搜档网
当前位置:搜档网 › 保护模式下编程

保护模式下编程

保护模式下编程
保护模式下编程

保护模式下编程

帐户luowei505050的专栏

类别汇编

;1.

;===========================================================

;在保护模式下32位CPU仍然可以用20位地址来实现32位地址线寻址

;16位CPU: 16位段寄存器+16位偏移地址 (经地址加法器) -> 20位物理内存地址

;32位CPU: 32位地址的内存段信息存入在一张内存表中,只需将表的索引存入16寄存器当中即可

;保存表中索引的段寄存器称为:段选择子

;表中每个表示32位内存段信息称为:段描述符(保存了段的地址和段的长度)。

;整张表称为:段描述符表

;段选择子16位,其中高13位用来表示描述符表中的索引,其低3位用表示段描述符中所指向的段描述符的属性

;

;启动程序在屏幕中央打印一行字符串

[BITS 16]

org 07c00h ;指明程序开始地址是07c00h,而不是原来的00000

;int汇编指令int 10h

jmp main

gdt_table_start: ;告诉编译器段描述符开始

;Intel规定描述符表的第一个描述符必须是空描述符

gdt_null:

dd 0h

dd 0h ;Intel规定段描述符表的第一个表项必须为0 gdt_data_addr equ $-gdt_table_start ;数据段的开始位置

gdt_data:;数据段描述符

dw 07ffh ;段界限

dw 0h ;段基地址18位

db 10010010b ;段描述符的第六个字节属性(数据段)

db 1100000b ;段描述符的第七个字节属性

db 0 ;段描述符的最后一个字节也就是段基地址

gdt_video_addrequ $-gdt_table_start

gdt_video: ;用来描述显存地址空间的段描述符

dw 0FFH ;显存段界限就是1M

dw 8000H

db 0BH

db 10010010b

db 11000000b

db 0

gdt_code_addr equ $-gdt_table_start ;代码段的开始位置

gdt_code:

dw 07ff ;段界限

dw 1h ;段基地址0~18位

db 80h ;段基地址19~23位

db 10011010b ;段描述符的第六个字节(代码段)

db 11000000b ;段描述符的第七个字节

db 0 ;段基地址的第二部分

gdt_table_end:

;通过lgdt指令可以把GDTR描述表的大小和起始地址存入gdtr寄存器中

gdtr_addr:

dw gdt_table_end-gdt_table_start-1 ;段描述表长度

ddgdt_table_start ;段描述表基地址

;lgdt [gdtr_addr] ;让CPU读取gdtr_addr所指向内存内容保存到gdtr寄存器当中

;A20地址线,切换到保护模式时,A20地址线必须开启。地址回绕作用,放弃32位CPU 地址线的高12位。?

;端口的读写操作:

;in accume port ;将端口的内容读到寄存器AL或AX当中,其中accume只能是AL或AX。

;out port accume ;将accume中的内容写到端口中,这里accume可以是其它寄存器

;开启A20地址线

main:

;修改数据段描述跟段基地址有关的字节,初始化数据段描述符的基地址

xoreax,eax ;清空eax

add eax,data_32 ;将32位地址信息拷贝到eax中

mov word [gdt_data+2],ax ;把ax中的内容拷贝到段描述符的第3、4两个字节当中,因是word类型的拷贝?

shr eax,16 ;右移16位

mov byte [gdt_data+4],al ;将先前eax中的第5个字节移到段描述符当中

mov byte [gdt_data+7],ah ;将先前eax中的第8个字节移到段描述符当中

;修改代码段描述跟段基地址有关的字节,初始化数据段描述符的基地址

xoreax,eax

add eax,code_32

mov word [gdt_code+2]

shr eax,16

mov byte [gdt_code+4],al

mov byte [gdt_code+7],ah

;在转放保护模式之前,必须废除原来的中断向量表,用cli指令可以废除实模式下的中断向量表

cli

lgdt [gdtr_addr] ;让CPU读取gdtr_addr所指向内存内容保存到gdtr寄存器当中

enable_a20:

in al,92h ;只要往0x92号端口中写入信息就可以开启A20地址线

or al,00000010b ;00000010表示开启A20地址线的数据

out 92h,al ;把设置好的数据写进0x92号端口当中

;转入保护模式,只要将CR0寄存器的第1位(PE位)置为1即可

;80386提供了4个32位的控制寄存器CR0~CR3,其中CR0中的某些位是用来标志是否要进入保护模式

;CR1寄存器保留没有被使用

;CR2和CR3用于分页机制

;CR0的PE位控制分段管理机制,PE=0,CPU运行于实模式;PE=1,CPU运行于保护模式

;CR0的PG位控制分段管理机,PG=0,禁止分页管理机制;PG=1,启用分页管理机制。

mov eax,cr0

or eax,1;用于把CR0寄存器的第1置为1

mov cr0,eax ;把CR0寄存器的第1置为1

;跳转到保护模式中

jmp gdt_code_addr:0

;在保护模式下编程(在屏幕中央打印hello world)

[BITS 32]

data_32:

db "hello world"

code_32:

MOV ax,gdt_data_addr

movds,ax

movax,gdt_video_addr

movgs,ax

mov cx,11

movedi,(80*10+12)*2 ;在屏幕中央显示

mov bx,0

mov ah,0ch

s:mov al,[ds:bx]

mov [gs:edi]

mov [gs:edi+1],ah

incbx

add edi,2

loop s

jmp $ ;死循环

times 510-($-$$) db 0

dw 0aa55h

;ok ! ^_^

;1.启动虚拟机,用nasm boot.asm -o boot.bin编译

;2.把程序写到软盘镜像里去,用编译好的写入文件程序写

入: ./write_imageboot.binboot.img

;3.将boot.img复制到自己在Bochs-2.4.6目录下建的文件夹下,并修改run.bat ;-----------------------------------------------

;其中write_image.c,可以在rad hat的vi编辑器这样写:?

#include

#include

#include

#include

int main(intargc,char *argv[])

{

intfd_source;

intfd_dest;

intread_count=0;

char buffer[512]={0};

fd_source=open("boot.bin",O_RDONLY);

IF(fd_source<0)

{

perror("open boot.bin error");

return 0;

}

fd_dest=open("virtual_floppy.vfd",O_WRONLY);

while ((read_count=read(fd_source,buffer,512))>0)

{

write(fd_dest,buffer,read_count);

memset(buffer,0,512);

}

printf("wrinte image OK !");

return 0;

}

;保存成write_image.c,然后编译:gccwrite_image.c -o write_image

;用虚拟软盘制作工具,制作一个虚拟软盘(取名boot.img),最后再用它将引导程序写入boot.img

; ^_^ ok!

