搜档网
当前位置:搜档网 › 数值计算大作业——刘

数值计算大作业——刘

数值计算大作业——刘
数值计算大作业——刘

课程设计

课程名称:数值分析

设计题目:数值计算大作业

学号:S315070064

姓名:刘峰

完成时间:2015年10月25日

题目一、非线性方程求根

1.题目

假设人口随时间和当时人口数目成比例连续增长,在此假设下人口在短期内的增长建立数学模型。

(1)如果令()N t 表示在t 时刻的人口数目,β表示固定的人口出生率,则人口数目满足微分方程

()

()dN t N t dt

β=,此方程的解为0()=t N t N e β; (2)如果允许移民移入且速率为恒定的v ,则微分方程变成()

()dN t N t v dt

β=+, 此方程的解为0()=+

(1)t t v

N t N e e βββ

-;

假设某地区初始有1000000人,在第一年有435000人移入,又假设在第一年年底该地区人口数量1564000人,试通过下面的方程确定人口出生率β,精确到410-;且通过这个数值来预测第二年年末的人口数,假设移民速度v 保持不变。

435000

1564000=1000000(1)e e βββ

+

-

2.数学原理

采用牛顿迭代法,牛顿迭代法的数学原理是,对于方程0)(=x f ,如果)(x f 是线性函数,则它的求根是很容易的,牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程0)(=x f 逐步归结为某种线性方程来求解。

设已知方程0)(=x f 有近似根k x (假定0)(≠'x f ),将函数)(x f 在点k x

进行泰

勒展开,有

.

))(()()(???+-'+≈k k k x x x f x f x f

于是方程0)(=x f 可近似地表示为

))(()(=-'+k k x x x f x f

这是个线性方程,记其根为1k x +,则1k x +的计算公式为

)()

(1k k k k x f x f x x '-

==+,,,2,1,0???=k

这就是牛顿迭代法,简称牛顿法。

3.程序设计

作出函数的图像,大概估计出根的位置

fplot('1000*exp(x)+(435*x)*(exp(x)-1)-1564',[0 3]);grid

大概估计出初始值x=0.5

function [p1,err,k,y]=newton(f,df,p0,delta,max1)

% f是非线性系数

% df是f的微商

% p0是初始值

% dalta是给定允许误差

% max1是迭代的最大次数

% p1是牛顿法求得的方程近似解

% err是p0误差估计

% k是迭代次数

p0,feval('f',p0)

for k=1:max1

p1=p0-feval('f',p0)/feval('df',p0);

err=abs(p1-p0);

p0=p1;

p1,err,k,y=feval('f',p1) if(err

function y=f(x)

y=1000000*exp(x)+435000*(exp(x)-1)/x-1564000; function y=df(x)

y=1000000*exp(x)+435000*(exp(x)/x-(exp(x)-1)/x^2);

4.结果分析与讨论

在MATLAB 中的command window 输入 newton('f','df',1.2,10^(-4),10) 运行后得出结果 p0 =0.5000

p1 =0.1679 err =0.3321 k =1 y =9.2415e+004 p1 =0.1031 err =0.0648 k =2 y =2.7701e+003 p1 =0.1010 err =0.0021 k =3 y =2.6953 p1 =0.1010 err =2.0129e-006 k =4 y = 2.5576e-006 ans =0.1010

运算后的结果为1010.0=β,通过这个数值来预测第二年年末的人口数,

0.10100.1010435000f(t)=1000000(1)0.1010

t t

e e +

-

t=2时候对于f ()2187945.865x =

实践表明,当初始值难以确定时,迭代法就不一定收敛了,因此要根据问题实际背景或者二分法先得一个较好的初始值,然后再进行迭代;再者迭代函数选择不合适的话,采用不动点迭代法也有可能出现不收敛的情况;因此我采用的是

牛顿法。

题目二:线性方程组求解

1.题目

假设一个物体可以位于1n +个等距点01,,,n x x x L 的任意位置,当物体在i x 位置时,它只能等可能的移动到1i x -或者+1i x ,而不能直接移动到其他任何位置,概率i p 表示物体从位置i x 开始在到达右端点n x 之前到达左端点0x 的概率,显然

01,0n p p ==,且有-1+111

=

+1,2,,122

i i i p p p i n =-L , 既有下面方程组:

12111002

11

1122

211102

21101221012

n p p p -?

