE (9) 3.2AVR S TUDIO?T OOLS AND D EVICE S UPPORT (10) 4Documentation (12) 4.1D ATASHEETS (12) 4.2A PPLICATION N OTES (13)

单片机精确毫秒延时函数

单片机精确毫秒延时函数 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。今天主要介绍软件延时以及单片机精确毫秒延时函数。 单片机的周期介绍在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。 指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 时钟周期:也称为振荡周期,一个时钟周期= 晶振的倒数。对于单片机时钟周期,时钟周期是单片机的基本时间单位,两个振荡周期(时钟周期)组成一个状态周期。 机器周期:单片机的基本操作周期,在一个操作周期内,单片机完成一项基本操作,如取指令、存储器读/写等。 机器周期=6个状态周期=12个时钟周期。 51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/ 晶振频率)= x s。常用单片机的晶振为11.0592MHz,12MHz,24MHz。其中11.0592MHz 的晶振更容易产生各种标准的波特率,后两种的一个机器周期分别为1 s和2 s,便于精确延时。 单片机精确毫秒延时函数对于需要精确延时的应用场合,需要精确知道延时函数的具体延

单片机写延时程序的几种方法

单片机写延时程序的几种方法 1)空操作延時(12MHz) void delay10us() { _NOP_(); _NOP_(); _NOP_(); _NOP_(); _NOP_(); _NOP_(); } 2)循環延時 (12MHz) Void delay500ms() { unsigned char i,j,k; for(i=15;i>;0;i--) for(j=202;j>;0;j--) for(k=81;k>;0;k--); }

延時總時間=[(k*2+3)*j+3]*i+5 k*2+3=165 us 165*j+3=33333 us 33333*i+5=500000 us=500 ms 3)計時器中斷延時(工作方式2) (12MHz) #include; sbit led=P1^0; unsigned int num=0; void main() { TMOD=0x02; TH0=6; TL0=6; EA=1; ET0=1; TR0=1; while(1) { if(num==4000) { num=0;

led=~led; } } } void T0_time() interrupt 1 { num++; } 4)C程序嵌入組合語言延時 #pragma asm …… 組合語言程序段 …… #pragma endasm KEIL軟件仿真測量延時程序延時時間

這是前段事件總結之延時程序、由於不懂組合語言,故NO.4無程序。希望對你有幫助!!! 對於12MHz晶振,機器周期為1uS,在執行該for循環延時程式的時候 Void delay500ms() { unsigned char i,j,k; for(i=15;i>;0;i--) for(j=202;j>;0;j--) for(k=81;k>;0;k--); } 賦值需要1個機器周期,跳轉需要2個機器周期,執行一次for循環的空操作需要2個機器周期,那么,對於第三階循環 for(k=81;k>;0;k--);,從第二階跳轉到第三階需要2機器周期,賦值需要1個機器周期,執行81次則需要2*81個機器周期,執行一次二階for循環的事件為81*2+1+2;執行了220次,則(81*2+3)*220+3,執行15次一階循環,則 [(81*2+3)*220+3]*15,由於不需要從上階跳往下階,則只加賦值的一個機器周期,另外進入該延時子函數和跳出該函數均需要2個機器周期,故

单片机延时程序分析#(优选.)

上一次课中,我们已经知道,程序中的符号R7、R6是代表了一个个的RAM单元,是用来放一些数据的,下面我们再来看一下其它符号的含义。 DELAY:MOV R7,#250;(6) D1:MOV R6,#250 ;(7) D2:DJNZ R6,D2 ;(8) DJNZ R7,D1;(9) RET ;(10) 〈单片机延时程序〉 MOV:这是一条指令,意思是传递数据。说到传递,我们都很清楚,传东西要从一本人的手上传到另一本人的手上,也就是说要有一个接受者,一个传递者和一样东西。从指令M OV R7,#250中来分析,R7是一个接受者,250是被传递的数,传递者在这条指令中被省略了(注意:并不是每一条传递指令都会省的,事实上大部份数据传递指令都会有传递者)。它的意义也很明显:将数据250送到R7中去,因此执行完这条指令后,R7单元中的值就应当是250。在250前面有个#号,这又是什么意思呢?这个#就是用来说明250就是一个被传递的东西本身,而不是传递者。那么MOV R6,#250是什么意思,应当不用分析了吧。 DJNZ:这是另一条指令,我们来看一下这条指令后面跟着的两个东西,一个是R6,一个是D2,R6我们当然已知是什么了,查一下D2是什么。D2在本行的前面,我们已学过,这称之为标号。标号的用途是什么呢?就是给本行起一个名字。DJNZ指令的执行过程是这样的,它将其后面的第一个参数中的值减1,然后看一下,这个值是否等于0,如果等于0,就往下执行,如果不等于0,就转移,转到什么地方去呢?可能大家已猜到了,转到第二个参数所指定的地方去(请大家用自已的话讲一下这条语句是怎样执行的)。本条指令的最终执行结果就是,在原地转圈250次。

Keilc51程序中几种精确延时的方法

Keilc51程序中几种精确延时的方法 单片机因具有体积小、功能强、成本低以及便于实现分布式控制而有非常广泛的应用领域[1]。单片机开发者在编制各种应用程序时经常会遇到实现精确延时的问题,比如按键去抖、数据传输等操作都要在程序中插入一段或几段延时,时间从几十微秒到几秒。有时还要求有很高的精度,如使用单总线芯片DS18B20时,允许误差范围在十几微秒以内[2],否则,芯片无法工作。用51汇编语言写程序时,这种问题很容易得到解决,而目前开发嵌入式系统软件的主流工具为C语言,用C51写延时程序时需要一些技巧[3]。因此,在多年单片机开发经验的基础上,介绍几种实用的编制精确延时程序和计算程序执行时间的方法。 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( );