;启动程序有问题的话,可以用bocsh虚拟机对操作系统进行调试。

;===================================================

;bocsh的调试功能bocshdbg

; continue(c) 程序继续运行直到遇到断点为止

; step(s) 音步跟踪

; vbreak(vb) 在虚拟地址上设置一个断点

; pbreak(b) 在物理地址上设置一个断点

; lbreak(lb) 在线性地址上设置一个断点

; disassemble 反汇编指令

;================================================================ ;================================================================

;2. 一个在屏幕中央显示一行字符串的引导程(实模式下写)

;启动程序在屏幕中央打印一行字符串

org 07c00h ;指明程序开始地址是07c00h,而不是原来的00000

;int汇编指令int 10h

movax,cs

moves,ax

movbp,msgstr ;es:bp指向的内容就是我们要显示的字符串地址?

mov cx,12 ;字符串长度

mov dh,12 ;显示起始行号

mov dl,36 ;显示的列号

mov bh,0 ;显示的页数,在第0页显示

mov al,1 ;串结构

mov bl,0c ;黑底红字

msgstr: db "hello my os"

int 10h ;BIOS中断

times 510-($-$$) db 0 ;重复N次每次填充值为0

;因为BIOS的第一个扇区是512字节,当最后两字节是55AA时,它就是引导程序?

dw 55aaH

jmp $ ;为了不让程序结束,设置一个死循环,不断跳转到当前位置?

;在Linux操作系统下,用nasm进行编译,命令:# nasm boot.asm -o boot.bin

;用ndisasmboot.bin可以进行反编译

注:引自大灰狼之视频教程《零基础汇编汇编视频课程》

第4章指令系统层习题参考解答-汇编语言与计算机组成原理 答案

1.什么是“程序可见”的寄存器? 程序可见寄存器是指在用户程序中用到的寄存器,它们由指令来指定。 2. 80x86微处理器的基本结构寄存器组包括那些寄存器?各有何用途? 基本结构寄存器组按用途分为通用寄存器、专用寄存器和段寄存器3类。 通用寄存器存放操作数或用作地址指针;专用寄存器有EIP和EFLAGS,分别存放将要执行的下一条指令的偏移地址和条件码标志、控制标志和系统标志;段寄存器存放段基址或段选择子。 3.80x86微处理器标志寄存器中各标志位有什么意义? 常用的7位: CF进位标志: 在进行算术运算时,如最高位(对字操作是第15位,对字节操作是第7位)产生进位或借位时,则CF置1;否则置0。在移位类指令中,CF用来存放移出的代码(0或1)。 PF奇偶标志: 为机器中传送信息时可能产生的代码出错情况提供检验条件。 当操作结果的最低位字节中1的个数为偶数时置1,否则置0。 AF辅助进位标志: 在进行算术运算时,如低字节中低4位(第3位向第4位)产生进位或借位时,则AF置1;否则AF置0。 ZF零标志:如指令执行结果各位全为0时,则ZF置1;否则ZF置0。 SF符号标志:其值等于运算结果的最高位。 如果把指令执行结果看作带符号数,就是结果为负,SF置1;结果为正,SF置0。 OF溢出标志: 将参加算术运算的数看作带符号数,如运算结果超出补码表示数的范围N,即溢出时,则OF置1;否则OF置0。 DF方向标志: 用于串处理指令中控制处理信息的方向。 当DF位为1时,每次操作后使变址寄存器SI和DI减小;当DF位为0时,则使SI和DI增大,使串处理从低地址向高地址方向处理。 4.画出示意图,简述实模式下存储器寻址的过程。 20位物理地址如下计算(CPU中自动完成):10H×段基址+偏移地址=物理地址 5. 画出示意图,简述保护模式下(无分页机制)存储器寻址的过程。 采用对用户程序透明的机制由选择子从描述子表中选择相应的描述子,得到欲访问段的段基址、段限等有关信息,再根据偏移地址访问目标存储单元。

实模式和保护模式的区别

实模式和保护模式的区别 实模式和保护模式的区别 2009-08-31 20:19 551人阅读评论(1) 收藏举报 从80386开始,cpu有三种工作方式:实模式,保护模式和虚拟8086模式。只有在刚刚启动的时候是real-mode,等到linux操作系统运行起来以后就运行在保护模式(所以存在一个启动时的模式转换问题)。 实模式只能访问地址在1M以下的内存称为常规内存,我们把地址在1M 以上的内存称为扩展内存。 在保护模式下,全部32条地址线有效,可寻址高达4G字节的物理地址空间; 扩充的存储器分段管理机制和可选的存储器分页管理机制,不仅为存储器共享和保护提供了硬件支持,而且为实现虚拟存储器提供了硬件支持; 支持多任务,能够快速地进行任务切换和保护任务环境; 4个特权级和完善的特权检查机制,既能实现资源共享又能保证代码和数据的安全和保密及任务的隔离; 支持虚拟8086方式,便于执行8086程序。 1.虚拟8086模式是运行在保护模式中的实模式,为了在32位保护模式下执行纯16位程序。它不是一个真正的CPU模式,还属于保护模式。 2.保护模式同实模式的根本区别是进程内存受保护与否。可寻址空间的区别只是这一原因的果。 实模式将整个物理内存看成分段的区域,程序代码和数据位于不同区域,系统程序和用户程序没有区别对待,而且每一个指针都是指向"实在"的物理地址。这样一来,用户程序的一个指针如果指向了系统程序区域或其他用户程序区域,并改变了值,那么对于这个被修改的系统程序或用户程序,其后果就很可能是灾难性的。为了克服这种低劣的内存管理方式,处理器厂商开发出保护模式。这样,物理内存地址不能直接被程序访问,程序内部的地址(虚拟地址)要由操作系统转化为物理地址去访问,程序对此一无所知。至此,进程(这时我们可以称程序为进程了)有了严格的边界,任何其他进程根本没有办法访问不属于自己的物理内存区域,甚至在自己的虚拟地址范围内也不是可以任意访问的,因为有一些虚拟区域已经被放进一些公共系统运行库。这些区域也不能随便修改,若修改就会有: SIGSEGV (linux 段错误);非法内存访问对话框(windows 对话框)。 CPU启动环境为16位实模式,之后可以切换到保护模式。但从保护模式无法切换回实模式