?-

??????--????????????????--

??=????????????????????????--??????-???

?

M O

O O M 取10n =对方程组进行求解(迭代法或者直接法)。

2.数学原理

在解微分方程的边值问题、热传导方程以及船体数学放样中建立的三次样条函数等工程技术问题时,经常遇到下面形式的线性方程组:

????????????????---n n n n n b a c b a b a c b 1112211O O O ????????????????-n x x x x n 121M =??

???????

??

?????-n n d d d d 121M 方程简记A x d =,该线性方程称为三对角线方程组,其系数矩阵A 满足条件

110,,,0,2,,10

i i i i i n n b c b a c a c i n b c >>≥+≠=->>L

所以为弱对角阵可以采用追赶法进行计算,利用三对角矩阵的LU 分解建立计算量更少的线性方程组求解公式。将系数矩阵A 进行克劳特分解,即A 分解为下

三角矩阵和单位上三角矩阵的乘积;

A=????????????????---n n

n n n b a c b a b a c b 111

221

1O O O

=???????

????????

?--n n

n n αγαγα

γα1

122

1

O

O ???????

?

???????

?-11

1112

1

n βββO O

其中

i α,i β,i γ为待定系数,直接利用矩阵乘法公式可得

11α=b ,111βα=c ,

i

i a γ=,

i

i i i b αβγ+=-1,,,,3,2n i ???=

i

i i c βα=,,1,,3,2-???=n i

于是推得计算i α,i β,i γ的公式

11b =α,111/b c =β;

i i αγ=,1--=i i i i b βαα,,,,3,2n i Λ=;

i i i c αβ/=,n i ,,3,2Λ=;

由此计算出L 和U 中的全部元素,完成了系数矩阵A 的克劳特分解。求解线性方程组d Ax =等价于求解d Ly =和y Ux =。

因而得到解三对角线性方程组的追赶法公式 (1)计算i b 的递推公式:

()1111,

,

2,3,1i i i i i c b c b i n -==-=-L b b a b

(2)解Ly d =

()()11111,

,

2,3,i i i i i i i y d b y d a y b i n --==--=L a b

(3)解Ux y =

1,

,

1,,1n n i i i i x y x y x i n +==-=-L b

我们将计算系数121n βββ-→→→L 和121n y y y -→→→L 称为追的过程,将计算方程组的解11n n x x x -→→→L 称为赶的过程。整个过程为追赶法的思想。

3.程序设计

function x=chase (a,b,c,f)

%求解线性方程组Ax=f,其中A是三对角阵

%a 是矩阵A的下对角线元素a(1)=0

%b 是矩阵A的对角线元素

%c 是矩阵A的上对角线元素c(N)=0

%f 是方程组的右端向量

n=length(b);

if n-1==length(a)

for i=n-1:-1:1

a(i+1)=a(i);

end

end

c(1)=c(1)/b(1);

f(1)=f(1)/b(1);

for i=2:n-1

b(i)=b(i)-a(i)*c(i-1);

c(i)=c(i)/b(i);

f(i)=(f(i)-a(i)*f(i-1))/b(i);

end

f(n)=(f(n)-a(n)*f(n-1))/(b(n)-a(n)*c(n-1));

for i=n-1:-1:1 f(i)=f(i)-c(i)*f(i+1);

end

x=f;

4.结果分析与讨论

A的系数矩阵为

A=[1,-0.5,0,0,0,0,0,0,0,0;-0.5,1,-0.5,0,0,0,0,0,0,0;0,-0.5,1,-0.5,0,0,0,0,0,0;0,0,-0.5,1,-0 .5,0,0,0,0,0;...

0,0,0,-0.5,1,-0.5,0,0,0,0;0,0,0,0,-0.5,1,-0.5,0,0,0;0,0,0,0,0,-0.5,1,-0.5,0,0;0,0,0,0,0,0,-0 .5,1,-0.5,0;...

