搜档网
当前位置:搜档网 › 橡胶配方与胶料各工艺性能之间的关系

橡胶配方与胶料各工艺性能之间的关系

橡胶配方与胶料各工艺性能之间的关系
橡胶配方与胶料各工艺性能之间的关系

橡胶配方与胶料各工艺性能之间的关系

“炼胶工人”胶友对《橡胶配方与各种物性之间的关系》进行了针对性的分享,非常感谢他的指点!

不同的橡胶产品对胶料的物性都有不同的要求,同时对生产这些产品时胶料的工艺性能(加工性能)也需要不同的要求。所谓的工艺性也就是生产这些橡胶产品的过程不能达到理想的状态,做出来的橡胶产品也就很难做到性能理想化、经济效益最大化。一句话,无论你要求橡胶产品有什么样的物性要求,也不管你的要求是高还是低,如果工艺性能无法满足要求(实现要求的过程无法满足),那么你就很难顺利的去生产。

不多赘述,该贴将和大家一起谈论各橡胶工艺性能受配方的影响及关系。

一、混炼性能

1.各种成分对混炼效果的影响,主要分析配方中各种填料、化学药品、操作油等配合成分混入橡胶中的难易性、分散性。它主要由这些配合成分与橡胶之间的互溶性的高低、浸润性的大小来决定。胶料混炼工艺设计的好坏评价方法之一就是各种成分是否可以在橡胶中能够迅速的分散;混炼效果的好坏,则可以通过各种成分在橡胶中能否均匀分散其中来衡量。这两个指标都主要取决于配合成分与橡胶之间的互溶性、浸润性。

“互溶性”这个词大家可能会认为橡胶那么大的分子怎么可能溶解在各种配合成分里很多配方里,应该是配合成分溶解在橡胶里才对。其实,所谓的溶质、溶剂也是相对的,量少的惯称为溶质,量多的则为溶剂,习惯性的认为溶质溶解在溶剂中,如果“溶质”的量比“溶剂”的量大很多的话,那就是“溶剂”溶解在“溶质”中。所以,也就可以理解为互溶性了。为了能让胶料达到多种综合性能都很优异的效果,很多配方用到的橡胶都不止一种,可能2、3、4、5种橡胶并用,这就涉及到这些橡胶之间的互溶性(也许橡胶之间的互溶性大家更好理解一些)。混炼后的胶料如果电镜图片里显示各相之间没有明显的分离、橡胶之间、橡胶与各配合成分之间分散的非常均匀那就表明互溶性好,否则互溶性就差。互溶性差的配方体系所对应的胶料的各种物性也就不能得到好的体现。

其实,橡胶配合体系是不能像盐溶于水那样做到分子级的互溶性,一是因为橡胶是由不同分子量的高分子复杂体系组成,二是各种配合成分也不是简单的小分子化合物,三它们是固相之间的溶解性。橡胶对配合剂的浸润性也许更能清楚的解释混炼工艺及效果的好坏。橡胶对配合成分的浸润性高低主要决定于配合成分自身的特性,当然与橡胶的性质也有关系。有机的、非极性的大多数化学样品(塑解剂、分散剂、操作油等软化剂、防老剂、硫化体系等)都易溶解在橡胶里,被橡胶浸润。无机的氧化物、盐类、各种土等则不易被橡胶浸润。相似相容原理也解释了这些现象。

各种有机化学药品,塑解剂、分散剂、塑分、防老剂、促进剂、SA

包括各种硫化都易混入橡胶中,而且加入的量比较少,这里就不对它们多加分析。

填料一般可以分为亲水性的和疏水性的两种。氧化锌、氧化镁等无机氧化物及硫酸钡、硫酸镁、轻钙、重钙等盐类由于是极性的、亲水性的,在混炼时容易产生负电荷,而橡胶也存在同样的情况,所以二者便会相互排斥,所以难以分散橡胶之中。陶土、云母、滑石粉、高岭土等虽然也是无机的、极性的,与橡胶之间的形成的界面亲和力小,虽不易被橡胶浸润,但是由于这些材料的粒径比较大且结构性比较低,混入橡胶的速度还是比较快的,分散的效果也可以接收,但补强性都比较差。白炭黑虽然是亲水性的,但它的粒径非常小、结构性高、视密度小、易飞扬,且容易产生静电,使得它很难混入橡胶中。炭黑是最典型的疏水性填料

容易被橡胶浸润,非常容易混入橡胶中并均匀分散其中。另外,由于炭黑的粒径小、结构度高,混炼时生热性强,高填充量下混入橡胶就比较困难,所以炭黑不适合高填充量。选用结构性低、粒径大的炭黑可以减小生热高、吃粉慢等缺点,填充量可以增大些。

为了能让这些亲水性填料也能容易混入橡胶中并能有好的分散性且还可以发挥更好的补强性,需要对这些填料进行表面改性来提高它们与橡胶间的亲和力。配方中,我们常见到的加入的硅烷偶联剂、SA 等都有这方面的作用。最有效的方法还是在生产这些填料的时候直接对其进行表面处理。

烷烃油、环烷油、芳烃油、DOP、DBP等软化剂的加入可以改善混炼

效果。油的加入能加快这些填料混入胶料里,但是分散的效果会打折扣。橡胶吸油的速度会直接影响混炼时间和混炼效果。油品的粘度比重常数越高、芳香烃含量越高、分子量越小,则越容易被橡胶吸收。

2.配合体系对开炼时的包辊性的影响

橡胶的包辊性对胶料的分散效果也有很重要的影响。包辊性是橡胶具有流变特性的一个典型的表现。要想让胶料有良好的包辊性,最重要的是设置合理的温度和橡胶的配合体系。当橡胶能紧紧地、均匀地、平整地、包裹在辊筒上,而不是出现脱辊、破边、掉渣、粘辊等,配合成分才能容易混入橡胶、分散效果才会好。一般地,具有自补强性、可结晶、强度高的原材料橡胶的包辊性会比较好些,如NR等。相反,如果原材料橡胶的自身强度如果很差,则包辊性就会比较差,如BR 等。

配方体系中的滑石粉、云母、SA、防护蜡会使胶料有托辊的倾向;操作油及粘合树脂等可以提高其包辊性。一般地,软化剂的用量太大则易造成托辊,增粘剂的用量过大则会造成粘辊。

3.配合体系对焦烧的影响-

焦烧的发生是胶料操作过程中及停放时非常忌讳的一个危害极大的现象,为了后续工段的操作安全及硫化后的产品不会发生不良影响,必须防止焦烧的发生。

发生焦烧的最主要原因还是硫化体系选择不当或用量过多造成的。所以在选择促进剂时尽量选择焦烧时间长的次磺酰胺类及噻唑类促进剂为宜,并尽量控制使用份数。另外,填料的酸碱性、结构度对

焦烧也有一定的影响,酸性的、结构性低的填料能抑制焦烧。操作油等软化剂对焦烧也有一定的抑制作用。最有效的方法还是在配方里加入少量的防焦剂来防止焦烧的发生。顾名思义,防焦剂是防止焦烧用的,所以用多了肯定会影响硫化速度的,而且对硫化胶的弹性、老化性等也不利!

4.配合体系对喷霜的影响

有的也叫出霜、喷粉、喷油等,是指软化剂、防老剂、SA、促进剂、硫化等小分子配合成分从胶里内部迁移到胶里表面的现象。喷霜会严重影响胶料的表面粘性、混炼后胶料的均匀性、硫化胶的性能,总之(除了石蜡迁移到胶料表面其物理防护作用外的任何)尽量降低喷霜的发生。

最容易喷霜的就是硫磺,经常看到的胶料表面一层薄薄的黄色粉末就是硫磺从胶料内部迁移到表面的现象。为防止硫磺的喷霜,配方里大量使用硫磺时可使用不溶性硫磺并且做到正硫化来加强对硫单质含量的控制。

一般情况下,SA、防老剂的用量不宜过大,在2phr一下喷霜会好些。胶料里加入适量的操作油等软化剂也可以降低喷霜的发生。5.配合体系对粘性的影响:

像轮胎等由多种半成品贴合在一起的橡胶产品在生产的过程中对胶料的表面粘性有一定的要求,不能不粘,也不能太粘。

各半成品所用的主体胶料可能不一样,比如有的可能用NR为主,有的可能用SBR为主,还有的可能用BR为主等等,这就要求胶

料之间不但要有很好的自粘性,还要有很好的互粘性。如果要贴合在一起的两种胶料粘合性不这么好的话,在同一配方里添加一些第三种与这两种橡胶粘合性都比较好的橡胶是一个办法,也可以在这两种胶料的配方里都加入一些另一种胶料也是一个办法。不管怎样,要想提高或有个良好的粘性,以下几点是基本原则:

①选择粘性高的橡胶为上

通常情况下,橡胶的分子链越柔顺、活动性高、生胶强度大,粘性就会高些。所以,通用胶里,NR\CR的粘性比较好,尤其是自粘性更好。

②选择高补强性的填料

基于①中所说生胶强度大粘性会好的说法,如果填料的补强性好,那么就能提高未硫化胶的格林强度,从而提高粘性。如果填料过多的话,会是胶料变“干”,粘性反而会下降。

③使用增粘树脂

很明显,增粘树脂的主要作用就是增粘。萜烯树脂、石油类树脂、酚醛树脂、古马隆等都可以有效提高未硫化胶料的粘合性。

④操作油等软化剂可以提高粘合性

主要是因为软化剂的加入可以扩充橡胶大分子间的空隙,使得橡胶分子链的活动性提高,粘合性自然提高。另外,也能防止填料的过量加入而造成的胶料发“干”。

⑤控制容易喷霜的化学品的配合量喷霜后,胶料的光洁的表面被损,会大大降低胶料的粘合性。

6.配合体系对胶料的门尼粘度影响胶料的门尼粘度(原材料橡胶和混炼胶)对密炼、开炼、压延、压出、挤出、成型等都有很重要的作用。生胶的粘度过高,密炼、开炼困难,能耗高;混炼胶粘度过高,则压延、压出、挤出都比较困难;混炼胶粘度过低,半成品及硫化后的成品容易出现质量缺陷。

①一般生胶的门尼粘度在60以上的建议对其先塑炼,所以烟片、皱片、风干胶片、标胶最好进行塑炼后再使用。

②适量的塑解剂有助于塑炼的时间缩短、能耗降低、并且可以提高塑炼的效果。常用的A-86、AP等,另外,一些促进剂也有塑解作用,如DM。

③软化剂的加入可以有效降低门尼粘度,配方中加入的DOP、DBP、P#2等都可以有效降低门尼粘度。

④填料的加入会增加胶料的粘度,其中炭黑和白炭黑对胶料的增粘最为厉害。炭黑的结构性越高,增粘程度就越大。其他的一些无机填料则增粘效果要小一些。根据这个现象,如果要求半成品的挺性好就可以适当增加填料的用量。

二、挤出(压出)性能。混炼胶的含胶率、门尼粘度、格林强度、弹性、膨胀率、收缩率等对胶料的挤出性能有着直接的影响。含胶率高,弹性形变就大,故而挤出后的膨胀性强,高速挤出时半成品的变形就大,影响生产效率;格林强度高,进胶容易、进胶速度快,挤出效率提高;混炼胶的弹性好,挤出时容易出现熔体分裂,造成挤出的半成品表面变的粗糙。为了提

高挤出性能,尽量考虑一下几个配合体系方面:①胶种及含胶率。不同的生胶由于分子链不同,弹性等也不同,挤出性能差别很大,NR、BR、CR等由于分子链上的侧基比较小,挤出容易;SBR、IIR等侧基大,挤出比较困难。含胶率不能太高也不能太低,太高则弹性大,挤出后的半成品在挤出方向就会出现大的收缩率,影响尺寸稳定性和外观质量;太低则胶料变的“干”,塑性变差,挤出困难且半成品表面粗糙。

②加入再生胶可以增加在高温下的流动能力,挤出能力提高。

③不同的填料对挤出性能的影响不同。总体而言,填料的加入可以降低含胶率,降低弹性,可以提高挤出性能。如果用量过高,出现含胶率极低现象,则是胶料变“干”,对挤出反而不利。

④加入软化剂可以降低胶料的收缩率、且有提高胶料与挤出机桶间的润滑作用而提高胶料的挤出性能。

三、压延性能

压延和挤出对胶料的很多性能要求大体相同,不同的压延类型对胶料的配合体系要求也不尽相同。压延大体分三种类型:胶片的压延、纤维帘线(布)的压延、钢丝帘线(布)的压延。但大体对胶料的要求总体相同,比如混炼胶要控制适当的含胶率、门尼粘度、格林强度、可塑性、弹性、膨胀率、收缩率等。含胶率高,弹性形变就大,压延后的收缩率大,影响压延物的表面质量;门尼粘度高、可塑度低时,流动性差,压延物收缩率也高,表面质量就差;格林强度高,进胶容易、进胶速度快、出胶时胶料不容易被拉断,压延效率提高;膨胀率

或收缩率较大,则压延过程的尺寸控制就比较困难,且压延物的表面将会变的粗糙、不光滑。

①无论哪种压延,含胶率都不要太高。含胶率高,压延速度要慢一些;含胶率低、可塑度高则可以提供压延速度。

②生胶的种类对压延效果至关重要。NR是最适合压延的胶种,压延物表面光滑、平整、厚度均匀、少气泡且收缩率也比较低。而大多数合成橡胶的压延都比较困难,需要通过控制辊温、辊速才可以。所以,在必须使用合成橡胶时,配方中最好并用部分NR来提高压延性能。SBR\IIR\NBR\BR等压延后收缩率都比较大,造成压延物表面粗糙;CR\EPDM\CSM等容易粘辊、焦烧、掉皮等不良现象。

③尽量选用软质炭黑、热裂法炉黑或其他活性较高的无机填料,如碳酸钙、陶土等;加入一些片层结构的活性填料对压延效果的提高有利,压延效应的存在使得压延物在压延方向上提高拉伸强度,收缩率降低,压延物表面光滑、平整、尺寸稳定,如滑石粉、石墨及近年市面出现的一种叫强威粉的片层纳米无机填料。

④适当增加软化剂的配合量可以提高压延性。古马隆、沥青、油膏、操作油的加入对胶料的可塑度提高非常有利,还可以降低胶料的收缩率。

⑤配合体系中可以加入一些防焦剂。压延时一般都是热供料,胶料在辊子上堆积过多时及压延温度高时容易发生焦烧现象,防焦剂的加入可以减小焦烧的发生。

⑥防止配方中各配合体系受潮。受潮后,混炼胶在压延时容易产

生气泡,对压延物的质量影响严重。

⑦纤维帘线(布)的压延胶还要求二者的粘合力好、胶料的渗透性好并容易覆胶。

a、贴胶相对简单,要求配合体系的可塑度适当大些即可。

b、擦胶则对胶料的要求高些,配方中含胶率要高,包辊性要求高,对纤维帘线(布)的渗透要好。此外,无机填料的种类应考虑擦胶的厚度进行调整,薄擦胶可选硬质填料如白炭黑、碳酸钙、硬质陶土等,厚擦胶则可选用软质陶土、锌钡白等可以使胶料变软的的填料;增塑剂宜选用液体古马隆和松焦油系;配合体系中加入年和体系。

⑧用于钢帘线(布)的压延胶要求定伸应力比较高和粘合性好。配方体系应该以NR等强度比较高的橡胶为主,且应该加入年和体系(间甲白、粘合树脂、钴盐等),填料增加、少用增塑剂使胶料的变硬。

四、注压(注射)性能

由于注压工艺特殊性,需要对胶料的门尼粘度、焦烧时间和硫化速度有着相对严格的要求。前二者是衡量胶料注射能力的主要指标。只有注射能力高的胶料才能用于注射。门尼粘度对应的胶料的流动性、焦烧时间和硫化速度三者要综合考虑以达到最佳的注压性能和生产效率。