C语言学习2之字符串及输入输出

C语言学习2之字符串及输入输出 语言学习 字符串及输出和输入 :不像我们之前学到的整型,浮点型等数据那样,没有为字符串定义专门的变量类型,一般情况下将字符串放在字符数组中。下 “ * <> <> " "宏定义一个字符串 ()

{ (" () \"()); (" () \"()); } 程序 程序运行的结果如图所示: 图:程序运行结果 () \” * 函数名: 输入参数:无 输出参数:无 调用:()

被调用:无 功能:求取字符串中字符的个数 * <> <> \"(""))。而()只是一个关键字,它是用来求某一数据类型所占的字节数的;.我们可以通过宏定义的方式来定义一段字符串。其实我们还可以有另一个方法来定义一个字符串变量: [] " ." 下面我们来具体比较下()和的区别,看程序: *

函数名: 输入参数:无 输出参数:无 调用:(), () 被调用:无 程序运行的结果如图所示:

图:程序运行结果 从程序运行的结果我们可以看出()求的是数组的大小,因为我们定义的是包含个字符元素的数组,而一个字符的大小为个字节,所以该数组的大小为;()求的是该数组中字符串所包含的字符的个数(包括空格),所以其大小为. 标志 五种标志的具体具体作用如表所示: 标志意义 项目左对齐。也就是说将项目打印在 字段的左侧开始处。 有符号的数若为正则在数字前加 “”,若为负则加“” 空格有符号数若为正则在数字前加一

个空格,若为负则在数字前加 “” 和会打印出八进制和十六进制的 的前缀。对于浮点型数据,即使 没有数字,也会打印一个小数点 用前导代替空格来填充字段宽 度。如果标志与精度说明符同时 出现那么标志被忽略 表:()种标志 :用反斜杠和回车的方式。例如: (“ \ .\”) .采样字符串连接的方法。例如:

保护模式与实模式

什么是实模式、保护模式和虚拟8086方式 1:实模式:寻址采用和8086相同的16位段和偏移量,最大寻址空间1MB,最大分段64KB。可以使用32位指令。32位的x86 CPU用做高速的8086。 2:保护模式:寻址采用32位段和偏移量,最大寻址空间4GB,最大分段4GB (Pentium Pre及以后为64GB)。在保护模式下CPU可以进入虚拟8086方式,这是在保护模式下的实模式程序运行环境。 第一:实模式下程序的运行回顾. 程序运行的实质是什么?其实很简单,就是指令的执行,显然CPU 是指令得以执行的硬件保障,那么CPU如何知道指令在什么地方呢? 对了,80x86系列是使用CS寄存器配合IP寄存器来通知CPU指令在内存 中的位置. 程序指令在执行过程中一般还需要有各种数据,80x86系列有DS、 ES、FS、GS、SS等用于指示不同用途的数据段在内存中的位置。 程序可能需要调用系统的服务子程序,80x86系列使用中断机制 来实现系统服务。 总的来说,这些就是实模式下一个程序运行所需的主要内容 (其它如跳转、返回、端口操作等相对来说比较次要。) 第二:保护模式---从程序运行说起 无论实模式还是保护模式,根本的问题还是程序如何在其中运行。 因此我们在学习保护模式时应该时刻围绕这个问题来思考。 和实模式下一样,保护模式下程序运行的实质仍是“CPU执行指令, 操作相关数据”,因此实模式下的各种代码段、数据段、堆栈段、中 断服务程序仍然存在,且功能、作用不变。 那么保护模式下最大的变化是什么呢?答案可能因人而异,我的 答案是“地址转换方式”变化最大。 第三:地址转换方式比较 先看一下实模式下的地址转换方式,假设我们在ES中存入0x1000, DI中存入0xFFFF,那么ES:DI=0x1000*0x10+0xFFFF=0x1FFFF,这就是众 所周知的“左移4位加偏移”。 那么如果在保护模式下呢?假设上面的数据不变ES=0x1000, DI=0xFFFF,现在ES:DI等于什么呢? 公式如下:(注:0x1000=1000000000000b= 10 0000 0000 0 00) ES:DI=全局描述符表中第0x200项描述符给出的段基址+0xFFFF 现在比较一下,好象是不一样。再仔细看看,又好象没什么区别! 为什么说没什么区别,因为我的想法是,既然ES中的内容都不是 真正的段地址,凭什么实模式下称ES为“段寄存器”,而到了保护模式 就说是“选择子”? 其实它们都是一种映射,只是映射规则不同而已:在实模式下这

微机原理实验五字符及字符串的输入输出

实验五字符及字符串的输入输出 一、实验目的 1. 学会编写简单的字符、字符串输入输出程序。 2. 掌握几种常用的DOS 系统功能调用。 二、实验环境 1. 硬件:PC 微机 2. 软件:Masm for Windows 汇编集成开发环境 三、实验讲义 1. 系统功能调用是MS-DOS 为程序员编写汇编语言源程序提供的一组子程序,包括设备管理、文件管理和目录管理等。它规定使用软中断指令INT 21H 作为进入各功能子程序的总入口,再为每个功能调用规定一个功能号,引用功能号即可进入相应的子程序入口。 使用方法: (1)传送入口参数到指定的寄存器中,有的子程序不需要入口参数; (2)把要调用功能的功能号送入AH 寄存器中; (3)用INT 21H 指令转入子程序入口; (4)相应的子程序运行结束后,可以按照规定取得出口参数,一般给在寄存器中。 常用系统功能调用的功能号有 1,10(0AH),2,9,4CH 五种: (1)键盘输入单字符——1 号系统功能调用格式: MOV AH,1 INT 21H 功能:系统等待键盘输入,将键入字符的ASCII 码送入AL 寄存器中,并通过显示器显示该字符。 (2)键盘输入字符串——0A 号系统功能调用格式: LEA DX,缓冲区首地址MOV AH,0AH INT 21H 功能:将键盘输入的字符串写入内存单元中。 (3)输出单字符——2 号系统功能调用格式: MOV DL,’单字符’/ASCII 码MOV AH,2 INT 21H 功能:将单个字符通过屏幕显示出来。将要显示的字符或者其ASCII 码先存入寄存器DL 中,再调用2 号系统功能调用。 (4)输出字符串——9 号系统功能调用格式: LEA DX,字符串首地址 MOV AH,09H INT 21H 功能:将指定的内存缓冲区中的字符串从显示器显示输出,注意字符串以字符’$’作为结束标志。 (5)返回操作系统——4CH 号系统功能调用格式:MOV AH,4CH INT 21H 功能:在用户程序结束处插入此调用,则返回到DOS 操作系统,显示器显示系统提示符。 四、实验内容 1. 从键盘输入一个大写字母,屏幕上输出其相应的小写字母。(大写字母 A-Z 的ASCII 为41H-5AH;小写字母a-z 的ASCII 码为61H-7AH)