0,0,0,0,0,0,0,-0.5,1,-0.5;0,0,0,0,0,0,0,0,-0.5,1;]

所以在MATLAB命令窗口输入

>> a=[-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,0]

>> b=[1,1,1,1,1,1,1,1,1,1]

>> c=[-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,0]

>> f=[0.5,0,0,0,0,0,0,0,0,0]

得到此题中的a,b,c,f矩阵:

a =

-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000

b =

1 1 1 1 1 1 1 1 1 1

c =

-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000

-0.5000 -0.5000 -0.5000 0

f =

0.5000 0 0 0 0 0 0 0 0 0

然后在MATLAB中调用之前保存的迭代法函数function,在命令窗口中输入:

chase(a,b,c,f)

回车得到结果:

>> x=chase(a,b,c,f)

x =

0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000 0

追赶法为一种特殊的LU分解法。追赶法是求解三对角矩阵的常用方法,但从整体编程角度分析,其程序编写较迭代法复杂,但通用性较好。追赶法求解三对角矩阵不但节省存储单元,而且可以减少计算量,是工程技术中比较常用的数学工具。

三、数值积分

1、题目

卫星轨道是一个椭圆,椭圆周长的计算公式是θθπ

d a

c

a S ?-=2022sin )(14,

这里a 是椭圆的半长轴, c 是地球中心与轨道中心(椭圆中心)的距离, 记h 为近地点距离, H 为远地点距离, 6371R =公里为地球半径,则

2,22

R H h H h

a c ++-=

=

, 某人造卫星近地点距离536h =公里,远地点距离2483H =公里, 试用Romberg 方法求卫星轨道的周长,精确到610-。

2.数学原理

龙贝格方法是在梯形公式、辛普森公式和柯特斯公式之间的关系的基础上,构造出一种加速计算积分的方法。 作为一种外推算法, 它在不增加计算量的前提下提高了误差的精度。

龙贝格方法的主要过程是将粗糙的梯形公式)

(f T n 逐步加工成精度较高的

辛普森公式

)

(f S n 和科特斯公式

)

(f C n 的方法称为龙贝格方法。

复化梯形公式

[])]()([2

)()(2)(11

011

01

+-=+-=-+=+-=∑∑i i n i k k n k k k n x f x f h x f x f x x f T

在复化梯形公式中,每个内节点

,

,,121-???n x x x 既是前一个小区间的终点,又是

后一个小区间的起点,因此上式可以改写为

?

??

???++=∑-=1

1)()(2)(2)(n k k n b f x f a f h f T

复化梯形公式余项

)(12"

2ηf h a b E --

= ],[b a ∈η

复化梯形公式的递推公式为

)]

()([2

1b f a f a

b T +-= 复化辛普森求积公式

)(2211

02

12∑-=++=i i i n n x f h T T

与复化梯形公式)

(f T n 类似,每个内节点

n

x x x ,,,21???需用两次,因此有

?

?

????

+++=∑∑-=+-=102111)()(4)(2)(6)(n k k n k k n b f x f x f a f h f S

显然复化辛普森公式在n 趋于无穷大时,他的收敛速度比复化梯形公式更快。

以()0k T 表示二分k 次后求得的梯形值,且以()k m T 表示序列{}()0k T 的m 次加速度,理查森外推法的递推公式可写成

()

(1)()1141,1,2,4141

m k k k m

m m m m T

T T k +--=-=--L

龙贝格算法的计算过程如下: (1)取0,,k h b a ==-求[](0)0()()2

h

T f a f b =+

(2)利用变步长梯形公式()0k T ,其中k 为区间的二分次数,即

1

21()

(1)001021()()()

22k k k k j j b a T f T f f x ---+=-=+∑

1

21()(1)0

001()()[(21)]

222k k k k k j b a b a T

f T f f a j ---=--=+++∑

(3)依横行次序求加速值,逐个求出的第k 行其余各元素()(1,2,,)k j j T j k -=L

(4)当相邻对角元素之差的绝对值小于预先给定的精度时,终止计算。

表3-1龙贝格算法递推表

3.程序设计

function R=romberg(f,a,b,n)

format long

R=zeros([n+1,n+1]);