①生胶以NR、SBR等通用橡胶为佳,这些胶料易充模、硫化时间适中,EPDM、CR则硫化时间长不太适合做注压胶。

②填料以选用半补强炭黑、陶土、碳酸钙、云母等优先,注压的过程是高压过程,胶料生热很高,容易焦烧,如果选用高补强、粒径

细的炭黑则生热更严重。另外,添加量不易过大,对胶料的流动性会有影响。0E2l8m;V1Y$q

③软化剂的加入可以提高胶料的流动性,充模时间缩短,但胶料生热性会降低、胶温不高、硫化时间延长。

④防老剂需用到耐热老化、抗返原性的品种,如RD、4010等

⑤硫化体系要做到焦烧时间长、硫化速度快、硫化平坦期长的要求,选择有效、安全的硫化体系为上。

⑥胶料的门尼粘度不能太高,一般65以上的就很难用于注压。40~60为宜,太高影响注压时间、焦烧性加大;太低充模时间虽缩短,但胶料的硫化时间往往增长。

丁苯橡胶生产工艺

丁苯橡胶的生产工艺 (2011-10-03 23:05:53)转载▼ 标签:丁苯橡胶中顺苯乙烯丁二烯乳液聚合转化率橡胶教育 1.1 丁苯橡胶的分类 丁苯橡胶品种繁多,如按聚合方法、聚合温度、辅助单体含量及充填剂等的不同,丁苯橡胶简分为下列几类。 ①按聚合方法和条件分类 可以分为乳液聚丁苯橡胶和溶液聚丁苯橡胶;乳聚丁苯橡胶开发历史悠久, 生产和加工工艺成熟, 应用广泛, 其生产能力、产量和消耗量在丁苯橡胶中均占首位。溶聚丁苯橡胶是兼具多种综合性能的橡胶品种, 其生产工艺与乳聚丁苯橡胶相比, 具有装置适应能力强、胶种多样化、单体转化率高、排污量小、聚合助剂品种少等优点, 是今后的发展方向。 乳液聚丁苯橡胶又可以分为高温乳液聚合丁苯橡胶和低温乳液聚合丁苯橡胶,后者应用较广,前者趋于淘汰。 在生产工艺上,乳液聚合丁苯橡胶更加成熟,因此本文主要介绍低温乳液聚合生产丁苯橡胶的生产工艺。 ②按填料品种分类 可以分为充炭黑丁苯橡胶、充油丁苯橡胶和充炭黑充油丁苯橡胶等。 ③按苯乙烯含量分类 丁苯橡胶—10、丁苯橡胶—30、丁苯橡胶—50等,其中数字为苯乙烯聚合时的含量(质量),最常用的是丁苯橡胶—30 1.2 丁苯橡胶的结构

典型丁苯橡胶的结构特征如表一: 表一典型丁苯橡胶的结构特征 ①大分子宏观结构包括 单体比例、平均相对分子质量及分布、分子结构的线性或非线性,凝胶含量等。 ②微观结构主要包括 丁二烯链段中顺式—1,4、反式—1,4和1,2—结构(乙烯基)的比例,苯乙烯、丁二烯单元的分布等。 ③无定形聚合物 因掺杂有苯乙烯链节,所以丁苯橡胶的主体结构不规整,不易结晶。 ④丁二烯的微观结构的变化对丁苯橡胶性能的影响不大 在丁苯橡胶硫化时,丁二烯链节中顺式—1,4和反式—1,4两种结构会发生异构而相互转化,最后可达到一个平衡态。又在低温丁苯和高温丁苯中1.2—丁二烯链节的含量相差不太大.所以丁二烯微观结构的变化对丁苯橡胶性能的影响不大。 ⑤苯乙烯含量与玻璃化转变温度 丁苯橡胶的玻璃化温度取决于苯乙烯均聚物的含量。乙烯基的含量越低,玻璃化温度越低。可以按需要的比例从100%的丁二烯(顺式、反式的玻璃化温度都是-100℃)调够到100%的聚苯乙烯(玻璃化温度为90℃)。玻璃化温度对硫化橡胶的性质起重要作用,大部分乳液聚合丁苯橡胶含苯乙烯为23.5%,这种含量的丁苯橡胶具有较好的综合物理机械性能。 ⑥低温丁苯橡胶性能优于高温丁苯橡胶 高温(50℃)聚合时.支化较严重.凝胶物含量较高;在同等分子量下.分子量

橡胶与各指标的关系

浅谈橡胶的各种物性与密度的关系 前言: 在橡胶制品过程中,一般必须测试的物性实验不外乎有: 拉伸强度 2、撕裂强度 3、定伸应力与硬度 4、耐磨性 5、疲劳与疲劳破坏 6、弹性 7、扯断伸长率。 各种橡胶制品都有它特定的使用性能与工艺配方要求。为了满足它的物性要求需选择最适合的 聚合物与配合剂进行合理的配方设计。首先要了解配方设计与硫化橡胶物理性能的关系。硫化橡 胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差 异。 1、拉伸强度:就是制品能够抵抗拉伸破坏的根限能力。 它就是橡胶制品一个重要指标之一。许多橡胶制品的寿命都直接与拉伸强度有关。如输送带的 盖胶、橡胶减震器的持久性都就是随着拉伸强度的增加而提高的。 A:拉伸强度与橡胶的结构有关: 分了量较小时,分子间相互作用的次价健就较小。所以在外力大于分子间作用时、就会产生分子 间的滑动而使材料破坏。反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。凡影响分子间作用力的其它因素均对拉伸强度有影响。如 NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。也就 就是这些橡胶自补强性能好的主要原因之一。一般橡胶随着结晶度提高,拉伸强度增大。 B:拉伸强度还跟温度有关: 高温下拉伸强度远远低于室温下的拉伸强度。 C:拉伸强度跟交联密度有关: 随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。硫 化橡胶的拉伸强度随着交联键能增加而减小。能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。通过硫化体系,采用硫黄硫化,选择并用促进 剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。 D:拉伸强度与填充剂的关系:

溶聚丁苯橡胶的概况精选文档

溶聚丁苯橡胶的概况精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

溶聚丁苯橡胶的概况 溶聚丁苯橡胶的基本概念 溶聚丁苯橡胶又称溶聚丁苯胶、溶液聚丁苯橡胶,简称:SSBR; 分子式:C12H14; 分子量:; CAS号:9003-55-8; 结构式: 图丁苯橡胶分子结构式 丁苯橡胶(SBR) 是最大的通用合成橡胶品种,也是最早实现工业化生产的橡胶之一。它是1,3-丁二烯与苯乙烯的无规共聚物。按聚合体系可分为乳聚丁苯橡胶(ESBR)和溶聚丁苯橡胶(SSBR)两类。 溶液聚丁苯橡胶 (SSBR)是60年代初由美国Firestone和Phillips率先实现工业化生产的。 溶聚丁苯橡胶是丁二烯和苯乙烯在烃类溶剂中采用有机锂引发阴离子聚合而制得的共聚物。溶聚丁苯橡胶具有耐磨、耐寒、生热低、回弹性高、收缩性低、色泽好、灰分少、纯度高以及硫化速度快等优点,近年来在发达国家发展较快。溶聚丁苯橡胶有纯溶聚丁苯和充油溶聚丁苯两类。溶聚丁苯橡胶主要用

于制造轮胎,制造皮带、刮水板、窗框密封及散热器软管等工业用零部件,制造胶鞋、雨衣、毡布、手套、风衣及气垫床等日用品,应用相当广泛。 溶聚丁苯橡胶是兼具多种综合性能的橡胶品种。其生产工艺与乳聚丁苯橡胶相比,具有装置适应能力强、胶种多样化、单体转化率高、排污量小、聚合助剂品种少等优点,是今后的发展方向。 溶聚丁苯橡胶的特性 溶聚丁苯橡胶具有优良的耐磨性、耐沟纹龟裂性,且对湿路面抓着力、耐热性及在高温下长时间暴露后的耐屈挠性良好,加之在密炼机混炼时生热低、压出膨胀率小、填充量高等特点,主要应用于轮胎方面,约占溶聚丁苯胶总产量的80%,如制造轿车轮胎、大型轮胎胎面、雪地轮胎胎体等。从耐磨性、拉伸强度、硫化平坦性、耐屈挠性和耐热性等考虑,特别适于制造耐热运输带。由于耐低温性、防震性与金属粘合性好,适用于制造皮带、刮水板、窗框密封及散热器软管等工业用零部件。另外,由于溶聚丁苯橡胶具有触感好,耐候性、回弹性好以及永久变形小等优点,可用于制作雨衣、毡布、风衣及气垫床等,还可制作发泡均匀、结构致密的海绵材料。溶聚丁苯橡胶由于其良好的辊筒操作性、压延性、耐磨性以及高填充性,还广泛地用于制鞋业,用它制作的鞋,具有色泽鲜艳、触感良好、表面光滑、花纹清晰、不易走形、硬度适中等优点。 随着轮胎子午化的普及,尤其是新型节能子午线轮胎的发展,对轮胎用胶提出了更高的要求,不仅要求胶料强度高,抗湿滑性好,还要求滚动阻力低(车辆的燃料中10~20%是用来克服轮胎的滚动阻力的)。传统的乳聚丁苯橡

典型橡胶制品配方实例

典型橡胶制品配方实例

————————————————————————————————作者:————————————————————————————————日期:

轿车子午胎不同补强体系胎面配方2005-7-1 组份I II III 高乙烯基溶聚丁苯胶 103 103 103 高顺式顺丁胶25 25 25 炭黑N347 85 高分散白炭黑70 标准白炭黑70 硅烷偶联剂--- 11.2 11.2 氧化锌 1.5 1.5 1.5 硬脂酸 1 1 1 防老剂4020 2 2 2 硫黄 1.5 1.5 1.5 促进剂CZ 1.25 1.25 1.25 促进剂D 1.25 1.25 1.25 硫化胶物理性能 硬度邵尔A 72 73 71 滚动阻力tanδ(70℃) 0.262 0.129 0.12 湿牵引性tanδ(0℃) 0.72 0.732 0.651 DIN磨耗损失% 137 124 135 全天候轿车胎胎面胶配方2005-7-1 组份重量份(phr) SBR1712 82.5 NR(SMR20) 20 BR 20 炭黑N234 65 高芳烃油22.5 氧化锌 4 硬脂酸 2 防老剂4010NA 1.5 微晶蜡 1 硫黄 2 促进剂NS 1.2 促进剂TMTD80 0.15 硫化胶物理性能

硬度(国际硬度)61 拉伸强度MPa 20 300%定伸应力Mpa 6.8 扯断伸长率% 615 回弹性(登录普)℃23% 46.2 轿车胎低滚动阻力胎面配方2005-7-1 组份重量份phr SSBR1216 75 BR1207 25 白炭黑16.5 炭黑58.5 偶联剂 6.5 芳烃油25 硬脂酸 2 氧化锌 2.5 防老剂4020 2.0 防老剂RD 1.5 促进剂NS 1.7 促进剂D 2.0 硫黄 1.7 硫化胶物理性能 拉伸强度MPa 19.3 扯断伸长率% 444 300%定伸应力Mpa 11.4 tanδ(60℃) 0.05 tanδ(0℃) 0.11 轿车子午胎胎侧胶配方2005-7-1 组份重量份phr NR(SMR20) 50 BR(Budene1207) 50

橡胶配方与各性能的关系

橡胶性能与配方的关系 不同的橡胶产品对胶料的物性都有不同的要求,同时对生产这些产品时胶料的工艺性能(加工性能)也需要不同的要求。所谓的工艺性也就是生产这些橡胶产品的过程不能达到理想的状态,做出来的橡胶产品也就很难做到性能理想化、经济效益最大化。一句话,无论你要求橡胶产品有什么样的物性要求,也不管你的要求是高还是低,如果工艺性能无法满足要求(实现要求的过程无法满足),那么你就很难顺利的去生产。 不多赘述,该贴将和大家一起谈论各橡胶工艺性能受配方的影响及关系。 一、混炼性能 1.各种成分对混炼效果的影响 主要分析配方中各种填料、化学药品、操作油等配合成分混入橡胶中的难易性、分散性。它主要由这些配合成分与橡胶之间的互溶性的高低、浸润性的大小来决定。 胶料混炼工艺设计的好坏评价方法之一就是各种成分是否可以在橡胶中能够迅速的分散;混炼效果的好坏,则可以通过各种成分在橡胶中能否均匀分散其中来衡量。这两个指标都主要取决于配合成分与橡胶之间的互溶性、浸润性。 “互溶性”这个词大家可能会认为橡胶那么大的分子怎么可能溶解在各种配合成分里很多配方里,应该是配合成分溶解在橡胶里才对。其实,所谓的溶质、溶剂也是相对的,量少的惯称为溶质,量多的则为溶剂,习惯性的认为溶质溶解在溶剂中,如果“溶质”的量比“溶剂”的量大很多的话,那就是“溶剂”溶解在“溶质”中。所以,也就可以理解为互溶性了。为了能让胶料达到多种综合性能都很优异的效果,很多配方用到的橡胶都不止一种,可能2、3、4、5种橡胶并用,这就涉及到这些橡胶之间的互溶性(也许橡胶之间的互溶性大家更好理解一些)。混炼后的胶料如果电镜图片里显示各相之间没有明显的分离、橡胶之间、橡胶与各配合成分之间分散的非常均匀那就表明互溶性好,否则互溶性就差。互溶性差的配方体系所对应的胶料的各种物性也就不能得到好的体现。 其实,橡胶配合体系是不能像盐溶于水那样做到分子级的互溶性,一是因为橡胶是由不同分子量的高分子复杂体系组成,二是各种配合成分也不是简单的小分子化合物,三它们是固相之间的溶解性。橡胶对配合剂的浸润性也许更能清楚的解释混炼工艺及效果的好坏。 橡胶对配合成分的浸润性高低主要决定于配合成分自身的特性,当然与橡胶的性质也有关系。有机的、非极性的大多数化学样品(塑解剂、分散剂、操作油等软化剂、防老剂、

丁苯橡胶理化性质与质量指标

丁苯橡胶理化性质与质量指标 1.1 丁苯橡胶的基本概念 丁苯橡胶又称丁苯胶; 英文名:Emulsion-polymerized styrene butadiene rubber、Styrene Butadiene Rubber; 简称:SBR; 分子式:C12H14; 分子量:158.2426; CAS号:9003-55-8; 结构式: 图1.1 丁苯橡胶分子结构式 丁苯橡胶(SBR) 是最大的通用合成橡胶品种,也是最早实现工业化生产的橡胶之一。它是1,3-丁二烯与苯乙烯的无规共聚物。 丁苯橡胶的综合性能好,是合成橡胶中产量最高、消耗量最大的品种,常与天然橡胶掺混或单独使用。 丁苯橡胶(SBR)按聚合体系可分为乳聚丁苯橡胶(ESBR)和溶聚丁苯橡胶(SSBR)两类。 乳聚丁苯橡胶根据聚合温度的不同,分为高温乳聚丁苯橡胶和低温乳聚丁苯橡胶两大类。一般乳聚丁苯橡胶苯乙烯含量为23.5%,苯乙烯含量高于40%的称为高苯乙烯丁苯橡胶,结合苯乙烯达到70%~90%者则称为高苯乙烯树脂。此外,还有充油乳聚丁苯橡胶和充油充炭黑乳聚丁苯橡胶。乳聚丁苯橡胶主要用于轮胎胎面胶、胎侧胶,也广泛用于胶带、胶管、胶辊、胶布、鞋底、医疗用品及其他

工业制品,并少量用于电线、电缆等非橡胶制品中。 溶聚丁苯橡胶是丁二烯和苯乙烯在烃类溶剂中采用有机锂引发阴离子聚合而制得的共聚物。溶聚丁苯橡胶具有耐磨、耐寒、生热低、回弹性高、收缩性低、色泽好、灰分少、纯度高以及硫化速度快等优点,近年来在发达国家发展较快。溶聚丁苯橡胶有纯溶聚丁苯和充油溶聚丁苯两类。溶聚丁苯橡胶主要用于制造轮胎,制造皮带、刮水板、窗框密封及散热器软管等工业用零部件,制造胶鞋、雨衣、毡布、手套、风衣及气垫床等日用品,应用相当广泛。 溶聚丁苯橡胶是兼具多种综合性能的橡胶品种。其生产工艺与乳聚丁苯橡胶相比,具有装置适应能力强、胶种多样化、单体转化率高、排污量小、聚合助剂品种少等优点,是今后的发展方向。 1.2 丁苯橡胶的特性 丁苯橡胶与其它通用橡胶一样,是一种不饱和的烃类高聚物,能溶于大部分溶解度参数相近的烃类溶剂中,而硫化胶仅能溶胀。丁苯橡胶能进行许多聚烯烃型反应,如氧化、臭氧破坏、卤化和氢卤化等。在光、热、氧和臭氧结合作用下,将发生物理化学变化,但其被氧化的作用比天然橡胶缓慢,即使在较高温度下老化反应的速度也较缓慢。光对丁苯橡胶的老化作用不明显,但丁苯橡胶对臭氧的作用比天然橡胶敏感,耐臭氧性比天然橡胶差。丁苯橡胶的低温性能稍差,脆性温度约为-45℃。与其它通用橡胶相似,影响丁苯橡胶电性能的主要因素是配合剂。丁苯橡胶的物理性能列于表1.1。 表1.1 丁苯橡胶(结合苯乙烯23.5%)的物理性能 性能未硫化胶纯胶硫化胶填充50份炭黑硫化胶密度,kg/m3933 980 1150 体积膨胀系数,β=(1/V)(δV/δT),K-1932.5-933.5 940-1000 530×10-6玻璃化温度,K 660×10-3660×10-6221 比热容(cp),KJ/(kg·K) 209-214 650-700×10-6 1.50 ΔCρ/αT,KJ/(kg·K) 1.89 221 -- 导热性,W/(m·K) 3.2×10-2 1.83 0.300

