搜档网
当前位置:搜档网 › 线性计算方法:

线性计算方法:

线性计算方法:
线性计算方法:

评级指标体系中有关财务指标分值的计算方法

一、确定指标体系中某项指标的最低分及最高分以及指标的参照值---最低值、最高值:

最高分:即满分,为指标体系中某指标的权重分值;

最低分:指标体系中所有指标的最低分均默认为0分。

比如:指标体系中“资产负债率”的权重为3,即该项指

标的最高分为3分,最低分为0分。

最低、最高值:即指标体系中规定的该指标参照标准的最低值和最高值

比如:利润率指标最低值10%,最高值50%

二、区分是正向指标还是反向指标:

正向指标:计算出的指标值越大越好,比如利润率,50% 比20% 高,所以50%比20%更好;

反向指标:计算出的指标值越大越不好,比如资产负债率,20% 比70% 低,所以20%比70%好;

三、计算分值:

正向指标:值越大时得分越高

正向指标的计算公式:

指标实际计算值-指标最低值

-- h 指标最低分

(指标的最高分 -指标的最低分)X

指标最高值-旨标的最低值

举例:

若某正向指标最高分3分,最低分0分;最低值10%,最高值30%。

某被评企业的该项指标计算后,如果结果为8% ,因为8% 小于10%,所以得0分;如果结果为32%,因为32%大于30%,所以得满分3分;如果结果为28%,即大于10%小于30%

(即:介于10%和30%之间),用公式计算为:

(3-0 )X [ (28%-10% ) / (30%-10% ) ] + 0 = 3 X

(18%/20% ) = 2.7 (分)

即该公司利润率指标得分应为:2.7分。

反向指标:值越大时得分越低

计算公式:

指标最高值-指标实际计算值

(指标的最高分 -指标的最低分) X -----------------------------

指标最高值-旨标的最低值

举例:若某反向指标最高分3分,最低分0分;最高值75% 最低值40%

某被评企业的该项指标计算后,如果结果为20%,因为

20%小于40%,所以得满分3;如果结果为78%,因为78%

大于75%,所以得0分;如果结果为55%,即大于40%小于

75% (即:介于40%和75%之间),用公式计算为:

(3 0 ) X [ (75%-55% ) / (75%-40% ) ] = 3 X

(20%/35% )?1.7 (分)

即该公司资产负债率指标得分应为: 1.7分

如果结果为45%,则实际计算得分应为:

(3 -0) X [ (75%-45% ) / (75%-40% ) ] = 3 X

(30%/35% )?2.6 (分)

四、目前指标体系中反向指标有:资产负责率、资本固定化比率、长期资本化比率和担保比率,其他为正向指标(反向指标也在打分表中作了备注)。

五、指标值计算应注意:任一指标值计算应是三年指标值的加权平均后的值。

1、一般情况下如下处理:

(1)如果能获得企业最近三年的财务数据则按最近一年

50% ,前一年30% ,再前一年20% 进行权重分配;

(2)如果能获得企业最近二年的财务数据则按最近一年

60% ,前一年40% 进行权重分配。

举例:

获得某企业2005 、2006 、2007 年的财务数据,根据财务指标计算公式得到该企业近三年的利润率分别为2005 年10% 、2006 年12% 、2007 年15% ,那么评级时,该企业的利润率实际计算值应该是(10% X权重1 + 12% X权重2 + 15% X权重3)即:

10% X20%+ 12% X30% + 15% X50%=13.1%

按上述正向指标计算公式,则该企业的利润率指标得分为:

(3-0 )X [(13.1%-10% )/(30%-10% )] + 0 = 3 X (3.1%/20% )?0.47 (分)

如果只获得某企业2006 、2007 年的财务数据,根据财务指标计算公式得到该企业近两年的利润率分别为2006 年12% 、2007 年15% ,那么评级时,该企业的利润率实际计算值应该是:

12%X40% + 15% X60%=13.8%

按上述正向指标计算公式,则该企业的利润率指标得分为:

(3-0 )X [(13.8%-10% )/(30%-10% )] + 0 = 3 X

(3.8%/20% )?0.57 (分)

2、主营业务收入增长率、净资产增长率、资本积累率三个指标的计算:

鉴于有些企业评级时成立时间不满三年,不便于进行开三次方根的计算(专业上为“复合增长率”的计算),因此统一采用简单算术平均法代替,即:将近三年指标值简单相加后除以3,或近两年指标值简单相加后除以2 (当只有二年数据时)。