保护模式下寻址(易懂)

保护模式下寻址(易懂) 保护模式下寻址(易懂):网上看到的一强帖,不转不行了,牛人啊,把这段代码拿捏的相当到位括号中是我的加注段机制轻松体验[内存寻址]实模式下的内存寻址:让我们首先来回顾实模式下的寻址方式段首地址×16+偏 移量=物理地址为什么要×16?因为在8086CPU中,地址线是20位,但寄存器是16位的,最高寻址64KB,它无法寻址到1M内存。于是,Intel设计了这种寻址方式,先缩小4位成16位放入到段寄存器,用到时候,再将其扩大到20位,这也造成了段的首地址必须是16的倍数的限制。保护模式下分段机制的内存寻址:保护模式下分段机制是利用一个称作段选择符的偏移量,从而到描述符表找到需要的段描述符,而这个段描述符中就存放着真正的段的物理首地址,再加上偏移量一段话,出现了三个新名词:1、段选择子2、描述符表3、段描述符我们现在可以这样来理解这段话:有一个结构体类型,它有三个成员变量:段物理首地址段界限段属性内存中,维护一个该结构体类型的是一个数组。而分段机制就是利用一个索引,找到该数组对应的结构体,从而得到段的物理首地址,然后加上偏移量,得到真正的物理地址。公式:xxxx:yyyyyyyy其中,xxxx也就是索引,yyyyyyyy是偏移量(因为32位寄存器,所以8个

16进制)xxxx存放在段寄存器中。现在,我们来到过来分析一下那三个新名词。段描述符,一个结构体,它有三个成员变量:1、段物理首地址2、段界限3、段属性我们再来重温一遍描述符表,也就是一个数组,什么样的数组呢?是一个段描述符组成的数组。接下来看看段选择子:段选择子,也就是数组的索引,但这时候的索引不在是高级语言中数组的下标,而是我们将要找的那个段描述符相对于数组首地址(也就是全局描述表的首地址)偏移位置。就这么简单,如图:图中,通过Selector(段选择子)找到存储在Descriptor Table(描述符表)中某个Descriptor(段描述符),该段描述符中存放有该段的物理首地址,所以就可以找到内存中真正的物理段首地址SegmentOffset(偏移量):就是相对该段的偏移量物理首地址+偏移量就得到了物理地 址本图就是DATA但这时,心细的朋友就发现了一个GDTR这个家伙还没有提到!我们来看一下什么是GDTR ?Global Descriptor Table Register(全局描述符表寄存器)但是这个寄存器有什么用呢?大家想一下,段描述符表现在是存放在内存中,那CPU是如何知道它在哪里呢?所以,Intel 公司设计了一个全局描述符表寄存器,专门用来存放段描述符表的首地址,以便找到内存中段描述符表。这时,段描述符表地址被存到GDTR寄存器中了。好了,分析就到这,我们来看一下正式的定义:当x86 CPU 工作在保护模式时,可

C语言字符串的输入和输出

C语言字符串的输入和输出 字符串的输入和输出 %c人为加入\0进行输入输出 %s直接输入输出 *输入输出字符串时字符数组应有足够的存储空间,指针变量作为输入项时,指针必须已经指向确切的、足够大的存储空间 %s的使用 scanf("%s",地址值) 地址值:字符数组名、字符指针、字符数组元素的地址 例:char str[15]; scanf("%s",str); abc123 1.不读入空格和回车,从空格处结束 2.输入字符串长度超过字符数组元素个数,不报错 3.当输入项为字符指针时,指针必须已指向确定的有足够空间的连续 存储单元 4.当为数组元素地址时,从此元素地址开始存放 2.printf("%s",地址值) 输出时遇到第一个'\0'为止 3.gets和puts函数 开头必须stdio.h #include"stdio.h"

1.gets(地址值) 地址值:字符数组名、字符指针、字符数组元素的地址 4.当为数组元素地址时,从此元素地址开始存放 5.printf("%s",地址值) 输出时遇到第一个'\0'为止 6.gets和puts函数 开头必须stdio.h #include"stdio.h" 1.gets(地址值) 地址值:字符数组名、字符指针、字符数组元素的地址 7.例: char str[10]; gets(str); 包括空格符 8. 2.puts(字符串起始地址) 遇第一个'\0'结束,自动加入换行符 9.字符串数组:数组中每个元素都是一个存放字符串的数组 可以将一个二维数组看作是字符串数组 10.char ca[3][5]={"A","BB","CCC"}; A\0 B B\0 C C C\0 字符型指针数组 char*pa[3]={"a","bb","ccc"}; pa[0]pa[1]pa[2] 可以重新赋值gets(pa[2]);