【塑料橡胶制品】配方设计与橡胶硬度的关系

(塑料橡胶材料)配方设计与橡胶硬度的关系

配方设计与橡胶硬度的关系 配方设计与橡胶硬度的关系生胶品种硫化体系补强填充剂软化增塑剂邵尔A型硬度测定中的影响因素1.试样厚度的影响邵尔A型硬度值是由压针压入试样的深度来测定的,因此试样 配方设计与橡胶硬度的关系 ·生胶品种 ·硫化体系 ·补强填充剂 ·软化增塑剂 邵尔A型硬度测定中的影响因素 1.试样厚度的影响 邵尔A型硬度值是由压针压入试样的深度来测定的,因此试样厚度直接影响试验结果。试样受到压力厚产生变形,受到压力的部位变薄,硬度值增大。所以,试样厚度小硬度值达,试样厚度大硬度值小。 2.压针长度对试验结果的影响 标准中规定邵尔A硬度计的压针露出加压面的高度为2.5mm,在自由状态时指针应指零点。当压针在平滑的金属板或玻璃上时,仪器指针应指100度,如果指示大于或小于100度时,说明压针露出高度大于或小于2.5mm或小于2.5mm,这种情况下应停止使用,进行校正。当压针露出高度大于2.5mm时测得的硬度值偏高。 3.压针端部形状对试验结果的影响 邵尔A型硬度计的压针端部在长期作用下,造成磨损,使其几何尺寸改变,影响试验结果,磨损后的端部直径变大所测得结果也大,这是因为其单位面积的压强不同所致。直径大则压强小所测得硬度值偏大,反之偏小。

4.温度对试验结果的影响 橡胶为高分子材料,其硬度值随环境的变化而变化,温度高则硬度值降低。胶料不同其影响程度不同,如结晶速度慢的天然橡胶,温度对其影响小些,而氯丁橡胶、丁苯橡胶等则影响显著。 5.读数时间的影响 邵尔A型硬度计在测量时读数时间对试验结果影响很大。压针与试样受压后立即读数与指针稳定后再读数,所得的结果相差很大,前者高,后者偏低,二者之差可达5至7度左右,尤其再合成橡胶测试中较为显著,这主要使胶料在受压后产生蠕变所致。所以当试样受压后应立即读取数据。 目录 一.硬度的定义 二.硬度的测试方法 三.分别介绍几种硬度测试方法和相关单位 四.各种硬度的区别 一.硬度的定义 硬度——材料局部抵抗硬物压入其表面的能力称为硬度。它是衡量材料软硬程度的一个性能指标。它既可理解为是材料抵抗弹性变形、塑性变形或破坏的能力,也可表述为材料抵抗残余变形和反破坏的能力。硬度不是一个简单的物理概念,而是材料弹性、塑性、强度和韧性等力学性能的综合指标。 二.硬度的测试方法 硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最普通方法是用锉刀在工件边缘上锉擦,由其表面所呈现的擦痕深浅以判定其硬度的高低。这种方法称为锉试

2020年(塑料橡胶材料)橡胶配方设计与性能的关系

(塑料橡胶材料)橡胶配方设计与性能的关系

橡胶配方设计和性能的关系 一、橡胶配方设计和硫化橡胶物理性能的关系 (一)拉伸强度 拉伸强度表征硫化橡胶能够抵抗拉伸破坏的极限能力。虽然绝大多数橡胶制品在使用条件下,不会发生比原来长度大几倍的形变,但许多橡胶制品的实际使用寿命和拉伸强度有较好的相关性。 研究高聚物断裂强度的结果表明,大分子的主价健、分子间的作用力(次价健)以及大分子链的柔性、松弛过程等是决定高聚物拉伸强度的内在因素。 下面从各个配合体系来讨论提高拉伸强度的方法。 1.橡胶结构和拉伸强度的关系 相对分子质量为(3.0~3.5)×105的生胶,对保证较高的拉伸强度有利。 主链上有极性取代基时,会使分子间的作用力增加,拉伸强度也随之提高。例如丁腈橡胶随丙烯腈含量增加,拉伸强度随之增大。 随结晶度提高,分子排列会更加紧密有序,使孔隙和微观缺陷减少,分子间作用力增强,大分子链段运动较为困难,从而使拉伸强度提高。橡胶分子链取向后,和分子链平行方向的拉伸强度增加。 2.硫化体系和拉伸强度的关系 欲获得较高的拉伸强度必须使交联密度适度,即交联剂的用量要适宜。 交联键类型和硫化橡胶拉伸强度的关系,按下列顺序递减:离子键>多硫键>双硫键>单硫键>碳-碳键。拉伸强度随交联键键能增加而减小,因为键能较小的弱键,在应力状态下能起到释放应力的作用,减轻应力集中的程度,使交联网链能均匀地承受较大的应力。 3.补强填充体系和拉伸强度的关系 补强剂的最佳用量和补强剂的性质、胶种以及配方中的其他组分有关:例如炭黑的粒径

越小,表面活性越大,达到最大拉伸强度时的用量趋于减少;软质橡胶的炭黑用量在40~60份时,硫化胶的拉伸强度较好。 4.增塑体系和拉伸强度的关系 总地来说,软化剂用量超过5份时,就会使硫化胶的拉伸强度降低。对非极性的不饱和橡胶(如NR、IR、SBR、BR),芳烃油对其硫化胶的拉伸强度影响较小;石蜡油对它则有不良的影响;环烷油的影响介于俩者之间。对不饱和度很低的非极性橡胶如EPDM、IIR,最好使用不饱和度低的石蜡油和环烷油。对极性不饱和橡胶(如NBR,CR),最好采用酯类和芳烃油软化剂。 为提高硫化胶的拉伸强度,选用古马隆树脂、苯乙烯-茚树脂、高分子低聚物以及高黏度的油更有利壹些。 5.提高硫化胶拉伸强度的其他方法 (1)橡胶和某些树脂共混改性例如NR/PE共混、NBR/PVC共混、EPDM/PP共混等均可提高共混胶的拉伸强度。 (2)橡胶的化学改性通过改性剂在橡胶分子之间或橡胶和填料之间生成化学键和吸附键,以提高硫化胶的拉伸强度。 (3)填料表面改性使用表面活性、偶联剂对填料表面进行处理,以改善填料和橡胶大分子间的界面亲和力,不仅有助于填料的分散,而且能够改善硫化胶的力学性能。 (二)定伸应力和硬度 定伸应力和硬度都是表征硫化橡胶刚度的重要指标,俩者均表征硫化胶产生壹定形变所需要的力。定伸应力和较大的拉伸形变有关,而硬度和较小的压缩形变有关。 1.橡胶分子结构和定伸应力的关系 橡胶分子量越大,游离末端越少,有效链数越多,定伸应力也越大。

丁苯橡胶的生产工艺与技术路线的选择

丁苯橡胶的生产工艺与技术路线的选择 丁苯橡胶是丁二烯和苯乙烯两种单体经共聚合反应而生成的弹性体共聚物。按聚合工艺方法可分为乳聚丁苯橡胶(ESBR)和溶聚丁苯橡胶(SSBR)两大类。从聚合机理来看,ESBR是自由基聚合,而SSBR是采用阴离子活性聚合。ESBR的发展已过鼎盛时期,而SSBR的发展目前正处于稳步上升阶段。 2.1 丁苯橡胶的分类及品种 2.1.1 乳聚丁苯橡胶的生产工艺 乳聚丁苯橡胶(ESBR)的生产历史悠久,乳聚丁苯橡胶是通过自由基聚合得到的,在20世纪50年代以前,均是高温丁苯橡胶,1937年由德国Farben公司首先实现工业化,它是当前合成橡胶中生产能力最大的品种。50年代初才出现了性能优异的低温丁苯橡胶。目前所使用的乳聚丁苯橡胶基本上为低温乳聚丁苯橡胶。羧基丁苯橡胶是在丁苯橡胶聚合过程中加入少量(1~3%)的丙烯酸类单体共聚而制成。其力学性能和耐老化性能等较丁苯橡胶好。但这种橡胶吸水后容易早期硫化,工艺上不易掌握。高苯乙烯丁苯橡胶是将苯乙烯含量为85~87%的高苯乙烯树脂胶乳与丁苯橡胶(常用SBR1500)胶乳以一定比例混合后经共凝得到的产品。…… 1、工艺流程简述 原料丁二烯和苯乙烯按一定比例用量配成碳氢相液,在多台串联聚合釜中于5~8℃,在有氧化还原催化体系的水乳液介质存在下,进行自由基共聚合反应。介质中除水、乳化剂外,有引发剂、活化剂、分子量调节、电解质等助剂。当聚合反应6~10小时,聚合转化率达60~62%时,可加入终止剂使聚合反应终止。所得胶乳经闪蒸脱气工序回收未反应的丁二烯和苯乙烯单体后,再加入防老剂和高分子凝聚剂,……