不过,要注意的是,用简单算术平均法计算会有偏差,会影响实际评级打分。

线性规划计算方法

线性规划法的数学模型如下: 设X1,X2,X3,…,X n为各变量,n为变量个数,m为约束条件数,a ij(i=1,2…,m;j=1,2…,n)为各种系数,b1,b2,b3,…,b m为常数,C1,C2,C3,…C n为目标函数系数,Z为目标值,则线性规划模型如下: a11X1+a12X2+…+a1n X n≥(=≤)b1 a21X1+a22X2+…+a2n X n≥(=≤)b2 ………………… a m1X1+a m2X2+…+a mn X n≥(=≤) b m X1,X2,…,X n≥0 目标函数Zmin(max)=C1X1+C2X2十…+C n X n 线性规划计算方法: 鲜花店向李大民预定两种花卉——百合、玫瑰。其中每株收购价百合为4元,玫瑰为3元,鲜花店需要百合在1100~1400株之间,玫瑰在800~1200株之间,李大民只有资金5000元, 要去购买良种花苗, 在自家902m的温室中培育,每株苗价百合为2.5元,玫瑰为2元,由于百合与玫瑰生长所需采光条件的不同,百合每株大约占地0.052m,玫瑰每株大约占地0.032m,应如何配置才能使李大民获利最大? 数学建模:设种百合x1 株,玫瑰x2 株,则 2. 5 x1 + 2 x2 ≤5000 0. 05 x1 + 0. 03 x2 ≤90 x1 ≥1100 x1 ≤1400 x2 ≥800

x2 ≤1200 目标函数求最大值(即获利)Max z = (4 - 2. 5) x1 + (3 - 2) x2 = 1. 5 x + x1 可以看出,变量数为2,约束方程数为6,目标函数求最大值,打开线性规划计算软件,输入如下所示: 输入完成后点“计算”按纽,即可完成计算结果如下图:

多元线性回归方程的建立

多元线性回归方程的建立 建立多元线性回归方程,实际上是对多元线性模型(2-2-4)进行估计,寻求估计式(2-2-3)的过程。与一元线性回归分析相同,其基本思想是根据最小二乘原理,求解使全部观测值与回归值的残差平方和达到最小值。由于残差平方和 (2-2-5) 是的非负二次式,所以它的最小值一定存在。 根据极值原理,当Q取得极值时,应满足 由(2-2-5)式,即满足 (2-2-6)(2-2-6)式称为正规方程组。它可以化为以下形式 (2-2-7)如果用A表示上述方程组的系数矩阵可以看出A是对称矩阵。则有

(2-2-8) 式中X是多元线性回归模型中数据的结构矩阵,是结构矩阵X的转置矩阵。 (2-2-7)式右端常数项也可用矩阵D来表示 即 因此(2-2-7)式可写成 Ab=D (2-2-10) 或 (2-2-11)

如果A满秩(即A的行列式)那么A的逆矩阵A-1存在,则由(2-10)式和(2-11)式得的最小二乘估计为 (2-2-12) 也就是多元线性回归方程的回归系数。 为了计算方便往往并不先求,再求b,而是通过解线性方程组(2-2-7)来求b。(2-2-7)是一个有p+1个未知量的线性方程组,它的第一个方程可化为 (2-2-13) 式中 (2-2-14) 将(2-2-13)式代入(2-2-7)式中的其余各方程,得 (2-2-15) 其中 (2-2-16)将方程组(2-2-15)式用矩阵表示,则有 Lb=F (2-2-17) 其中

于是 b=L-1F (2-2-18) 因此求解多元线性回归方程的系数可由(2-2-16)式先求出L,然后将其代回(2-2-17)式中求解。求b时,可用克莱姆法则求解,也可通过高斯变换求解。如果把b直接代入(2-2-18)式,由于要先求出L的逆矩阵,因而相对复杂一些。 例2-2-1 表2-2-1为某地区土壤内含植物可给态磷(y)与土壤内所含无机磷浓度(x1)、土壤内溶于K2CO3溶液并受溴化物水解的有机磷浓度(x2)以及土壤内溶于K2CO3溶液但不溶于溴化物的有机磷(x3)的观察数据。求y 对x1, x2, x3的线性回归方程。 表2-2-1 土壤含磷情况观察数据