第3章作业

第3章从8086到Pentium系列微处理器的技术发展 教材习题解答 1. 简述80286的特点和保护模式的保护功能。 【解】80286的特点: ①CPU内部分为四个处理部件:EU(执行部件)、AU(地址部件)、IU(指令部件)和BU(总线部件)。这四个处理部件可以并行的进行操作,提高了处理速度。 ②数据线和地址线完全分离。在一个总线周期中,当有效数据出现在数据总线上的时候,下一个总线周期的地址已经送到地址总线,形成总线周期的流水作业。 ③具有“实地址模式”(Real Address Mode,简称为“实模式”)和“保护虚地址模式”(Protected V irtual Address Mode,简称为“保护模式”)”两种工作模式。 ④能运行实时多任务操作系统,支持存储管理和保护功能。 ⑤实现了虚拟存储管理。 ⑥与80286 配合使用的数学协处理器是80287,它基本与8087相同,但适应80286 的两种工作模式。 保护模式体现了80286的特色,主要是对存储器管理、虚拟存储和对地址空间的保护。在保护模式下,可为每个任务提供多达1GB的虚拟存储空间和保护机制,有力地支持了多用户、多任务的操作。那些内存装不下的逻辑段,将以文件形式存在外存储器中,当处理器需要对它们进行存取操作时就会产生中断,通过中断服务程序把有关的程序或数据从外存储器调入到内存,从而满足程序运行的需要。 保护模式为不同程序设置了四个特权级别,可让不同程序在不同的特权级别上运行。依靠这一机制,可支持系统程序和用户程序的分离,并可进一步分离不同级别的系统程序,大大提高了系统运行的可靠性。 2. 简述80386 的特点、80386引脚与8086的区别。 【解】80386 的特点: 80386是全32位结构,它的外部数据总线和内部数据通道,包括寄存器、ALU和内部总线都是32位的。 80386 有3 种工作模式:实模式、虚拟86模式、386的保护模式。 80386的硬件结构可分成6个逻辑单元,它们以流水线方式工作,运行速度可达4MIPS。其硬件设计有支持段页式存储管理部件,易于实现虚拟存储系统。在保护模式下的分段寻址体系,与操作系统相配合可以组成虚拟存储器系统,一个任务的最大虚拟空间可达246=64 TB。 80386硬件支持多任务处理,用一条指令就可以实现任务切换。 80386设置了4级特权级,按优先顺序依次为0级、1级、2级、3级,前3级用于操作系统程序,后1级用于用户程序。 80386引脚与8086的区别见表3-1。 表3-1 80386引脚与8086的区别 8086CPU 80386CPU 共有40个引脚共有132个引脚 16条地址/数据复用线4条地址线34条地址线 32条数据线 在总线宽度控制信号16 BS的控制下,可实现16位或32位数据传送。字节控制信号0 BE~3 BE 协处理器接口信号 (1) PEREQ:协处理器向80386发出的请求信号,有效时表示协处理器请求与存储器之间传送数据。80386响应该请求后,将按照指令的要求控制对存储器的读写。 (2) BUSY:协处理器向80386发出的状态信号,有效时表示协处理器正在执行指令,处于忙状态,暂时不能接受新的指令。 (3)ERROR:协处理器向80386发出的状态信号,有效时表示协处理器出错。80386在检测到ERROR信号后,将转到错误处理子程序来处

关于C语言中的字符串数组输入输出控制符的若干问题

关于C语言中的字符串数组输入输出控制符的若干问题示例一: #include void main() { int i; int a[6]; for(i=0;i<6;i++) { printf("please enter a number:\n" ); scanf("%d",&(a[i])); } printf("%d,%d,%d,%d,%d,%d",a[0],a[1],a[2],a[3],a[4],a[5]); //printf("%d",a); 这是错误做法,没有输出若干个实数的控制符,只能一个个输出。 } 实例二: #include void main() { int i; char a[6]; for(i=0;i<6;i++) { printf("please enter a number:\n" ); scanf("%s",&(a[i])); //只可从键盘输入一个字符,否则输出将每次输入多余的部分丢弃。 //不可写成:scanf("%c",&(a[i])); } printf("%c%c%c%c%c%c",a[0],a[1],a[2],a[3],a[4],a[5]); //不可用%s%s%s%s%s%s //也可以这样写:printf("%s",a); } 示例三: #include void main() { int i; char a[6]; for(i=0;i<6;i++) { printf("please enter a number:\n" ); scanf("%c",&(a[i])); getchar(); //如果用%c作为输入一个字符控制符用,后面必须加此句; } a[6] = '\0'; //如果用%c作为输入一个字符控制符用,后面必须加此句; printf("%s",a); }

Gate A20与保护模式

Gate A20与保护模式 大家都知道,8088/8086只有20位地址线,按理它的寻址空间是2^20,应该是1024KB,但PC机的寻址结构是segment:offset,segment和offset都是16 位的寄存器,最大值是0ffffh,换算成物理地址的计算方法是把segment左移4位,再加上offset,所以segment:offset所能表达的寻址空间最大应为0ffff0h + 0ffffh = 10ffefh(前面的0ffffh是segment=0ffffh并向左移动4位的结果,后面的0ffffh是可能的最大offset),这个计算出的10ffefh是多大呢?大约是1088KB,就是说,segment:offset的地址表达能力,超过了20位地址线的物理寻址能力,你说这是不是有点麻烦。在早先,由于所有的机器都没有那么大的内存,加上地址线只有20位,所以当你用segment:offset的方式企图寻址100000h这个地址时,由于没有实际的第21位地址线,你实际寻址的内存是00000h的位置,如果你企图寻址100001h这个地址时,你实际得到的内容是地址00001h上的内容,所以这个事对实际使用几乎没有任何影响,但是后来就不行了,出现了80286,地址线达到了24位,使segment:offset寻址100000h--10ffefh这将近64K的存储器成为可能,为了保持向下兼容,于是出现了A20 Gate,这是后话,我们后面再细说。 我们可能经常听到一些只有在PC机上才有的一些关于存储器的专有名词,包括:常规内存(Conventional Memory)、上位内存区(Upper Memory Area)、高端内存区(High Memory Area)和扩展内存(Extended Memory),我尽量把这几个东东说明白,这需要下面这张著名的图。 这张图很清楚地说明了问题,大家都知道,DOS下的“常规内存”只有640K,这640K就是从0--A0000H这段地址空间;所谓“上位内存区”,指的就是20位地址线所能寻址到的1M地址空间的上面384K空间,就是从A0001H--100000H 这段地址空间,也就是我们说的用于ROM和系统设备的地址区域,这384K空间和常规内存的640K空间加起来就是20位地址线所能寻址的完整空间 1024KB;由于80286和80386的出现使PC机的地址线从20位变成24位又变成32位,寻址能力极大地增加,1M以上的内存寻址空间,我们统称为“扩展内存”;这里面绝大部分内存区域只能在保护模式下才能寻址到,但有一部分既可以在保护模式下,也可以在实模式下寻址,这就是我们前面提到过的地址100000h--10ffefh之间的这块内存,为了表明其特殊性,我们把这块有趣的内存区叫做“高端内存”。 前面我们提过由于IBM的愚蠢设计给PC机的内存结构埋下了麻烦的伏笔,现在我们来说说这个麻烦。我们都见过PC机上的内存条,但是由于上位内存区

字符及字符串输入输出与顺序程序设计实验样本

微机原理第二次实验字符及字符串输入输出与顺序程序设计实验 班级: 姓名: 学号: 日期:

2.2 字符及字符串输入输出与顺序程序设计实验 2.2.1 实验目 1、学习和掌握字符及字符串输入输出办法。 2、掌握顺序程序设计办法。 3、进一步掌握调试工具用法。 2.2.2 实验预习规定 1、复习DOS功能调用中用于字符输入(功能号01H)、字符输出(功能号02H)、字符串输入(功能号 为0AH)以及字符串输出(功能号09H)调用办法(详见教材5.5.6)。 2、复习BCD码运算调节指令。 3、依照“2.2.3 实验内容”中给出源程序框架编写完整源程序,以便实验时调试。 4、从“2.2.4 实验习题”中任选一道题目,编写源程序,以便上机调试。 2.2.3实验内容 从键盘输入两个一位十进制数,计算这两个数之和,并将成果在屏幕上显示出来。 1、问题分析 例如使用功能号为01H用于实现单个字符输入DOS功能调用接受从键盘输入两个十进制数8和6,这时计算机内部得到是这两个数ASCII码值38H和36H。由于数字0 9ASCII码值与其代表数值之间相差30H,因而将其减去30H即可得到以非压缩型BCD数形式表达十进制数08H和06H,使用ADD指令对它们进行相加后成果为0EH(00001110B),显然需要用非压缩型BCD数加法调节指令对ADD运算成果进行调节,调节后得到两个非压缩型BCD数01H和04H,将它们分别加上30H后变为其相应ASCII码31H(1ASCII码)和34H(4ASCII码),然后调用功能号为02H用于单个字符输出DOS功能调用将它们显示出来。综上所述,需要考虑如下问题。 (1)从键盘输入一种一位十进制数办法 通过功能号为1DOS功能调用实现从键盘输入一种字符,格式如下:

80386 和 保护模式

80386 和保护模式 ___William Liu Intel CPU 一般可以运行在两种模式之下,即实模式和保护模式。早期的 Intel CPU ( 8086 , 8088 )只能工作在实模式之下,系统中只能运行单个任务,而且只能使用实地址模式。对于 Intel 80386 以上的芯片则还可以运行在 32 位的保护模式之下。在保护模式之下的 CPU 可以支持多任务;支持 4GB 的物理内存;支持 64TB 的虚拟内存;支持内存的页式管理和段式管理以及支持特权级。 本文档将首先介绍 Intel 80386 CPU 的几个内部寄存器,然后再由浅入深的分别介绍保护模式下的段式管理,页式管理,虚拟内存,多任务以及特权级管理等几个方面。 Intel 80386 CPU 的内部寄存器 这一部分先大致介绍一下 386 的内部寄存器,具体细节在后面的几节中再详细说明。一般来说, CPU 设计用来系统编程的系统寄存器包括如下几类: ?标志寄存器 (EFLAGS) ?内存管理寄存器 (GDTR , LDTR , IDTR , TR) ?控制寄存器 (CR0 , CR1 , CR2 , CR3 , CR4) ?兼容 8086 通用寄存器( EAX , EBX , ECX , EDX ) ?兼容 8086 段寄存器( CS , DS , ES , SS , FS , GS ) ?兼容 8086 数据寄存器( ESI , EDI , EIP , ESP ) 下面分别加以介绍:

1) 标志寄存器 EFLAGS : 跟 8086/8088 的 FLAGS 大致差不多。只不过位宽由 16bit 变成了 32bit ,负责的状态标志也多了一些。见图一所示: 图一: EFLAGS 的结构 其中系统标志: VM -虚拟 8086 模式; RF -恢复标志; NT -任务嵌套标志;IOPL - I/O 特权级标志; IF -中断允许标志。 2) 内存管理寄存器: 一共有 4 个,用于分段内存管理,都是用于存放指针的,只是所指的再内存单元中的内容有所不同。 GDTR 全局描述符表寄存器( Global Descriptor Table Register ),存放的是一个指向内存单元列表的指针,用于指向全局段描述表( GDT ),如图二所示。共 48bit ,高 32bit 是 GDT 的基址,低 16bit 描述 GDT 的长度。由于每项 8Byte ,所以共可以有 2^(16)/8=2^13 项。 IDTR 中断描述符表寄存器( Interrupt Descriptor Table Register ),存放的是也一个指向内存单元列表的指针,用于指向全局中断描述符表( IDT ),如图二所示。跟 GDTR 一样,共 48bit 。

保护模式编程

第1章保护模式编程一 如果想更深、更亲近的了解电脑软件。那么学习cpu是你的必选!! 386是CPU史的一大转折点,那386做基础课是最好不过了。那么我们将开始进行学习之旅!!!大家跟我一块学习吧,呵呵!!! 1.1 准备工作 l1、NASM 编译环境(当然Masm 也可以但是用它来写COM程序比较 麻烦) l2、虚拟机 Virtual PC(Windows平台,执行比较快,即模拟又虚拟硬件)、 WMWarve(WIndows平台虚拟硬件,)、 Bochs(支持Windows平台、也支持在Linux平台上运行有RPM版本的) 我们这些生长在Windows这棵大树下的朋友们,还是用Virtual PC吧.。 l3、写虚拟启动镜像文件的程序 :不知道我观察的对不对?用Nasm 编译一个bin 然后将它转换为img 镜像文件的时候。只要文件大小符合软驱的标准就能启动。那么就代表a.bin 与a.img 文件的内容一模样就是文件大小不一样!我是不太了解镜像文件格式.我用的是Virtual PC。 1.2 开始接触引导程序 1.2.1 Com文件 Com文件是纯二进制的文件,也是直接与Cpu交换的顺序指令文件。Com文件的大小是有限制的,不能超过64KB.因为8086时代的CPU地址线是20位的,20位能表达的数值也就是fffffh(1MB )。而寄存器最高也只是16位,无法用5个F的形式来表达地址,所以用CS(段基地址)*16:IP(偏移地址)来寻址!80386后通用寄存器都得到了32位扩展! 而Cpu地址线也得到了32位的扩展。引导程序前期是需要进入实模式的,因为这是硬件上的限制是IA32的限