低温乳液聚合生产丁苯橡胶工艺流程如图2.1所示。 图2.1乳液聚合生产丁苯橡胶工艺流程图 …… 如生产充油胶,则需在胶乳中加入定量的高芳烃油或环烷烃油,充分混合后,送去凝聚,后续工序同上。 表2.1 典型低温乳液聚合生产丁苯橡胶配方表 2、聚合配方及聚合工艺条件 …… 3、主要生产设备 乳聚丁苯橡胶生产过程中主要设备是聚合釜闪蒸槽、脱气塔和后处理工序通用的“两机”(挤压脱水机和膨胀干燥机组)。 目前国内采用的聚合釜体积有12、20、30、45m3等多种,每条聚合生产线在4.0~4.5万吨/年,需配备聚合釜16~20台。釜径为2500~3100mm、径/高为1/1.0~1.8、换热总面积为113~160 m3(单位体积换热为3.56~3.78m2/m3),搅拌浆型为框式或布鲁马金式,釜电机功率为30~45千瓦,搅拌转数为73~100转/分。闪蒸槽为卧式,材质碳钢,最好用玻璃衬里。脱气塔为筛

橡胶的基本结构与性能

橡胶的基本结构与性能 橡胶的分子特征---构成橡胶弹性体的分子结构有下列特点: ①其分子由重复单元(链节)构成的长链分子。分子链柔软其链段有高度的活动性,玻璃化转变温度(Tg)低于室温; ②其分子间的吸引力(范德华力)较小,在常态(无应力)下是非晶态,分子彼此间易于相对运动; ③其分子之间有一些部位可以通过化学交联或由物理缠结相连接,形成三维网状分子结构,以限制整个大分子链的大幅度的活动性。 从微观上看,组成橡胶的长链分子的原子和链段由于热振动而处于不断运动中,使整个分子呈现极不规则的无规线团形状,分子两末端距离大大小于伸直的长度。一块未拉伸的橡胶象是一团卷曲的线状分子的缠结物。橡胶在不受外力作用时,未变形状态熵值最大。当橡胶受拉伸时,其分子在拉伸方向上以不同程度排列成行。为保持此定向排列需对其作功,因此橡胶是抵制受伸张的。当外力除去时,橡胶将收缩回到熵值最大的状态。故橡胶的弹性主要是源于体系中熵的变化的“熵弹性”。 橡胶的应力-应变性质 应力-应变曲线是一种伸长结晶橡胶的典型曲线,其主要组分是由于体系变得有序而引起的熵变。随着分子被渐渐拉直,使得分子链上支链的隔离作用消失,分子间吸引力变得显著起来,从而有助于抵抗进一步的变形,所以橡胶在被充分拉伸时会呈现较的高抗张强度. 橡胶在恒应变下的应力是温度的函数。随温度的升高橡胶的应力将成比例地增大。 橡胶的应力对温度的这种依赖称为焦耳效应,它可以说明金属弹性和橡胶弹性间的根本差别。在金属中,每个原子都被原子间力保持在严格的晶格中,使金属变形所做的功是用来改变原子间的距离,引起内能的变化。因而其弹性称为“能弹性”。其弹性变形的范围比橡胶中主要由于体系中熵的变化而产生的“熵弹性”的变化范围要小得多。 在一般的使用范围内,橡胶的应力-应变曲线是非线性的,因此橡胶的弹性行为不能简单地以杨氏模量来确定。 橡胶的变形与温度、变形速度和时间的关系 橡胶分子的变形运动不可能在瞬时完成,因为分子间的吸引力必须由原子的振动能来克服,如果温度降低时,这些振动变得较不活泼,不能使分子间吸引力迅速

丁苯橡胶

丁苯橡胶 陈军 200640614113 化工学院 丁苯橡胶是由 1,3-丁二烯与苯乙烯共聚而得的高聚物,简称SBR,是一种综合性能 较好的产量和消耗量最大的通用橡胶。 其工业生产方法有乳液聚合法和溶液聚合法,其中主要是采用乳液聚合生产的丁苯橡 胶。主要产品有:低温丁苯橡胶、高温丁苯橡胶、低温丁苯橡胶炭黑母炼胶、低温充油丁苯 橡胶、高苯乙烯丁苯橡胶、液体丁苯橡胶等。 采用溶液聚合生产的丁苯橡胶有烷基锂引发、醇烯络合物引发、锡偶联、高反式等丁苯 橡胶。下面重点介绍低温丁苯橡胶的生产工艺技术。 一、主要原料 1、1,3-丁二烯 1,3-丁二烯的结构式为:CH2=CH-CH =CH2 1,3-丁二烯是最简单的共轭双烯烃。在常温、常压下为无色气体,有特殊气味,有 麻醉性,特别刺激粘膜。容易液化,易溶于有机溶剂。相对分子质量为 54.09,相对密度 0.6211,熔点-108.9℃,沸点-4.5℃。性质活泼,容易发生自聚反应,因此在贮存、 运输过程中要加入叔丁邻苯二酚阻聚剂。与空气混合形成爆炸性混合物,爆炸极限为 2.16%~11.47%(体积)。是合成橡胶、合成树脂等的原料。 2 丁苯橡胶 1,3-丁二烯主要由丁烷、丁烯脱氢,或碳四馏分分离而得。 2、苯乙烯 二、丁苯橡胶的 生产原理与工艺 1、聚合原理 丁二烯与苯乙烯在乳液中按自由基共聚合反应机理 进行聚合反应。在典型的低温乳液聚 合共聚物大分子链中顺式约占 9.5%,反式约占 55%,乙烯基约占12%。如果采用高温 乳液聚合,则其产物大分子链中顺式约占 16.6%,反式约占 46.3%,乙烯基约占 13.7%。 2.低温乳液聚合生产丁苯橡胶工艺 (1)典型配方

通用橡胶基本性能及配方

1、天然橡胶(NR)以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等。弹性大,定伸强度高,抗撕裂性和电绝缘性优良,耐磨性和耐旱性良好,加工性佳,易于其它材料粘合,在综合性能方面优于多数合成橡胶。缺点是耐氧和耐臭氧性差,容易老化变质;耐油和耐溶剂性不好,第抗酸碱的腐蚀能力低;耐热性不高。使用温度范围:约-60℃~+80℃。制作轮胎、胶鞋、胶管、胶带、电线电缆的绝缘层和护套以及其他通用制品。特别适用于制造扭振消除器、发动机减震器、机器支座、橡胶-金属悬挂元件、膜片、模压制品。 2、丁苯橡胶(SBR)丁二烯和苯乙烯的共聚体。性能接近天然橡胶,是目前产量最大的通用合成橡胶,其特点是耐磨性、耐老化和耐热性超过天然橡胶,质地也较天然橡胶均匀。缺点是:弹性较低,抗屈挠、抗撕裂性能较差;加工性能差,特别是自粘性差、生胶强度低。使用温度范围:约-50℃~+100℃。主要用以代替天然橡胶制作轮胎、胶板、胶管、胶鞋及其他通用制品。 3、顺丁橡胶(BR)是由丁二烯聚合而成的顺式结构橡胶。优点是:弹性与耐磨性优良,耐老化性好,耐低温性优异,在动态负荷下发热量小,易于金属粘合。缺点是强度较低,抗撕裂性差,加工性能与自粘性差。使用温度范围:约-60℃~+100℃。一般多和天然橡胶或丁苯橡胶并用,主要制作轮胎胎面、运输带和特殊耐寒制品。 4、异戊橡胶(IR)是由异戊二烯单体聚合而成的一种顺式结构橡胶。化学组成、立体结构与天然橡胶相似,性能也非常接近天然橡胶,故有合成天然橡胶之称。它具有天然橡胶的大部分优点,耐老化由于天然橡胶,弹性和强力比天然橡胶稍低,加工性能差,成本较高。使用温度范围:约-50℃~+100℃可代替天然橡胶制作轮胎、胶鞋、胶管、胶带以及其他通用制品。 5、氯丁橡胶(CR)是由氯丁二烯做单体乳液聚合而成的聚合体。这种橡胶分子中含有氯原子,所以与其他通用橡胶相比:它具有优良的抗氧、抗臭氧性,不易燃,着火后能自熄,耐油、耐溶剂、耐酸碱以及耐老化、气密性好等优点;其物理机械性能也比天然橡胶好,故可用作通用橡胶,也可用作特种橡胶。主要缺点是耐寒性较差,比重较大、相对成本高,电绝缘性不好,加工时易粘滚、易焦烧及易粘模。此外,生胶稳定性差,不易保存。使用温度范围:约-45℃~+100℃。主要用于制造要求抗臭氧、耐老化性高的电缆护套及各种防护套、保护罩;耐油、耐化学腐蚀的胶管、胶带和化工衬里;耐燃的地下采矿用橡胶制品,以及各种模压制品、密封圈、垫、粘结剂等。 6、丁基橡胶(IIR)是异丁烯和少量异戊二烯或丁二烯的共聚体。最大特点是气密性好,耐臭氧、耐老化性能好,耐热性较高,长期工作温度可在130℃以下;能耐无机强酸(如硫酸、硝酸等)和一般有机溶剂,吸振和阻尼特性良好,电绝缘性也非常好。缺点是弹性差,加工性能差,