AVR单片机解锁方法

AVR单片机的熔丝位控制着其时钟、JTAG使能、FLASH操作、工作模式等等。。一旦配置错误, 会导致不可预见的结果,导致单片机下不进去 程序。。。最常见的就是时钟配置错误,尤其 初学者比较容易犯这一类错误。。。 AVR单片机如果是系统时钟相关熔丝位配置错了,那可以使用有源晶振、信号发生器等强时钟源给“振开”,其实最简单的方法是利用51单片机的ALE脚进行“急救”。。。。 以前没试过,今天我故意将时钟配置错误(在AVR STUDIO中将熔丝位设置成外部高速晶振,快启动,然后故意把外部晶振给拿掉),重启后果然出事儿了。。。再想下程序下不进去了(嘿嘿,这正合我意),为了解救这个ATMEGA16,我找来了一个AT89S52。。。注意不能用STC的哦,有的STC51单片机把ALE脚给禁止了。。。。 接下来就是最紧张的时刻了,我将两块板子共地,然后将AT89S52的ALE脚(第30脚)接到ATMEGA16的XTAL1脚(第13脚)。。。上电,用示波器看到A LE脚有时钟信号输出。。果断再次下载ATMEGA16的程序。。果然好使了!!!!!

如果大家以后遇到此类现象,不妨使用这个方法试试。。。如果是系统时钟相关熔丝位配置错误,那么这个招绝对管用。。。别的熔丝位设错了倒是没尝试过。。。不过大家尽量配置正确就是啦~~~~~

做设计时不小心锁了一块芯片ATMEGA16,真的很抑闷,网上查了一下资料,真的五花八门,今天自己用有源晶振在自己的作品上动手术,几分钟就把自己的芯片解锁了,收获很多,以后终于随心所欲地编写熔丝了,反正我能解锁! 实践才是检验真理的硬道理! 实际中我没有断开我原来的外部晶振! 解锁图: 解锁步骤: 一:按上面电路接好线,为了避免焊接后又脱焊的麻烦,所以建议用杜邦线接好。 二:用ISP下载线设置好正确的熔丝位,即可烧写熔丝,呵呵,大功告成,芯片又可以恢复使用了。 后话:AVR单片机被锁,不能写入程序,是因为错误地烧写时钟方式熔丝位造成的,选择的时钟方式与实际不同,造成单片机没有时钟信号输入,即不工作了,这样烧写程序当然error啦!

AVR单片机复习题+答案

AVR单片机复习题(答案在后面) 第一章 填空: 1.单片机的基本组成结构包括:、、、五大 部分。 2.哈佛结构是指,计算机由五大部分构成,五大部分分别 是:、、、 3.ATmega16包含程序存储器,数据存储器和的 EEPROM。 4.ATMEL公司生产的单片机以三大系列为主,分别是:、、 5.ATMEL公司生产的TinyAVR是属于单片机。、 6.ATMEL公司生产的megaA VR是属于单片机。 7.ATMEL公司生产的XMEGA是属于单片机。 选择: 1.ATMEL公司生产的单片机以三大系列为主,其中TinyAVR是属于() A、低档单片机 B、中档单片机 C、高档单片机 D、普通单片机 2.ATMEL公司生产的单片机以三大系列为主,其中megaA VR是属于() A、低档单片机 B、中档单片机 C、高档单片机 D、普通单片机 3.ATMEL公司生产的单片机以三大系列为主,其中XMEGA是属于() A、低档单片机 B、中档单片机 C、高档单片机 D、普通单片机 4. 单片机的基本组成结构包括:CPU、程序存储器、、输入接口、输出接口五大部分() A、EEPROM B、数据存储器 C、ROM D、堆栈 简答: 1.什么是ISP技术?采用ISP技术的单片机有什么优点? 2.什么是单片机? 3.说明单片机的RAM、FLASH ROM、EEPROM的用途和特点?(中等)

第二章 填空: 1.单片机的三总线结构是指:、、。 2.ATmega16包含FLASH ROM,RAM和的EEPROM。 3.FLASH ROM支持用户,可以实现的(填读写或写 入)。 4.单片机的数据存储器包含和两大部分,其中是 的补充。 5.ATmega16中含有的EEPROM。它的擦写次数是,具 有、。 6.ATmega16的DIP封装共有引脚,其中共有I/O 口线。 7.ATmega16的数据存储器中共有通用工作寄存器,有寄存器可 以合并成为3个16位的寄存器。 8.在ATmega16的通用寄存器组中,有16位的寄存器。名称分别 为:、、。 9.ATmega16的中断向量表在FLASH ROM的,中断的向量地址, 中断的优先级越。 10.ATmega16的工作电压是, 所能使用的最高晶振频率为。 11.ATmega16可以使用内部晶振,晶振频率为、、、 赫兹。 12.ATmega16共有引脚,其中为VCC,脚为GND。 13.ATmega16的A VCC引脚是,作用是 14.ATmega16的AREF引脚是,作用是。 15.ATmega16的是GND ,引脚是XTAL1、XTAL2,作用是 16.ATmega16的复位引脚是,名称是。当在该引脚上出现一个 的电平,单片机复位。 17.A VR的指令长度为称为一字,PC指针为,FLASH存储器是 字。A VR 扩展外部程序存储器,这是因为 18.ATmega16配置系统时钟的熔丝位共有位,名称分别 是、。 选择: 1.单片机的三总线结构是指:数据总线、地址总线和_() A、控制总线 B、采集总线 C、接收总线 D、发送总线 2.单片机的三总线结构是指:控制总线、地址总线和_() A、发送总线 B、采集总线 C、接收总线 D、数据总线 3.ATmega16的DIP封装共有引脚,其中共有I/O 口线()

相关主题