C语言中的输入输出函数总结

putchar ():把变量中的一个字符常量输出到显示器屏幕上; getchar ();从键盘上输入一个字符常量,此常量就是该函数的值; printf ();把键盘中的各类数据,加以格式控制输出到显示器屏幕上; scanf ();从键盘上输入各类数据,并存放到程序变量中; puts ():把数组变量中的一个字符串常量输出到显示器屏幕上; gets ():从键盘上输入一个字符串常量并放到程序的数组中. sscanf(); 从一个字符串中提取各类数据。 putchar() 输出一个字符 getchar() 输入流中获取一个字符 例如: char c = getchar(); putchar(c); 格式化输入输出scanf()和printf()是最有用的,所以重点讲一下。 printf(): 一般形式: printf("格式控制".输出列表); eg : printf("a=%d,b=%f,c=%c\n",a,b,c); 1;格式控制. 格式控制是用双引号括起来的字符串,也称"转换控制字符串",它包含以下两部分信息. 格式说明:由"%"和格式字符组成,如%d,%f,%c,他的作用是把输出数据转换为指定格式输出,格式的说明总是由"%"字符开始的. 普通字符:需要原样输出的字符,或者是一些有特殊含义的字符,如\n,\t。 2;输出列表 就是需要输出的一些数据,也可以是表达式,如果在函数中需要输出多个变量或表达式,则要用逗号隔开. 一些特殊字符的输出: 单引号,双引号,和反斜杠的输出在前面加转义字符”\” 如:”\’” , “\””, “\\” %的输出用两个连在一起的%%,即printf(“%%”); 常用的格式说明如下: 格式字符 d 以十进制形式输出带符号整数(正数不输出符号) o 以八进制形式输出无符号整数(不输出前缀O) x 以十六进制形式输出无符号整数(不输出前缀OX) u 以十进制形式输出无符号整数 f 以小数形式输出单精度实数 lf 以小数形式输出双精度实数

输入一个整数,将其转换为字符串输出

例9-15 编写函数,输入一个整数,将其转换为字符串输出。例如,输入整数86556,输出字符串"86556"。 首先确定函数头,函数输入一个long型整数,输出一个char型字符数组,因此可以定为void long2string(long lNum,char chWord[])。注意这里的整数可能比较大,不要定为int型。 函数中,可以首先利用循环和%和/运算符,依次取得整数的每个位。思路如下:例如86556,我们可以将其对10取余,得到个位6;将86556除10余8655,继续对10取余,得到十位5;……以此类推,直到该数变为0为止。这样就可以将整数的每个位分离出来。 在上述的循环过程中,将分离出的数字依次保存到字符数组中。但是要注意,字符数组中保存的是字符,是数字的ASCII码,而不是数字本身的值。因为ASCII码表中阿拉伯数字的码值是连续的,因此一个常用的技巧是,字符0加数字值即为该数字的ASCII码值。 上述过程结束后,字符数组里存放了整数的每个位,但是不符合题目的要求,顺序正好相反。这可以用一个循环对数组进行转置:字符串第一个元素和最后一个元素对换;第二个元素和倒数第二个元素对换;……程序循环进行字符串长度/2 次(如果字符串长度为奇数,中间元素正好不用处理)。 数据要求 问题中的常量: 无 问题的输入: long lNum /*输入的long型数据*/ 问题的输出: char chWord[50] /*转换后的字符串*/ 初始算法 1.初始化变量lNum; 2.调用函数得到字符串; 3.程序输出结果后退出。 算法细化 步骤2的细化 2.1 初始化临时变量 2.2 lNum!=0时,循环执行得到各个位的数字 2.2.1 转换数字ASCII码 2.2.2 i变量增1 2.2.3 lNum=lNum/10,本步骤的目的有两个,一是结束循环,二是正确的 得到数字 2.3 字符串最后加标志 2.4 循环进行数组的逆序 2.5 结束 流程图

保护模式下寻址

保护模式下寻址 网上看到的一强帖,不转不行了,牛人啊,把这段代码拿捏的相当到位括号中是我的加注 段机制轻松体验 [内存寻址] 实模式下的内存寻址: 让我们首先来回顾实模式下的寻址方式 段首地址×16+偏移量=物理地址 为什么要×16?因为在8086CPU中,地址线是20位,但寄存器是16位的,最高寻址64KB,它无法寻址到1M 内存。于是,Intel设计了这种寻址方式,先缩小4位成16位放入到段寄存器,用到时候,再将其扩大到20位,这也造成了段的首地址必须是16的倍数的限制。 保护模式下分段机制的内存寻址: 保护模式下分段机制是利用一个称作段选择符的偏移量,从而到描述符表找到需要的段描述符,而这个段描述符中就存放着真正的段的物理首地址,再加上偏移量 一段话,出现了三个新名词: 1、段选择子 2、描述符表 3、段描述符 我们现在可以这样来理解这段话:有一个结构体类型,它有三个成员变量:段物理首地址段界限段属性内存中,维护一个该结构体类型的是一个数组。而分段机制就是利用一个索引,找到该数组对应的结构体,从而得到段的物理首地址,然后加上偏移量,得到真正的物理地址。 公式:xxxx:yyyyyyyy 其中,xxxx也就是索引,yyyyyyyy是偏移量(因为32位寄存器,所以8个16进制)xxxx存放在段寄存器中。 现在,我们来到过来分析一下那三个新名词。段描述符,一个结构体,它有三个成员变量:1、段物理首地址2、段界限3、段属性 我们再来重温一遍描述符表,也就是一个数组,什么样的数组呢?是一个段描述符组成的数组。 接下来看看段选择子:段选择子,也就是数组的索引,但这时候的索引不在是高级语言中数组的下标,而是我们将要找的那个段描述符相对于数组首地址(也就是全局描述表的首地址)偏移位置。 就这么简单,如图:

字符及字符串输入输出与顺序程序设计实验

微机原理第二次试验字符及字符串输入输出与顺序程序设计实验 班级: 姓名: 学号: 日期:

字符及字符串输入输出与顺序程序设计实验 2.2.1 实验目的 1、学习和掌握字符及字符串的输入输出方法。 2、掌握顺序程序的设计方法。 3、进一步掌握调试工具的使用方法。 2.2.2 实验预习要求 1、复习DOS功能调用中用于字符输入(功能号01H)、字符输出(功能号02H)、字符串输入(功能号为 0AH)以及字符串输出(功能号09H)的调用方法(详见教材5.5.6)。 2、复习BCD码运算调整指令。 3、根据“2.2.3 实验内容”中给出的源程序框架编写完整的源程序,以便实验时调试。 4、从“2.2.4 实验习题”中任选一道题目,编写源程序,以便上机调试。 2.2.3实验内容 从键盘输入两个一位十进制数,计算这两个数之和,并将结果在屏幕上显示出来。 1、问题分析 比如使用功能号为01H的用于实现单个字符输入的DOS功能调用接收从键盘输入的两个十进制数8和6,这时计算机内部得到的是这两个数的ASCII码值38H和36H。由于数字0?9的ASCII码值与其代表的数值之间相差30H,因此将其减去30H即可得到以非压缩型BCD数形式表示的十进制数08H和06H,使用ADD指令对它们进行相加后结果为0EH(00001110B),显然需要用非压缩型BCD数加法调整指令对ADD的运算结果进行调整,调整后得到两个非压缩型BCD数01H和04H,将它们分别加上30H后变为其对应的ASCII码31H(1的ASCII码)和34H(4的ASCII码),然后调用功能号为02H用于单个字符输出的DOS功能调用将它们显示出来。综上所述,需要考虑以下问题。 (1)从键盘输入一个一位十进制数的方法 通过功能号为1的DOS功能调用实现从键盘输入一个字符,格式如下: MOV AH, 01H INT 21H ;此时程序等待用户键入,键入字符的ASCII码值存在AL中 SUB AL, 30H ;减去30H后得到键入数字所代表的数值 (2)提示信息字符串的显示 通过功能号为9的DOS功能调用实现字符串显示,注意字符串的最后一个字符必需为’$’。指令格式如下: MOV D X, OFFSET INFOR1 ;INFOR1为在数据段中定义的要显示的字符串 MOV AH, 09H INT 21H (2)非压缩型BCD数加法调整指令的使用 设从键盘输入的数值已存放在寄存器AL, BL中,可用下列程序完成数据相加和调整操作:XOR AH,AH ADD A L, BL AAA ;执行该指令后,AH中为和的十位上的数字,AL中为个位上的数字 请读者考虑,为什么要使用指令“XOR AH,AH”,不用行否? (3)计算结果的显示 执行完AAA指令后,只需分别将AH(十位上的数值)和AL(个位上的数值)加上30H,并依次调

段地址轻松体验(实模式和保护模式)

段机制轻松体验(实模式和保护模式) [内存寻址] 实模式下的内存寻址: 让我们首先来回顾实模式下的寻址方式 段首地址×16+偏移量=物理地址 为什么要×16?因为在8086CPU中,地址线是20位,但寄存器是16位的,最高寻址64KB,它无法寻址到1M内存。于是,Intel设计了这种寻址方式,先缩小4位成16位放入到段寄存器,用到时候,再将其扩大到20位,这也造成了段的首地址必须是16的倍数的限制。 保护模式下分段机制的内存寻址: 保护模式下分段机制是利用一个称作段选择符的偏移量,从而到描述符表找到需要的段描述符,而这个段描述符中就存放着真正的段的物理首地址,再加上偏移量 一段话,出现了三个新名词: 1、段选择子 2、描述符表 3、段描述符 我们现在可以这样来理解这段话:有一个结构体类型,它有三个成员变量:段物理首地址段界限段属性 内存中,维护一个该结构体类型的是一个数组。而分段机制就是利用一个索引,找到该数组对应的结构体,从而得到段的物理首地址,然后加上偏移量,得到真正的物理地址。 公式:xxxx:yyyyyyyy 其中,xxxx也就是索引,yyyyyyyy是偏移量(因为32位寄存器,所以8个16进制)xxxx 存放在段寄存器中。 现在,我们来到过来分析一下那三个新名词。段描述符,一个结构体,它有三个成员变量:1、段物理首地址2、段界限3、段属性 我们再来重温一遍描述符表,也就是一个数组,什么样的数组呢?是一个段描述符组成的数组。 接下来看看段选择子:段选择子,也就是数组的索引,但这时候的索引不在是高级语言中数组的下标,而是我们将要找的那个段描述符相对于数组首地址(也就是全局描述表的首地址)偏移位置。

计算机组成原理B及答

《计算机组成原理(含汇编)》 站点:专业年级:姓名:学号: 一、名词解释题(每空4分,共20分) 1.冯-诺依曼计算机 2.CISC和RISC 3.定点数和浮点数 4.微命令、微指令,微程序 5.指令流程 二、填空题(每空1分,共20分) 1、某定点小数字长16位,含一位符号位,补码表示,其能表示数的范围为,分辨率为。 2、CPU从主存取出一条指令并执行该指令的时间叫,它通常包含若干 个,而后者又包含若干个组成多级时序系统。 3、在组合逻辑(硬连逻辑)控制器中,是由组合逻辑电路产生的。电路固 定下来之后修改和扩展。 4、保护模式存储器寻址方式下,逻辑地址由段选择器和两部分组成。段选择 器存放在中,但它不能直接确定段基址,而由CPU通过一定的方法取得段基址,再和相加,从而求得所选存储单元的线性地址,线性地址再通过转换成物理地址。 5、已知BX=8830H,CF=1,执行指令:ADC BX,87CFH之后,BX=____________,标志 位的状态分别为CF=_______,ZF=_______,OF=________,SF=__________。 6、在80X86汇编语言程序中,逻辑地址可表示为: 7、伪指令语句是用来指示的语句,伪指令语句除 了其外,其他项均没有对应的目标代码 8、设字长8位,-128的补码是 三、问答题(共20分) 1、在实模式下如何实现存储器寻址?(5分)。

2、何谓组合逻辑控制器?何谓微程序控制器?试比较它们的优缺点。(6分) 3、简要说明80x86的三组基本结构寄存器组包含哪些寄存器?简要说明各寄存器组的用途。(9分) 四、计算题(共20 分) 1、分别写出下列各二进制数的原码、补码,设字长(含一位数符)为8位。(5分) (1)0;(2)0.1101;(3)- 0.1101;(4)1101; (5) –1101 2、用变形补码计算,并指出是否有溢出。(5分) (1) 补=11,110011 ; 补 = 00,10110,计算 补 - 补 = ?[X-Y]的真值=? (2) 补=00,101010; 补 = 11,111001,算 补 - 补 = ?[X+Y]的真值=? 3、设两个浮点数,X=×0.110111,Y=×(- 0.101001),其浮点格式为:阶码四位 位数8位,且均用双符号位。按浮点加减运算规则计算 补+ 补 = ?(10分) 五、阅读程序(共20分) 1、假设(BX)=12FFH,有以下程序段,阅读程序后在“;”后填上指令的功能及执行该指令后相应寄存器的内:(6分) MOV CL,8 ;功能(CL)= ROL BX,CL ;功能(BX)= AND BX,0FFH ;功能(BX)= CMP BX,0FFH ;功能 (BX)= ,ZF= ,CF= 2、在实模式下,已知堆栈寄存器SS的内容是0100H,堆栈指针SP的内容00FEH, 写出计算段基址(物理地址)的过程,并画出执行以下程序段后,堆栈区和SP的内容变化过程示意图(标出存储单元的物理地址)(6分) MOV AX,1234H MOV BX,5678H PUSH AX PUSH BX POP CX 3、程序如下: MOV CX, 9 MOV AL ,01H

相关主题