R(0+1,0+1)=(b-a)/2*(feval(f,a)+feval(f,b));

for i=1:n,h=(b-a)/2^i;

s=0;

for k=1:2^(i-1),

s=s+feval(f,a+(2*k-1)*h);

end

R(i+1,0+1)=R(i-1+1,0+1)/2+h*s;

end

for j=1:n,fac=1/(4^j-1);

for m=j:n,

R(m+1,j+1)=R(m+1,j-1+1)+fac*(R(m+1,j-1+1)-R(m-1+1,j-1+1));

end

end

4.结果分析与讨论

本题根据算法原理在matlab中编写完龙贝格算法的自定义程序后,直接输入符合格式的函数积分就可得到相应轨道周长。

调用MATLAB龙贝格算法的函数后可算得

R = romberg('4*7800*sqrt(1-(973.5/7880)^2*sin(x)^2)',0,pi/2,6)计算出来得出R=49136.836545

由此可得精10-6确到的卫星轨道周长约为49136.836545公里。

通过本次编程,我对龙贝格算法的公式和步骤有了进一步的掌握,知道了使用龙贝格计算积分是十分方便的,知道()

f x,就可以知道积分值是多少了,并且误差在误差范围之内,这在数学的计算中是十分重要的,从而解决了许多实际的工程问题。

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

数值计算方法学习指导书内容简介

数值计算方法学习指导书内容简介 数值计算方法学习指导书内容简介《数字信号处理学习指导》是浙江省高等教育重点建设教材、应用型本科规划教材《数字信号处理》(唐向宏主编,浙江大学出版社出版,以下简称教材)的配套学习指导书,内容包括学习要求、例题分析、教材习题解答、自测练习以及计算机仿真实验等。学习指导书紧扣教材内容,通过例题讲解,分析各章节的学习重点、难点以及需要理解、掌握和灵活运用的基本概念、基本原理和基本方法。全书共有66例例题分析、121题题解、2套自测练习和6个mat1ab计算机仿真实验。 数值计算方法学习指导书目录绪论 第1章离散时间信号与系统 1.1 学习要点 1.2 例题 1.3 教材习题解答 第2章离散系统的变换域分析与系统结构 2.1 学习要点 2.2 例题 2.3 教材习题解答 第3章离散时间傅里叶变换

3.1 学习要点 3.2 例题 3.3 教材习题解答 第4章快速傅里叶变换 4.1 学习要点 4.2 例题 4.3 教材习题解答 第5章无限长单位冲激响应(iir)数字滤波器的设计5.1 学习要点 5.2 例题 5.3 教材习题解答 第6章有限长单位冲激响应(fir)数字滤波器的设计6.1 学习要点 6.2 例题 6.3 教材习题解答 第7章数字信号处理中的有限字长效应 7.1 学习要点 7.2 例题 7.3 教材习题解答 第8章自测题 8.1 自测题(1)及参考答案 8.2 自测题(2)及参考答案 第9章基于matlab的上机实验指导 9.1 常见离散信号的matlab产生和图形显示

9.2 信号的卷积、离散时间系统的响应 9.3 离散傅立叶变换 9.4 离散系统的频率响应分析和零、极点分布 9.5 iir滤波器的设计 9.6 fir滤波器的设计 数值计算方法学习指导书内容文摘第1章离散时间信号与系统 1.1 学习要点 本章主要介绍离散时间信号与离散时间系统的基本概念,着重阐述离散时间信号的表示、运算,离散时间系统的性质和表示方法以及连续时间信号的抽样等。本章内容基本上是“信号与系统”中已经建立的离散时间信号与系统概念的复习。因此,作为重点学习内容,在概念上需要明白本章在整个数字信号处理中的地位,巩固和深化有关概念,注意承前启后,加强葙关概念的联系,进一步提高运用概念解题的能力。学习本章需要解决以下一些问题: (1)信号如何分类。 (2)如何判断一个离散系统的线性、因果性和稳定性。 (3)线性时不变系统(lti)与线性卷积的关系如何。 (4)如何选择一个数字化系统的抽样频率。 (5)如何从抽样后的信号恢复原始信号。 因此,在学习本章内容时,应以离散时间信号的表示、离散时间系统及离散时间信号的产生为主线进行展开。信号的离散时间的表示主要涉及序列运算(重点是卷积和)、常用序列、如何判