c 解线性方程组的几种方法

//解线性方程组 #include #include #include //----------------------------------------------全局变量定义区 const int Number=15; //方程最大个数 double a[Number][Number],b[Number],copy_a[Number][Number],copy_b[Number]; //系数行列式 int A_y[Number]; //a[][]中随着横坐标增加列坐标的排列顺序,如a[0][0],a[1][2],a[2][1]...则A_y[]={0,2,1...}; int lenth,copy_lenth; //方程的个数 double a_sum; //计算行列式的值 char * x; //未知量a,b,c的载体 //----------------------------------------------函数声明区 void input(); //输入方程组 void print_menu(); //打印主菜单 int choose (); //输入选择 void cramer(); //Cramer算法解方程组 void gauss_row(); //Gauss列主元解方程组 void guass_all(); //Gauss全主元解方程组 void Doolittle(); //用Doolittle算法解方程组 int Doolittle_check(double a[][Number],double b[Number]); //判断是否行列式>0,若是,调整为顺序主子式全>0 void xiaoqu_u_l(); //将行列式Doolittle分解 void calculate_u_l(); //计算Doolittle结果 double & calculate_A(int n,int m); //计算行列式 double quanpailie_A(); //根据列坐标的排列计算的值,如A_y[]={0,2,1},得sum=a[0][ A_y[0] ] * a[1][ A_y[1] ] * a[2][ A_y[2] ]=a[0][0]*a[1][2]*a[2][1]; void exchange(int m,int i); //交换A_y[m],A_y[i] void exchange_lie(int j); //交换a[][j]和b[]; void exchange_hang(int m,int n); //分别交换a[][]和b[]中的m和n 两行 void gauss_row_xiaoqu(); //Gauss列主元消去法 void gauss_all_xiaoqu(); //Gauss全主元消去法 void gauss_calculate(); //根据Gauss消去法结果计算未知量的值 void exchange_a_lie(int m,int n); //交换a[][]中的m和n列 void exchange_x(int m,int n); //交换x[]中的x[m]和x[n] void recovery(); //恢复数据 //主函数 void main() { int flag=1;

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

2021年常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 欧阳光明(2021.03.07) 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数Calculation of Basic solution Matrix of Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics,Chaohu CollegeAnhui,Chaohu) Abstract:Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the

多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)

线性插值法计算公式解析

线性插值法计算公式解析 LELE was finally revised on the morning of December 16, 2020

线性插值法计算公式解析 2011年招标师考试实务真题第16题:某机电产品国际招标项目采用综合评价法评标。评标办法规定,产能指标评标总分值为10分,产能在100吨/日以上的为10分,80吨/日的为5分,60吨/日以下的为0分,中间产能按插值法计算分值。某投标人产能为95吨/日,应得()分。A. B.8.75 C. D. 分析:该题的考点属线性插值法又称为直线内插法,是评标办法的一种,很多学员无法理解公式含义,只能靠死记硬背,造成的结果是很快会遗忘,无法应对考试和工作中遇到的问题,对此本人从理论上进行推导,希望对学员有所帮助。 一、线性插值法两种图形及适用情形 F F F2

图一:适用于某项指标越低得分越高的项目 评分计算,如投标报价得分的计算 图二:适用于某项投标因素指标越高,得分越高的 情形,如生产效率等 二、公式推导 对于这个插值法,如何计算和运用呢,我个人认为考生在考试时先试着画一下上面的图,只有图出来了,根据三角函数定义,tana=角的对边比上邻边,从图上可以看出,∠A是始终保持不变的,因此,根据三角函数tana,我们可以得出这样的公式

图一:tana=(F1-F2)/(D2-D1)=(F-F2)/(D2-D)=(F1-F)/(D-D1),通过这个公式,我们可以进行多种推算,得出最终公式如下 F=F2+(F1-F2)*(D2-D)/ (D2-D1) 或者F= F1-(F1-F2)*(D-D1)/(D2-D1) 图二:tana=(F1-F2)/(D2-D1)=(F-F2)/ (D-D1)=(F1-F) /(D2-D) 通过这个公式我们不难得出公式: F= F2+(F1-F2)*(D-D1)/(D2-D1) 或者F=F1-(F1-F2)*(D2-D)/(D2-D1) 三:例题解析 例题一:某招标文件规定有效投标报价最高的得30分,有效投标报价最低的得60分,投标人的报价得分用线性插值法计算,在评审中,评委发现有效的最高报价为300万元,有效最低的报价为240万元,某A企业的有效投标报价为280万元,问他的价格得分为多少 分析,该题属于图一的适用情形,套用公式 计算步骤:F=60+(30-60)/(300-240)*(280-240)=40 例题二:某招标文件规定,水泵工作效率85%的3分,95%的8分,某投标人的水泵工作效率为92%,问工作效率指标得多少分