橡胶结构与性能的关系

三、橡胶结构与性能的关系 橡胶是胶料中最重要的组分,是决定胶料使用性能、工艺性能和产品成本的主要因素。从某种意义上说,配合剂的作用就是将橡胶的固有特性发挥并表现出来,已达到和满足使用要求。主链含有双键的橡胶可以用硫黄进行硫化,具有良好的弹性,但另一方面却由于存在这种双键结构,橡胶易于受氧化等外来化学因素的影响,而且热稳定性也较差。主链不含双键的橡胶,不能用硫黄进行硫化,必须采用有机过氧化物或其它交联剂,弹性除一部分橡胶外也不太好,但是具有优异的耐氧老化和热老化等性能。 橡胶的物理机械性能与其结构有着密切联系,特别与结晶性有关。结晶橡胶在拉伸作用下容易形成结晶结构,从而呈现较高的强度,反之,非结晶性的橡胶在拉伸作用下难以形成结晶结构,因而不会呈现很高的强度。为了获得橡胶状弹性,大多数合成橡胶采取非结晶性结构。橡胶的耐热性能与其主链结构有关,一般化学键能越高,耐热等级越高,相反则越低。主链结构决定了橡胶的基本性能,侧链结构则对生胶的耐油、耐溶剂性以及电性能等有很大的影响。(橡胶改性方向) (一)乙丙橡胶结构与性能的关系 乙丙橡胶的性质是其结构特性的反映,每一类型不同牌号的乙丙橡胶的性能实际上随其分子结构参数的变化而变化。参数主要包括:乙烯、丙烯的比例,单体单元及其序列结构,分子量,分子量分布,第三单体的种类与数量等。 1、乙烯与丙烯的比例及其单体单元分布 乙丙橡胶分子结构中乙烯与丙烯含量之比对乙丙橡胶生胶和混炼胶性能、加工行为和硫化胶的物理机械性能均有直接影响。一般表现为随乙烯含量增加,其生胶、混炼胶和硫化胶的拉伸强度提高;常温下的耐磨性能改善;增塑剂、补强剂及其它填料的用量增加,胶料可塑性高,压出速度快,压出物表面光滑;半成品挺性和形状保持性好。当乙烯含量在20~40mol%范围内时,乙丙橡胶的Tg约为-60℃,其低温性能如低温压缩形变、低温弹性等均较好,但耐热性能较差。通常为避免形成丙烯嵌段链段以保证其在乙丙橡胶分子中的无规分布,要求乙烯含量必须大于50mol%;但乙烯含量超过70mol%时,乙烯链段出现结晶,Tg升高,耐寒性能下降,加工性能变差。一般认为乙烯含量在60mol%左右的乙丙橡胶的加工性能和硫化胶物理机械性能均较好,所以多数乙丙橡胶的乙烯含量均控制在此范围内。具体应用中,为在性能上取长补,以获得更好的综合性能,亦可以并用两种或三种不同乙烯/丙烯比的乙丙橡胶,以满足橡胶制品性能的要求。 2、分子量及其分布 乙丙橡胶的重均分子量与门尼粘度密切相关,其门尼粘度值(ML1+4100℃)在20~90范围内,个别亦有更高的(105~110),特高门尼粘度的乙丙橡胶可作为充油乙丙橡胶的基础胶,须经充油后方可使用。随着乙丙橡胶分子量的增高,其生胶、混炼胶、硫化胶的拉伸强度、回弹性、硬度和填充用量均有所提高,但混炼、压出等工艺性能变差。乙丙橡胶门尼粘度在50以下时,可在开炼机上加工,50以上最好在密炼机上加工。乙丙橡胶分子量分布指数(Mw/Mn)一般在3~5之间,大多数乙丙橡胶则在3左右。市场上还有更宽分子量分布的乙丙橡胶出售,实际上,这是由两种或多种不同分子量的乙丙橡胶混合而成的。分子量分布宽的乙丙橡胶具有较好的开炼机混炼行为和压延性能。在分子量分布中,如增加低分子量的比例,其混炼胶包辊性能较好,但导致硫化胶的交联密度较低,物理机械性能提高,填充量加大,但加工性能变差,塑炼时门尼粘度下降亦较大。当分子量高到某一极限以上时,若不加入增塑剂则不能进行加工。 3、第三单体 三元乙丙橡胶所用第三单体为非共轭二烯烃类,其种类和用量对硫化速度和硫化胶的物理机械性能均有直接的影响。其中,采用过氧化物硫化体系时,ENB-EPDM硫化速度中等,但制

橡胶制品的配方设计原理介绍

橡胶制品的配方设计原理 一、橡胶的并用。 无论是什么橡胶不可能具有十全十美的性能,使用部门往往对产品提出多方面的性能要求,为了满足此目的,而采用橡胶并用的方法。如,为提高二烯烃类橡胶耐热、耐光老化性能,可加入氯磺化聚乙烯。丁睛橡胶的耐粙性很好,但耐寒性不好,若并用10%的天然胶,便可改善它的耐寒性。在橡胶中并用高苯乙烯、改性酚醛树脂、三聚氰胺树脂等都可改善橡胶的补强性能。合成橡胶的工艺性能一般都不够好,特别是饱和较高的合成橡胶,无论是炼胶、压延、贴合、硫化等性能都比较差,所以常加入天然橡胶或树脂。以改善其未硫化胶的加工性能。如,丁苯橡胶加入5-20份低压聚乙烯,可减少丁苯橡胶的收缩率。乙丙橡胶中加入酚醛树脂可提高粘性。加入天然胶对一般合成橡胶的工艺性能都会有所改善。为了改进工艺加工性能,并用天然胶或树脂的比例一般都在20%以下。有些合成橡胶性能优良,但价格昂贵,在不损害原物性的前提下,并用其它橡胶或树脂是完全可行的,如,丁睛胶中并用聚氯乙烯或丁苯胶中掺入天然橡胶,都能起到这一作用。 1. 橡胶并用必须具有一定的相溶性,对橡胶来说天然、顺丁、异戊橡胶等能以任何比例均一地混合,最终达到相溶状态。而天然胶与丁基橡胶就不能均一地混合。若硬性机械地混合,所得硫化胶的实际使用性能会显着地下降,这是因为它们的相溶性很差。并用体系最重要的因素是相溶性,从应用的观点来看,如果混合不均,非但达不到并用的目的,反而影响工艺加工,特别是硫化。因此,并用