哈工程传热学数值计算大作业

传热学 二维稳态导热问题的数值解法 杨达文2011151419 赵树明2011151427 杨文晓2011151421 吴鸿毅2011151416

第一题: a=linspace(0,0.6,121); t1=[60+20*sin(pi*a/0.6)]; t2=repmat(60,[80 121]); s=[t1;t2]; %构造矩阵 for k=1:10000000 %理论最大迭代次数,想多大就设置多大S=s; for j=2:120 for i=2:80 S(i,j)=0.25*(S(i-1,j)+S(i+1,j)+S(i,j-1)+S(i,j+1)); end end if norm(S-s)<0.0001 break; %如果符合精度要求,提前结束迭代else s=S; end end S %输出数值解 数值解数据量太大,这里就不打印出来,只画出温度分布。 画出温度分布: figure(1) xx=linspace(0,0.6,121); yy=linspace(0.4,0,81); [x,y]=meshgrid(xx,yy); surf(x,y,S) axis([0 0.6 0 0.4 60 80]) grid on xlabel('L1') ylabel('L2') zlabel('t(温度)')

.60.66666777778L 1 L 2t (温度)

A0=[S(:,61)]; for k=1:81 B1(k)=A0(81-k+1); end B1 %x=L1/2时y方向的温度 A1=[S(41,:)] %y=L2/2时x方向的温度 x=0:0.005:0.6; y=0:0.005:0.4; A2=60+20*sin(pi*x/0.6)*((exp(pi*0.2/0.6)-exp(-pi*0.2/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6) )/2) %计算y=L2/2时x方向的解析温度 B2=60+20*sin(pi*0.3/0.6)*((exp(pi*y/0.6)-exp(-pi*y/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6))/ 2) %计算x=L1/2时y方向的解析温度 figure(2) subplot(2,2,1); plot(x,A1,'g-.',x,A2,'k:x'); %画出x=L1/2时y方向的温度场、画出x=L1/2时y方向的解析温度场曲线 xlabel('L1');ylabel('t温度'); title('y=L2/2'); legend('数值解','解析解'); subplot(2,2,2); plot(x,A1-A2); %画出具体温度场与解析温度场的差值曲线 xlabel('L1');ylabel('差值'); title('y=L2/2时,比较=数值解-解析解'); subplot(2,2,3); plot(y,B1,'g-.',y,B2,'k:x'); %画出y=L2/2时x方向的温度场、画出y=L2/2时x方向的解析温度场曲线 xlabel('L2');ylabel('t温度'); title('x=L1/2'); legend('数值解','解析解'); subplot(2,2,4); plot(y,B1-B2); %画出具体温度场与解析温度场的差值曲线 xlabel('L2');ylabel('差值'); title('x=L1/2时,比较=数值解-解析解'); y=L2/2时x方向的温度: 60 60.1635347276130 60.3269574318083 60.4901561107239 60.6530189159961 60.8154342294146 60.9772907394204 61.1384775173935 61.2988840936779 61.4584005332920 61.6169175112734 61.7743263876045 61.9305192816696 62.0853891461909 62.2388298405943 62.3907362037523 62.5410041260577 62.6895306207746 62.8362138946214 62.9809534175351 63.1236499915702 63.2642058188844 63.4025245687647 63.5385114436490 63.6720732440951 63.8031184326565 63.9315571966177 64.0573015095482 64.1802651916318 64.3003639687311 64.4175155301449 64.5316395850212 64.6426579173846 64.7504944397430 64.8550752452343 64.9563286582797 65.0541852837075

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值分析大作业三 四 五 六 七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:');

flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1; while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0;

end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =-= ?-???解: Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1;