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

微分方程几种求解方法

第五章 控制系统仿真 §5.2 微分方程求解方法 以一个自由振动系统实例为例进行讨论。 如下图1所示弹簧-阻尼系统,参数如下: M=5 kg, b=1 N.s/m, k=2 N/m, F=1N F 图1 弹簧-阻尼系统 假设初始条件为:00=t 时,将m 拉向右方,忽略小车的摩擦阻力,m x 0)0(= s m x /0)0(=? 求系统的响应。 )用常微分方程的数值求解函数求解包括ode45、 ode23、ode113、ode15s 、ode23s 等。 wffc1.m myfun1.m 一、常微分方程的数值求解函数ode45求解 解:系统方程为 F kx x b x m =++??? 这是一个单变量二阶常微分方程。

将上式写成一个一阶方程组的形式,这是函数ode45调用规定的格式。 令: x x =)1( (位移) )1()2(? ?==x x x (速度) 上式可表示成: ??????--=??????=??? ???????)1(*4.0)2(*2.02.0)2()2()2()1(x x x x x x x && 下面就可以进行程序的编制。 %写出函数文件myfun1.m function xdot=myfun1(t,x) xdot=[x(2);0.2-0.2*x(2)-0.4*x(1)]; % 主程序wffc1.m t=[0 30]; x0=[0;0]; [tt,yy]=ode45(@myfun1,t,x0); plot(tt,yy(:,1),':b',tt,yy(:,2),'-r') hold on plot(tt,0.2-0.2*yy(:,2)-0.4*yy(:,1),'-k') legend('位移','速度',’加速度’)

多元线性回归的计算方法

多元线性回归的计算方法 摘要 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭 消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。 多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由 于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。 但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下: Zy=β1Zx1+β2Zx2+…+βkZxk 注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。 多元线性回归模型的建立 多元线性回归模型的一般形式为 Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n 其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数 (regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为 E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki βj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型

总结求线性方程组的方法

总结求线性方程组的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

华北水利水电大学 总结求线性方程组的方法 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2014年12月31日

摘要:线性方程组的求解是当代代数学中的一个重要组成部分。它广泛应用在数学以及其他领域。它与矩阵、线性变换、行列式、向量组的线性相关性,二次型,这些型之间有着相当密切的联系。线性方程组是线性代数中一个相当基础的内容必须要学会以及熟悉内容。本文章主要说明和讨论线性方程组的基本结构,然后应用克拉莫法则,高斯消元法来来求解。 关键词:线性方程组、高斯消元法、克拉莫法则; Summary for the method of liner equations Abstract: Solution of the system of linear equations is an important component part of algebra. It is widely used in mathematics and other areas. It and determinant, matrix, linear transformation, linear correlation vector group, quadratic form, has the close relation. System of linear equations is a very basic content in linear algebra must grasp and familiar with the content. This article mainly explain and discuss the basic structure of system of linear equations, then apply law of kramer, gauss elimination method to solve.

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析 多元线性回归分析方法操作与分析 实验目的: 引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。 实验变量: 以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。 实验方法:多元线性回归分析法 软件:spss19.0 操作过程: 第一步:导入Excel数据文件 1.open data document——open data——open;

2. Opening excel data source——OK. 第二步: 1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise. 进入如下界面: 2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、

Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue. 3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.

线性计算方法:

评级指标体系中有关财务指标分值的计算方法 一、确定指标体系中某项指标的最低分及最高分以及指标的 参照值---最低值、最高值: 最高分:即满分,为指标体系中某指标的权重分值; 最低分:指标体系中所有指标的最低分均默认为0分。 比如:指标体系中“资产负债率”的权重为3 ,即该项指标的最高分为3分,最低分为0分。 最低、最高值:即指标体系中规定的该指标参照标准的最低值和最高值 比如:利润率指标最低值10%,最高值50% 二、区分是正向指标还是反向指标: 正向指标:计算出的指标值越大越好,比如利润率,50% 比20% 高,所以50%比20%更好; 反向指标:计算出的指标值越大越不好,比如资产负债率,20% 比70% 低,所以20%比70%好; 三、计算分值: 正向指标:值越大时得分越高 正向指标的计算公式: (指标的最高分–指标的最低分)× 指标最高值–指标的最低值