问题的焦点是两种橡胶能否相互混合,以及混合后达到什么样的相容程度。固体橡胶并用时,因橡胶本身粘度很大,高分子的布朗运动不像液体那么容易,扩散速度较慢,对大分子的位移造成很大的阻力,严重影响橡胶间的互容作用。为此在工业生产中都采用机械力强化分子运动,用提高温度和加入软化剂的方法来降低粘度,以促进两种橡胶的混合,所以产物从宏观上来看虽没有相分离,但真正达到溶解状态也不是很多的,其原因包括下来有以下几点,橡胶的极性、内聚能密度、橡胶的结晶、橡胶的分子量等。橡胶网为广大从事橡胶行业的朋友提供交流学习交易的平台。 2.分散性,高分子固相体橡胶的粘度高,纵然选择相容性较好的的两种橡胶,用开练机、密练机在高剪切作用下混合,要像低分子液体那样,呈分子状态的均一分散状态,也是很因难的。橡胶分子的布朗运动不象液体那样自由,扩散速度较慢,从外表上看是均一地混合了,由于两种或多种橡胶的分散状态在广泛的范围内变化,并用胶的物理性能将产生很大的差异。两种橡胶在空气中混合时,由于相容性的不一致可产生两种不同的分散状态。,即均相分散状态和非均相分散状态,实际上并用达到均相分散状态的可能性很小,在部分是非均相分散状态组分之间仍然保持一定的界面。以不连续相(岛相)分散于连续相(海相)中的分散状态。非均相分散状态分为以下三级A,宏观非均相级,区域尺寸为10-100微,B,微观非均相为0.1-2微C,半均相级成接枝或嵌段两种共聚体。一种并用体的分散状态不可能单一纯地存在着一个状态,而是以几种状态并存的局面,只不过某一级为主而已。 3.共硫化,除了相容性和分散性外,橡胶并用的另一个重要因素是共硫化性。它是指并用橡胶的硫化体系选择和硫化速度的调整问题。对相同硫化速度而言,通用橡胶以天然胶为最快,其次是异戊橡胶,顺丁橡胶、乳聚顺丁、丁苯胶。硫化速度较慢的橡胶可采用减少硫黄,增加促进剂的方法,以与天然橡胶的硫化速度互相配合。一般对同一硫化速度的橡胶,天然橡胶为高硫黄低促进剂、丁苯橡

常用橡胶性能一览表

常用橡胶性能一览表

由于具有优异的耐老化性能耐冲击性也较好,所以常用做胎侧。 EPDM三元乙丙胶三元乙丙橡胶是一种在乙烯和丙烯共聚物中引入了第三单体的高分子聚合物,产品性能及优点:超高分子量,高乙烯含量,可高度填充填充剂和油,易碎的性能缩短了混炼的时间. 分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。

在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 热塑性弹性体 (TPE) 高刚性耐高温且保有低温的弯曲性,优异的耐化学品性,应用于管材、静音齿轮、电线被覆、发卷、自动收缩管线. TPE热塑性弹性体特性: 1、材料有半透、高透明、白色、黑色供选择。 2、已通过ROHS、PAHs、FDA测试,等级测试。 3、材料环保无卤无毒无味,不含塑胶软化剂、磷苯二甲酸盐、重金属等化合物。 4、良好的减震性和防滑耐磨。 5、良好的抗紫外线及耐化学药品性。 6、广阔的硬度范围选择(邵氏0度-110度)。可根据需求任意调整。 7、在—60度至135度的长期使用温度 8、压缩变形及永久变形小 9、卓越的抗动态疲劳性能 10、极优的耐臭氧及耐候性能 11、亮面、雾面均可,光滑的外观和舒适的橡胶柔软质感。 12、材料不含水分,无须干燥可直接使用,节约能源。 13、易于加工,着色。水口料即边角料可百分百回收再利用,降低产品,且不影响产品物性。 14、它可以通过二次注塑成型,与PP、PE、PS、ABS、PC、PA等基体材料包覆粘合,也可单独成形。替代软质PVC部分硅橡胶。 TPE/TPR 之应用领 域运动器材: 手把类(高尔夫球、各种球拍、脚踏车、滑雪器材、滑水器材等), 潜水器材(蛙鞋、蛙镜、呼吸管、手电筒等)、刹车块、运动护垫。日常用品:

彩色橡胶的配方设计

彩色橡胶的配方设计 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

彩色橡胶的配方设计 目前生产的彩色轮胎均为黑色胎冠、彩色胎侧的双色自行车轮胎。黑色胎冠胶和一般黑色外胎的胎冠胶相同,而彩色胎侧一般弯白色、透明、彩色等胶料。由于彩色轮胎目前所选用的生胶多为天然橡胶,而天七橡胶中分子的每个单元链节中部有一个双键,不饱和度较高,从而影响了彩色自行车外胎胎侧老化龟裂及选用寿命。因此,确定彩色轮胎胶料应注意以下几点。 ①选用的原材料要求纯度高、无色、白色或浅色,不污染。 ②在高温和太阳曝晒下,具有优良的不变色性和防老化龟裂性。 ③物理机械性能应符合标准要求。 为了使胶料的色泽鲜艳,透明度高,保证产品不受污染及具有良好的耐老化龟裂性能,橡胶品种的选用是十分重要的,一般选用天然橡胶与合成橡胶并用。胎侧胶和帘布胶中选用天然橡胶与丁苯橡胶并用,胎冠胶中选用天然橡胶与顺丁橡胶并用。天然橡胶一般选用浅色标准胶或白绉片胶。非污染的乳聚丁苯橡胶1502和溶聚丁苯橡胶都可作为浅色轮胎胶料中的生胶。另外,天然橡胶与不同的聚合物并用能够明显地改善耐屈挠龟裂性、耐天候老化和耐臭氧老化性,如三元乙丙橡胶、氯化丁基橡胶和氯化聚乙烯等,但综合平衡各项性能和原材料情况,氯化聚乙烯是目前改善彩色轮胎胎侧老化龟裂较为理想的聚合物,为了获得更好的耐臭氧性及耐屈挠龟裂性能,胎侧胶料有低定伸应力。 南京固柏橡塑制品有限公司是以橡塑制品的生产为主,集产学研、技工贸为一体的橡胶板厂家。是工业用橡胶板厂家聚集生产基地。公司相继开发出了橡胶板、再生胶、输送带三大系列300多个品种规格产品,且能根据客户要求生产各种高性能品种规格的特殊橡胶制品。 欢迎广大新老顾客前来选购,或致电咨询哦~

橡胶制品实用配方大全

橡胶制品实用配方大全 A:汽车轮胎 1.胎面胶、胎冠胶 NR 100 ZnO 5 SA 4 石蜡 1 防D 1 防A 1槽黑20 N330 30 松焦油 2 液体古马龙 2 DM 0.35 CZ 0.3 S 2.6 2#烟100 ZnO 5 SA 3.5 防D 1.5 防A 1 槽黑30 N330 15 松焦油 3.5 M 0.8 S 2.6 (4010NA、BLE、H /CZ 0.6 /NOBS 0.42 DTDM 0.5/NOBS 0.6/) S 2.6 2.抗撕裂: NR 100 ZnO 5 SA 2 RD 1 4020 2 微晶蜡 1 N220 30 SiO2 35 聚乙二醇(4000) 1.3 妥尔油 1 氢化松香 6 古马龙 5 促MDB 2 NOBS 2 TBTD 0.3 S 0.3 3.抗割口增长载重车胎胎面胶: NR 100 ZnO 4 SA 2 RD 1 HPPD 2 混合蜡 1 N299 28 SiO2 28 聚乙二醇(4000) 1 A-189 1 古马龙 5 芳烃油 5 NOBS 2 S 3 NR 100 ZnO 4 SA 2 RD 2 混合蜡 1 4020 2 N285 35 SiO2 20 聚乙二醇(4000)0.5 妥尔油 3 古马龙 3 促NS 2 促D 0.4 S 2.5

并用SBR: NR 70 SBR 30 ZnO 4 SA 3 石蜡 1.5 防D 0.7 4010 1.5 H 0.5 槽黑27 N330 20 古马龙 4.5 DM 1.2 M 0.8 S 2.2 NR烟70 SBR 30 ZnO 5 SA 3 防D 1.5 防A 1槽黑30 混气炭黑15 松焦油 4.5 DM 1 CZ 0.4 S 2.3 NR烟70 SBR 30 ZnO 5 SA 2.5 防 D 1.5 防 A 1 石蜡 1 槽黑28 N330 18 松焦油 4.5 DM 0.63 CZ 0.33 S 2.15 胎冠上层胶: 2#烟70 SBR 30 ZnO 4 SA 3 4010 1 防D 1防H 0.4 石蜡 2 槽黑25 N330 20 三线油 4.5 DM 0.35 NOBS 0.6 S 2.2 1#烟60 SBR 40 ZnO 4 SA 3 4010 0.5 防 A 1 石蜡 1.5 中超耐磨炭黑52 芳烃油10 NOBS 0.8 S 1.8 白胎面: NR 70 SBR 30 ZnO 3 SA 2 防ODA 1 混合蜡 2 Si 50 A-189 0.8 聚乙二醇(4000)1.5 古马龙10 TiO2 5 NOBS 2 S 2.8 NR 50 SBR(溶聚) 50 ZnO 4 SA 3 防4010NA 1.5 石蜡 1 RD 1.5 中超耐磨53 操作油8

相关主题