数值计算方法教学大纲

《数值计算方法》教学大纲 课程编号:MI3321048 课程名称:数值计算方法英文名称:Numerical and Computational Methods 学时: 30 学分:2 课程类型:任选课程性质:任选课 适用专业:微电子学先修课程:高等数学,线性代数 集成电路设计与集成系统 开课学期:Y3开课院系:微电子学院 一、课程的教学目标与任务 目标:学习数值计算的基本理论和方法,掌握求解工程或物理中数学问题的数值计算基本方法。 任务:掌握数值计算的基本概念和基本原理,基本算法,培养数值计算能力。 二、本课程与其它课程的联系和分工 本课程以高等数学,线性代数,高级语言编程作为先修课程,为求解复杂数学方程的数值解打下良好基础。 三、课程内容及基本要求 (一) 引论(2学时) 具体内容:数值计算方法的内容和意义,误差产生的原因和误差的传播,误差的基本概念,算法的稳定性与收敛性。 1.基本要求 (1)了解算法基本概念。 (2)了解误差基本概念,了解误差分析基本意义。 2.重点、难点 重点:误差产生的原因和误差的传播。 难点:算法的稳定性与收敛性。 3.说明:使学生建立工程中和计算中的数值误差概念。 (二) 函数插值与最小二乘拟合(8学时) 具体内容:插值概念,拉格朗日插值,牛顿插值,分段插值,曲线拟合的最小二乘法。 1.基本要求 (1)了解插值概念。 (2)熟练掌握拉格朗日插值公式,会用余项估计误差。 (3)掌握牛顿插值公式。 (4)掌握分段低次插值的意义及方法。

(5)掌握曲线拟合的最小二乘法。 2.重点、难点 重点:拉格朗日插值, 余项,最小二乘法。 难点:拉格朗日插值, 余项。 3.说明:插值与拟合是数值计算中的常用方法,也是后续学习内容的基础。 (三) 第三章数值积分与微分(5学时) 具体内容:数值求积的基本思想,代数精度的概念,划分节点求积公式(梯形辛普生及其复化求积公式),高斯求积公式,数值微分。 1.基本要求 (1)了解数值求积的基本思想,代数精度的概念。 (2)熟练掌握梯形,辛普生及其复化求积公式。 (3)掌握高斯求积公式的用法。 (4)掌握几个数值微分计算公式。 2.重点、难点 重点:数值求积基本思想,等距节点求积公式,梯形法,辛普生法,数值微分。 难点:数值求积和数值微分。 3.说明:积分和微分的数值计算,是进一步的各种数值计算的基础。 (四) 常微分方程数值解法(5学时) 具体内容:尤拉法与改进尤拉法,梯形方法,龙格—库塔法,收敛性与稳定性。 1.基本要求 (1)掌握数值求解一阶方程的尤拉法,改进尤拉法,梯形法及龙格—库塔法。 (2)了解局部截断误差,方法阶等基本概念。 (3)了解收敛性与稳定性问题及其影响因素。 2.重点、难点 重点:尤拉法,龙格-库塔法,收敛性与稳定性。 难点:收敛性与稳定性问题。 3.说明:该内容是常用的几种常微分方程数值计算方法,是工程计算的重要基础。 (五) 方程求根的迭代法(4学时) 具体内容:二分法,解一元方程的迭代法,牛顿法,弦截法。 1.基本要求 (1)了解方程求根的对分法和迭代法的求解过程。 (2)熟练掌握牛顿法。 (3)掌握弦截法。 2.重点、难点 重点:迭代法,牛顿法。

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

传热学大作业报告 二维稳态导热

传热学大作业报告二维稳态计算 院系:能源与环境学院 专业:核工程与核技术 姓名:杨予琪 学号:03311507

一、原始题目及要求 计算要求: 1. 写出各未知温度节点的代数方程 2. 分别给出G-S 迭代和Jacobi 迭代程序 3. 程序中给出两种自动判定收敛的方法 4. 考察三种不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 绘出最终结果的等值线 报告要求: 1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m ℃)) 6. 计算结果的等温线图 7. 计算小结 二、各节点的离散化的代数方程 左上角节点 )(21 1,22,11,1t t t +=

右上角节点 )(2 15,24,15,1t t t += 左下角节点 C t ?=1001,5 右下角节点 )2(211,24,55,5λ λ x h t t x h t ?++?+= 左边界节点 C t i ?=1001,,42≤≤i 上边界节点 C t j ?=200,1,42≤≤j 右边界节点 )2(415,15,14,5,+-++= i i i i t t t t ,42≤≤i 下边界节点 )42()2(211,51,5,4,5∞+-?+++?+=t x h t t t x h t j j j j λλ ,42≤≤j 内部节点 )(2 1,1,11,1,,j i j i j i j i j i t t t t t +-+-+++= ,4,2≤≤j i 三、源程序 1、G-S 迭代法 t=zeros(5,5); t0=zeros(5,5); dteps=0.0001; for i=2:5 %左边界节点 t(i,1)=100; end for j=2:4 %上边界节点 t(1,j)=200; end t(1,1)=(t(1,2)+t(2,1))/2; t for k=1:100 for i=2:4 %内部节点 for j=2:4 t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/4; end end t(1,5)=(t(1,4)+t(2,5))/2;%右上角节点 for i=2:4;%右边界节点 t(i,5)=(2*t(i,4)+t(i-1,5)+t(i+1,5))/4; end for j=2:4; %下边界节点