举例: 若某正向指标最高分3分,最低分0分;最低值10% ,最高值30%。 某被评企业的该项指标计算后,如果结果为8% ,因为8%小于10%,所以得0分;如果结果为32%,因为32%大于30%,所以得满分3分;如果结果为28% ,即大于10% 小于30% (即:介于10%和30%之间),用公式计算为: (3-0)×[(28%-10%)/(30%-10%)] + 0 = 3 ×(18%/20%)= 2.7 (分) 即该公司利润率指标得分应为:2.7分。 反向指标:值越大时得分越低 计算公式: 指标最高值–指标实际计算值 (指标的最高分–指标的最低分)× 指标最高值–指标的最低值 举例:若某反向指标最高分3分,最低分0分;最高值75% 最低值40%。 某被评企业的该项指标计算后,如果结果为20% ,因为20%小于40% ,所以得满分3;如果结果为78%,因为78%大于75%,所以得0分;如果结果为55% ,即大于40% 小于75% (即:介于40%和75%之间),用公式计算为:(3 0)×[(75%-55%)/(75%-40%)] = 3 ×(20%/35%)≈1.7 (分) 即该公司资产负债率指标得分应为:1.7分 如果结果为45%,则实际计算得分应为: (3 –0)×[(75%-45%)/(75%-40%)] = 3 ×(30%/35%)≈2.6 (分)

(完整版)多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21), n a ,...,2,1=。那么,多元线性回归模型的结构形式为: a ka k a a a x x x y εββββ+++++=...22110(3.2.11) 式中: k βββ,...,1,0为待定参数; a ε为随机变量。 如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为 ?=k k x b x b x b b ++++...22110(3.2.12) 式中: 0b 为常数; k b b b ,...,,21称为偏回归系数。 偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。 根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使 ()[]min (2) 1 2211012 →++++-=??? ??-=∑∑==∧ n a ka k a a a n a a a x b x b x b b y y y Q (3.2.13) 有求极值的必要条件得 ???????==??? ??--=??=??? ??--=??∑∑=∧=∧n a ja a a j n a a a k j x y y b Q y y b Q 110) ,...,2,1(0202(3.2.14) 将方程组(3.2.14)式展开整理后得:

偏微分方程求解方法及其比较

偏微分方程求解方法及其比较 发表时间:2008-12-11T09:32:01.530Z 来源:《科海故事博览科教创新》2008年第10期供稿作者:曹海洋吕淑娟王淑芬 [导读] 近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 摘要:近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 关键词:谱方法;偏微分;收敛;逼近; 1偏微分方程及其谱方法的介绍 偏微分方程主要借助于未知函数及其导数来刻画客观世界的物理量的一般变化规律。理论上,对偏微分方程解法的研究已经有很长的历史了。最初的研究工作主要集中在物理,力学,几何学等方面的具体问题,其经典代表是波动方程,热传导方程和位势方程(调和方程)。通过对这些问题的研究,形成了至今仍然使用的有效方法,例如,分离变量法,fourier变换法等。早期的偏微分方程研究主要集中在理论上,而在实际操作中其研究方法和研究结果都难以得到广泛的应用。求解的主要方法为:有限差分法,有限元法,谱方法。 谱方法起源于Ritz-Galerkin方法,它是以正交多项式(三角多项式,切比雪夫多项式,勒让得多项式等)作为基函数的Galerkin方法、Tau 方法或配置法,它们分别称为谱方法、Tau方法或拟谱方法(配点法),通称为谱方法。谱方法是以正交函数或固有函数为近似函数的计算方法。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。而这些方法的基础就是建立空间基函数。 下面介绍几种正交多项式各种节点的取值方法及权重。 1) Chebyshev-Gauss: 2) Chebyshev-Gauss-Radau: x0 =1, 3) Chebyshev-Gauss-Lobatto: x0 =1, xN =1, 4)Legendre-Gauss: xj 是的零点且 5) Legendre-Gauss-Radau: xj 是的N+1个零点且 6) Legendre-Gauss-Lobatto: x0=-1,xN=1其它N-1个点是的零点且 下面介绍谱方法中最重要的Jacobi正交多项式其迭代公式为: 其中: Jacobi正交多项式满足正交性: 而Chebyshev多项式是令时Jacobi多项式的特殊形式,另外Legendre多项式是令时Jacobi多项式的特殊形式。 2 几种典型的谱方法 谱方法是以正交函数或固有函数为近似函数的计算方法。谱近似可以分为函数近似和方程近似两种近似方式。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。从方程近似角度看,谱方法可分为在物理空间离散求解的Collocation法、在谱空间进行离散求解的Galerkin法,以及先在物理空间离散求积,再变换到谱空间求解的Pseudo-spectral法。Collocation法适用于非线性问题.Galerkin法适用于线性问题,而Pseudo-spectral法适用于展开方程时的非线性项的处理。谱方法的特点是对光滑函数指数性逼近的谱精度;以较少的网格点得到较高的精度;无相位误差;适合多尺度的波动性问题;计算精度高于其他方法。快速傅立叶变化的提出大大促进了谱方法的发展,迄今已有各种的谱方法计算格式被提出.并被应用于天文学、电磁学、地理学等各种问题的计算。 下面介绍一下应用于各个区域的几种谱方法: 1)以Fourier谱方法为例介绍谱方法解方程的主要过程 以一阶波动方程为例: 其中u(x,t)为方程的解,L是包含u和u关于空间变量的导数的算子,除了方程以有初始条件和适当的边界条件。 故可设其中为试探空间的基函数,ak(t)为展开系数,对于傅立叶谱方法中的共轭有: 其中从而利用其正交性和周期性可以减少工作量,另外再结合边界条件就可以求出来。 2) Galerkin方法是谱方法中十分经典的解偏微分方程的方法,但还有其局限性,而利用Hermite谱方法中依赖时间的权函数对经典的Galerkin方法进行拓展后的新的方法能适用范围扩大了很多。它能很好的应用在微分方程最优控制问题有限元方法的分析中,并且如果能够灵活运用利用Chebyshev方法、Galerkin方法和配置方法,则会形成更强的计算方法。如将Tau方法的思想成功地应用于奇数阶微分方程Petrov-Galerkin谱方法。 3)在无界区域上谱方法和拟谱方法发展了以Hermite函数和Laguerre函数为基函数的正交逼近和插值理论,在这些结果的基础上发展了全空间和半空间上数理方程的谱方法和拟谱方法,从而形成一种新的能更好解决误解区域问题的方法,此种方法被很好的应用于统计物理、量子力学和流体力学中。 4) 我们利用非一致带权Sobolev空间中的Jacobi多项式正交逼近和Jacobi-Gauss型插值理论,提出以Jacobi多项式为基函数的Jacobi谱方法和拟谱方法用来解决一些奇异问题和计算某些特定的无界区域问题。 5)有限谱方法是基于有限点、有限项的局域谱方法。这种方法要求近似函数应具有等同隔网格和非周期性的性质。有限谱方法分为基于非

线性计算方法

第八章线性相关 前面着重于描述某一变量的统计特征 或比较该变量的组间差别 两个随机变量之间的关系: 如体重与肺活量、 年龄与血压 是否存在线性联系?正向还是负向?联系的程度? 线性相关(linear correlation):线性联系?方向?程度? 8.1 线性相关概念 1.独立随机的双变量正态分布样本 讨论两个变量X和Y的相关性。 样本:独立的、成对的观察值(x1,y1),(x2,y2),…,(x n,y n)

第八章线性相关 2 例8.1 为讨论父子身高间的线性相关程度,南方某地在应届中学毕业生花名册中随机抽取20名男生,分别测量他们和他们的父亲的身高(cm),得样本资料如表8.1所示。 表8.1 20对父子的身高(cm)数据 问如何保证这是一份可供讨论线性相关的合格样本? 解(1)随机抽取; (2)互相独立? 2.散点图(scatter plot)

线性相关3/17 座标轴:分别表示两个变量;n个点:构成一幅散点图(图8.1)

第八章线性相关 4 图8.2 典型散点图

线性相关 5/17 图(a)和(c),正相关(positive correlation) 图(b)和(d),负相关(negative correlation) 图(e) 、(f) 、(g),Y 和X 无关联 图 (h),可能存在曲线型联系。 通常所说的相关就是线性相关,(e)到(h)均属不相关 对于不相关的情形,宜进一步澄清是否为曲线关系 8.2 相 关 系 数 Pearson 积矩相关系数(product-moment correlation coefficient) 对双变量正态分布变量X 和Y 的方差) 的方差(的协方差和相关系数)(Y Y X X (8.1)

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

相关主题