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

数值计算方法教学大纲(本)

数值计算方法教学大纲(本) 本着“崇术重用、服务地方”的办学理念和我校“高素质应用型人才”的培养目标,特制定了适合我校工科专业本科生的新教学大纲。 一、课程计划 课程名称:数值计算方法Numerical Calculation Method 课程定位:数学基础课 开课单位:理学院 课程类型:专业选修课 开设学期:第七学期 讲授学时:共15周,每周4学时,共60学时 学时安排:课堂教学40学时+实验教学20学时 适用专业:计算机、电科、机械等工科专业本科生 教学方式:讲授(多媒体为主)+上机 考核方式:考试60%+上机实验30%+平时成绩10% 学分:3学分 与其它课程的联系 预修课程:线性代数、微积分、常微分方程、计算机高级语言等。 后继课程:偏微分方程数值解及其它专业课程。 二、课程介绍 数值计算方法也称为数值分析,是研究用计算机求解各种数学问题的数值方法及其理论的一门学科。随着计算科学与技术的进步和发展,科学计算已经与理论研究、科学实验并列成为进行科学活动的三大基本手段,作为一门综合性的新科学,科学计算已经成为了人们进行科学活动必不可少的科学方法和工具。 数值计算方法是科学计算的核心内容,它既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程.主要介绍插值法、函数逼近与曲线拟合、线性方程组迭代解法、数值积分与数值微分、非线性方程组解法、常微分方程数值解以及矩阵特征值与特征向量数值计算,并特别加强实验环节的训练以提高学生动手能力。通过本课程的学习,不仅能使学生初步掌握数值计算方法的基本理论知识,了解算法设计及数学建模思想,而且能使学生具备一定的科学计算能力和分析与解决问题的能力,不仅为学习后继课程打下良好的理论基础,也为将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 科学计算是21世纪高层次人才知识结构中不可缺少的一部分,它潜移默化地影响着人们的思维方式和思想方法,并提升一个人的综合素质。

西安交通大学传热学大作业二维温度场热电比拟实验1

二维导热物体温度场的数值模拟

一、物理问题 有一个用砖砌成的长方形截面的冷空气通道, 于纸面方向上用冷空气及砖墙的温度变化很小, 可以近似地予以忽略。 在下列两种情况下试计算: 砖墙横截面上的温度分布;垂直于纸面方向的每 米长度上通过砖墙的导热量。 第一种情况:内外壁分别均匀维持在 0℃及 30℃; 第二种情况:内外壁均为第三类边界条 件, 且已知: t 1 30 C,h 1 10.35W / m 2 K 2 t 2 10 C, h 2 3.93W / m 2 K 砖墙导热系数 0.35/ m K 二、数学描写 由对称的界面必是绝热面, 态、无内热源的导热问题。 控制方程: 22 tt 22 xy 边界条件: 第一种情况: 由对称性知边界 1 绝热: 边界 2 为等温边界,满足第一类边界条件: t w 0 C ; 边界 3 为等温边界,满足第一类边界条件: t w 30 C 。 第一种情况: 由对称性知边界 1 绝热: q w 0; 边界 2 为对流边界,满足第三类边界条件: q w ( t )w h 2(t w 可取左上方的四分之一墙角为研究对象, 该问题为二维、 稳 图1-

t f ); n t 边界3 为对流边界,满足第三类边界条件:q w ( ) w h 2 (t w t f )。 w n w 2 w f

0,m 6,n 1~ 7;m 7 ~ 16,n 7 30,m 1,n 1~12;m 2 ~ 16,n 12 三、方程离散 用一系列与坐标轴平行的间隔 0.1m 的二维网格线 将温度区域划分为若干子区域,如图 1-3 所示。 采用热平衡法, 利用傅里叶导热定律和能量守恒定 律,按照以导入元体( m,n )方向的热流量为正,列写 每个节点代表的元体的代数方程, 第一种情况: 边界点: 1 边界 绝热边界) : 边界 图1-3 t m ,1 t 16,n 等温内边界) : 14 (2t m,2 1 4 (2t 15,n t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 t 16,n 1), n 8 ~ 11 边界 等温外边界) : 内节 点: 1 (t t t t ) 4 m 1,n m 1,n m ,n 1 m,n 1 m 2 ~ 5,n 2 ~11;m 6 ~ 15,n 8 ~ 11 t m,n 第二种情况 边界点: 边界 1(绝热边界) : t m ,1 1 4 (2t m,2 t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 4 (2t 15,n t 16,n 1 t 16,n 1), n 8 ~11 4 边界 2(内对流边界) : t6,n 2t 5,n t 6,n 1 t 6,n 1 2Bi 1t 1 ,n 1~ 6 6,n 2(Bi 2) t m,n t m,n

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

北航数值分析大作业第一题幂法与反幂法

《数值分析》计算实习题目 第一题: 1. 算法设计方案 (1)1λ,501λ和s λ的值。 1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。 2)使用反幂法求λs ,其中需要解线性方程组。因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。 (2)与140k λλμλ-5011=+k 最接近的特征值λik 。 通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。 (3)2cond(A)和det A 。 1)1=n λλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。 2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。 由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。 2.全部源程序 #include #include void init_a();//初始化A double get_an_element(int,int);//取A 中的元素函数 double powermethod(double);//原点平移的幂法 double inversepowermethod(double);//原点平移的反幂法 int presolve(double);//三角LU 分解 int solve(double [],double []);//解方程组 int max(int,int); int min(int,int); double (*u)[502]=new double[502][502];//上三角U 数组 double (*l)[502]=new double[502][502];//单位下三角L 数组 double a[6][502];//矩阵A int main() { int i,k; double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;

数值计算方法试题集及答案要点

《数值计算方法》复习试题 一、填空题: 1、 ?? ??? ?????----=410141014A ,则A 的LU 分解为 A ? ???????? ???=????????? ?? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(, 0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求 得?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(, 1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对 1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公

上海大学_王培康_数值分析大作业

数值分析大作业(2013年5月) 金洋洋(12721512),机自系 1.下列各数都是经过四舍五入得到的近似值,试分别指出它 们的绝对误差限, 相对误差限和有效数字的位数。 X1 =5.420, x 2 =0.5420, x 3=0.00542, x 4 =6000, x 5=50.610? 解:根据定义:如果*x 的绝对误差限 不超过x 的某个数位的半个单位,则从*x 的首位非零数字到该位都是有效数字。 显然根据四舍五入原则得到的近视值,全部都是有效数字。 因而在这里有:n1=4, n2=4, n3=3, n4=4, n5=1 (n 表示x 有效数字的位数) 对x1:有a1=5, m1=1 (其中a1表示x 的首位非零数字,m1表示x1的整数位数) 所以有绝对误差限 143 11 (1)101022 x ε--≤ ?=? 相对误差限 31() 0.510(1)0.00923%5.4201 r x x x εε-?= == 对x2:有a2=5, m2=0 所以有绝对误差限 044 11 (2)101022 x ε--≤ ?=? 相对误差限 42() 0.510(2)0.00923%0.54202 r x x x εε-?= == 对x3:有a3=5, m3=-2 所以有绝对误差限 235 11 (3)101022 x ε---≤ ?=? 相对误差限 53() 0.510(3)0.0923%0.005423 r x x x εε-?= == 对x4:有a4=0, m4=4 所以有绝对误差限 4411(4)1022 x ε-≤?= 相对误差限 4() 0.5 (4)0.0083%6000 4 r x x x εε= = = 对x5:有a5=6, m5=5 所以有绝对误差限 514 11(5)101022 x ε-≤ ?=? 相对误差限 45() 0.510(5)8.3%600005 r x x x εε?= ==

相关主题